Modules
Here is a list of all modules:
Mathematical Functions
Description
CUDA mathematical functions are always available in device code. Some functions are also available in host code as indicated.
Note that floating-point functions are overloaded for different argument types. For example, the log() function has the following prototypes:
double log(double x); float log(float x); float logf(float x);
Single Precision Mathematical Functions
Description
This section describes single precision mathematical functions.
Functions
- __device__ float acosf ( float x )
- Calculate the arc cosine of the input argument.
- __device__ float acoshf ( float x )
- Calculate the nonnegative arc hyperbolic cosine of the input argument.
- __device__ float asinf ( float x )
- Calculate the arc sine of the input argument.
- __device__ float asinhf ( float x )
- Calculate the arc hyperbolic sine of the input argument.
- __device__ float atan2f ( float x, float y )
- Calculate the arc tangent of the ratio of first and second input arguments.
- __device__ float atanf ( float x )
- Calculate the arc tangent of the input argument.
- __device__ float atanhf ( float x )
- Calculate the arc hyperbolic tangent of the input argument.
- __device__ float cbrtf ( float x )
- Calculate the cube root of the input argument.
- __device__ float ceilf ( float x )
- Calculate ceiling of the input argument.
- __device__ float copysignf ( float x, float y )
- Create value with given magnitude, copying sign of second value.
- __device__ float cosf ( float x )
- Calculate the cosine of the input argument.
- __device__ float coshf ( float x )
- Calculate the hyperbolic cosine of the input argument.
- __device__ float cospif ( float x )
- Calculate the cosine of the input argument $\times \pi$ ×π.
- __device__ float erfcf ( float x )
- Calculate the complementary error function of the input argument.
- __device__ float erfcinvf ( float y )
- Calculate the inverse complementary error function of the input argument.
- __device__ float erfcxf ( float x )
- Calculate the scaled complementary error function of the input argument.
- __device__ float erff ( float x )
- Calculate the error function of the input argument.
- __device__ float erfinvf ( float y )
- Calculate the inverse error function of the input argument.
- __device__ float exp10f ( float x )
- Calculate the base 10 exponential of the input argument.
- __device__ float exp2f ( float x )
- Calculate the base 2 exponential of the input argument.
- __device__ float expf ( float x )
- Calculate the base $e$ e exponential of the input argument.
- __device__ float expm1f ( float x )
- Calculate the base $e$ e exponential of the input argument, minus 1.
- __device__ float fabsf ( float x )
- Calculate the absolute value of its argument.
- __device__ float fdimf ( float x, float y )
- Compute the positive difference between x and y.
- __device__ float fdividef ( float x, float y )
- Divide two floating point values.
- __device__ float floorf ( float x )
- Calculate the largest integer less than or equal to x.
- __device__ float fmaf ( float x, float y, float z )
- Compute $x \times y + z$ x×y+z as a single operation.
- __device__ float fmaxf ( float x, float y )
- Determine the maximum numeric value of the arguments.
- __device__ float fminf ( float x, float y )
- Determine the minimum numeric value of the arguments.
- __device__ float fmodf ( float x, float y )
- Calculate the floating-point remainder of x / y.
- __device__ float frexpf ( float x, int* nptr )
- Extract mantissa and exponent of a floating-point value.
- __device__ float hypotf ( float x, float y )
- Calculate the square root of the sum of squares of two arguments.
- __device__ int ilogbf ( float x )
- Compute the unbiased integer exponent of the argument.
- __device__ int isfinite ( float a )
- Determine whether argument is finite.
- __device__ int isinf ( float a )
- Determine whether argument is infinite.
- __device__ int isnan ( float a )
- Determine whether argument is a NaN.
- __device__ float j0f ( float x )
- Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
- __device__ float j1f ( float x )
- Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
- __device__ float jnf ( int n, float x )
- Calculate the value of the Bessel function of the first kind of order n for the input argument.
- __device__ float ldexpf ( float x, int exp )
- Calculate the value of $x\cdot 2^{exp}$ x⋅2exp.
- __device__ float lgammaf ( float x )
- Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
- __device__ long long int llrintf ( float x )
- Round input to nearest integer value.
- __device__ long long int llroundf ( float x )
- Round to nearest integer value.
- __device__ float log10f ( float x )
- Calculate the base 10 logarithm of the input argument.
- __device__ float log1pf ( float x )
- Calculate the value of $log_{e}(1+x)$ $\lfloor x \rfloor$ loge(1+x).
- __device__ float log2f ( float x )
- Calculate the base 2 logarithm of the input argument.
- __device__ float logbf ( float x )
- Calculate the floating point representation of the exponent of the input argument.
- __device__ float logf ( float x )
- Calculate the natural logarithm of the input argument.
- __device__ long int lrintf ( float x )
- Round input to nearest integer value.
- __device__ long int lroundf ( float x )
- Round to nearest integer value.
- __device__ float modff ( float x, float* iptr )
- Break down the input argument into fractional and integral parts.
- __device__ float nanf ( const char* tagp )
- Returns "Not a Number" value.
- __device__ float nearbyintf ( float x )
- Round the input argument to the nearest integer.
- __device__ float nextafterf ( float x, float y )
- Return next representable single-precision floating-point value afer argument.
- __device__ float normcdff ( float y )
- Calculate the standard normal cumulative distribution function.
- __device__ float normcdfinvf ( float y )
- Calculate the inverse of the standard normal cumulative distribution function.
- __device__ float powf ( float x, float y )
- Calculate the value of first argument to the power of second argument.
- __device__ float rcbrtf ( float x )
- Calculate reciprocal cube root function.
- __device__ float remainderf ( float x, float y )
- Compute single-precision floating-point remainder.
- __device__ float remquof ( float x, float y, int* quo )
- Compute single-precision floating-point remainder and part of quotient.
- __device__ float rintf ( float x )
- Round input to nearest integer value in floating-point.
- __device__ float roundf ( float x )
- Round to nearest integer value in floating-point.
- __device__ float rsqrtf ( float x )
- Calculate the reciprocal of the square root of the input argument.
- __device__ float scalblnf ( float x, long int n )
- Scale floating-point input by integer power of two.
- __device__ float scalbnf ( float x, int n )
- Scale floating-point input by integer power of two.
- __device__ int signbit ( float a )
- Return the sign bit of the input.
- __device__ void sincosf ( float x, float* sptr, float* cptr )
- Calculate the sine and cosine of the first input argument.
- __device__ void sincospif ( float x, float* sptr, float* cptr )
- Calculate the sine and cosine of the first input argument $\times \pi$ ×π.
- __device__ float sinf ( float x )
- Calculate the sine of the input argument.
- __device__ float sinhf ( float x )
- Calculate the hyperbolic sine of the input argument.
- __device__ float sinpif ( float x )
- Calculate the sine of the input argument $\times \pi$ ×π.
- __device__ float sqrtf ( float x )
- Calculate the square root of the input argument.
- __device__ float tanf ( float x )
- Calculate the tangent of the input argument.
- __device__ float tanhf ( float x )
- Calculate the hyperbolic tangent of the input argument.
- __device__ float tgammaf ( float x )
- Calculate the gamma function of the input argument.
- __device__ float truncf ( float x )
- Truncate input argument to the integral part.
- __device__ float y0f ( float x )
- Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
- __device__ float y1f ( float x )
- Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
- __device__ float ynf ( int n, float x )
- Calculate the value of the Bessel function of the second kind of order n for the input argument.
Functions
- __device__ float acosf ( float x )
-
Calculate the arc cosine of the input argument. Calculate the principal value of the arc cosine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [0, ] for x inside [-1, +1].
- acosf(1) returns +0.
- acosf(x) returns NaN for x outside [-1, +1].
- __device__ float acoshf ( float x )
-
Calculate the nonnegative arc hyperbolic cosine of the input argument. Calculate the nonnegative arc hyperbolic cosine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in the interval [0, ].
- acoshf(1) returns 0.
- acoshf(x) returns NaN for x in the interval [ , 1).
- __device__ float asinf ( float x )
-
Calculate the arc sine of the input argument. Calculate the principal value of the arc sine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [- , + ] for x inside [-1, +1].
- asinf(0) returns +0.
- asinf(x) returns NaN for x outside [-1, +1].
- __device__ float asinhf ( float x )
-
Calculate the arc hyperbolic sine of the input argument. Calculate the arc hyperbolic sine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- asinhf(0) returns 1.
- __device__ float atan2f ( float x, float y )
-
Calculate the arc tangent of the ratio of first and second input arguments. Calculate the principal value of the arc tangent of the ratio of first and second input arguments x / y. The quadrant of the result is determined by the signs of inputs x and y.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [- , + ].
- atan2f(0, 1) returns +0.
- __device__ float atanf ( float x )
-
Calculate the arc tangent of the input argument. Calculate the principal value of the arc tangent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Result will be in radians, in the interval [- , + ].
- atanf(0) returns +0.
- __device__ float atanhf ( float x )
-
Calculate the arc hyperbolic tangent of the input argument. Calculate the arc hyperbolic tangent of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- atanhf( ) returns .
- atanhf( ) returns .
- atanhf(x) returns NaN for x outside interval [-1, 1].
- __device__ float cbrtf ( float x )
-
Calculate the cube root of the input argument. Calculate the cube root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- cbrtf( ) returns .
- cbrtf( ) returns .
- __device__ float ceilf ( float x )
-
Calculate ceiling of the input argument. Compute the smallest integer value not less than x.
Returns
Returns expressed as a floating-point number.
- ceilf( ) returns .
- ceilf( ) returns .
- __device__ float copysignf ( float x, float y )
-
Create value with given magnitude, copying sign of second value. Create a floating-point value with the magnitude x and the sign of y.
Returns
Returns a value with the magnitude of x and the sign of y.
- __device__ float cosf ( float x )
-
Calculate the cosine of the input argument. Calculate the cosine of the input argument x (measured in radians).
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- cosf(0) returns 1.
- cosf( ) returns NaN.
-
- __device__ float coshf ( float x )
-
Calculate the hyperbolic cosine of the input argument. Calculate the hyperbolic cosine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- coshf(0) returns 1.
- coshf( ) returns NaN.
- __device__ float cospif ( float x )
-
Calculate the cosine of the input argument $\times \pi$ ×π. Calculate the cosine of x (measured in radians), where x is the input argument.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- cospif( ) returns 1.
- cospif( ) returns NaN.
- __device__ float erfcf ( float x )
-
Calculate the complementary error function of the input argument. Calculate the complementary error function of the input argument x, 1 - erf(x).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfcf( ) returns 2.
- erfcf( ) returns +0.
- __device__ float erfcinvf ( float y )
-
Calculate the inverse complementary error function of the input argument. Calculate the inverse complementary error function of the input argument y, for y in the interval [0, 2]. The inverse complementary error function find the value x that satisfies the equation y = erfc(x), for , and .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfcinvf(0) returns .
- erfcinvf(2) returns .
- __device__ float erfcxf ( float x )
-
Calculate the scaled complementary error function of the input argument. Calculate the scaled complementary error function of the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfcxf( ) returns
- erfcxf( ) returns +0
- erfcxf(x) returns if the correctly calculated value is outside the single floating point range.
- __device__ float erff ( float x )
-
Calculate the error function of the input argument. Calculate the value of the error function for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erff( ) returns .
- erff( ) returns .
- __device__ float erfinvf ( float y )
-
Calculate the inverse error function of the input argument. Calculate the inverse error function of the input argument y, for y in the interval [-1, 1]. The inverse error function finds the value x that satisfies the equation y = erf(x), for , and .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- erfinvf(1) returns .
- erfinvf(-1) returns .
- __device__ float exp10f ( float x )
-
Calculate the base 10 exponential of the input argument. Calculate the base 10 exponential of the input argument x.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
Returns .
-
- __device__ float exp2f ( float x )
-
Calculate the base 2 exponential of the input argument. Calculate the base 2 exponential of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float expf ( float x )
-
Calculate the base $e$ e exponential of the input argument. Calculate the base exponential of the input argument x, .
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
Returns .
-
- __device__ float expm1f ( float x )
-
Calculate the base $e$ e exponential of the input argument, minus 1. Calculate the base exponential of the input argument x, minus 1.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float fabsf ( float x )
-
Calculate the absolute value of its argument. Calculate the absolute value of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the absolute value of its argument.
- fabs( ) returns .
- fabs( ) returns 0.
- __device__ float fdimf ( float x, float y )
-
Compute the positive difference between x and y. Compute the positive difference between x and y. The positive difference is x - y when x > y and +0 otherwise.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the positive difference between x and y.
- fdimf(x, y) returns x - y if x > y.
- fdimf(x, y) returns +0 if xy.
- __device__ float fdividef ( float x, float y )
-
Divide two floating point values. Compute x divided by y. If --use_fast_math is specified, use __fdividef() for higher performance, otherwise use normal division.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
Returns x / y.
-
- __device__ float floorf ( float x )
-
Calculate the largest integer less than or equal to x. Calculate the largest integer value which is less than or equal to x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns expressed as a floating-point number.
- floorf( ) returns .
- floorf( ) returns .
- __device__ float fmaf ( float x, float y, float z )
-
Compute $x \times y + z$ x×y+z as a single operation. Compute the value of as a single ternary operation. After computing the value to infinite precision, the value is rounded once.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
- __device__ float fmaxf ( float x, float y )
-
Determine the maximum numeric value of the arguments. Determines the maximum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the maximum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
- __device__ float fminf ( float x, float y )
-
Determine the minimum numeric value of the arguments. Determines the minimum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the minimum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
- __device__ float fmodf ( float x, float y )
-
Calculate the floating-point remainder of x / y. Calculate the floating-point remainder of x / y. The absolute value of the computed value is always less than y's absolute value and will have the same sign as x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- Returns the floating point remainder of x / y.
- fmodf( , y) returns if y is not zero.
- fmodf(x, y) returns NaN and raised an invalid floating point exception if x is or y is zero.
- fmodf(x, y) returns zero if y is zero or the result would overflow.
- fmodf(x, ) returns x if x is finite.
- fmodf(x, 0) returns NaN.
- __device__ float frexpf ( float x, int* nptr )
-
Extract mantissa and exponent of a floating-point value. Decomposes the floating-point value x into a component m for the normalized fraction element and another term n for the exponent. The absolute value of m will be greater than or equal to 0.5 and less than 1.0 or it will be equal to 0; . The integer exponent n will be stored in the location to which nptr points.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the fractional component m.
- frexp(0, nptr) returns 0 for the fractional component and zero for the integer component.
- frexp( , nptr) returns and stores zero in the location pointed to by nptr.
- frexp( , nptr) returns and stores an unspecified value in the location to which nptr points.
- frexp(NaN, y) returns a NaN and stores an unspecified value in the location to which nptr points.
- __device__ float hypotf ( float x, float y )
-
Calculate the square root of the sum of squares of two arguments. Calculates the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the length of the hypotenuse . If the correct value would overflow, returns . If the correct value would underflow, returns 0.
- __device__ int ilogbf ( float x )
-
Compute the unbiased integer exponent of the argument. Calculates the unbiased integer exponent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- If successful, returns the unbiased exponent of the argument.
- ilogbf(0) returns INT_MIN.
- ilogbf(NaN) returns NaN.
- ilogbf(x) returns INT_MAX if x is or the correct value is greater than INT_MAX.
- ilogbf(x) return INT_MIN if the correct value is less than INT_MIN.
- __device__ int isfinite ( float a )
-
Determine whether argument is finite. Determine whether the floating-point value a is a finite value (zero, subnormal, or normal and not infinity or NaN).
Returns
Returns a nonzero value if and only if a is a finite value.
- __device__ int isinf ( float a )
-
Determine whether argument is infinite. Determine whether the floating-point value a is an infinite value (positive or negative).
Returns
Returns a nonzero value if and only if a is a infinite value.
- __device__ int isnan ( float a )
-
Determine whether argument is a NaN. Determine whether the floating-point value a is a NaN.
Returns
Returns a nonzero value if and only if a is a NaN value.
- __device__ float j0f ( float x )
-
Calculate the value of the Bessel function of the first kind of order 0 for the input argument. Calculate the value of the Bessel function of the first kind of order 0 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the first kind of order 0.
- j0f( ) returns +0.
- j0f(NaN) returns NaN.
- __device__ float j1f ( float x )
-
Calculate the value of the Bessel function of the first kind of order 1 for the input argument. Calculate the value of the Bessel function of the first kind of order 1 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the first kind of order 1.
- j1f( ) returns .
- j1f( ) returns +0.
- j1f(NaN) returns NaN.
- __device__ float jnf ( int n, float x )
-
Calculate the value of the Bessel function of the first kind of order n for the input argument. Calculate the value of the Bessel function of the first kind of order n for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the first kind of order n.
- jnf(n, NaN) returns NaN.
- jnf(n, x) returns NaN for n < 0.
- jnf(n, ) returns +0.
- __device__ float ldexpf ( float x, int exp )
-
Calculate the value of $x\cdot 2^{exp}$ x⋅2exp. Calculate the value of of the input arguments x and exp.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- ldexpf(x) returns if the correctly calculated value is outside the single floating point range.
- __device__ float lgammaf ( float x )
-
Calculate the natural logarithm of the absolute value of the gamma function of the input argument. Calculate the natural logarithm of the absolute value of the gamma function of the input argument x, namely the value of .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- lgammaf(1) returns +0.
- lgammaf(2) returns +0.
- lgammaf(x) returns if the correctly calculated value is outside the single floating point range.
- lgammaf(x) returns if x 0.
- lgammaf( ) returns .
- lgammaf( ) returns .
- __device__ long long int llrintf ( float x )
-
Round input to nearest integer value. Round x to the nearest integer value, with halfway cases rounded towards zero. If the result is outside the range of the return type, the result is undefined.
Returns
Returns rounded integer value.
- __device__ long long int llroundf ( float x )
-
Round to nearest integer value. Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the result is undefined.
Note:This function may be slower than alternate rounding methods. See llrintf().
Returns
Returns rounded integer value.
- __device__ float log10f ( float x )
-
Calculate the base 10 logarithm of the input argument. Calculate the base 10 logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- log10f( ) returns .
- log10f(1) returns +0.
- log10f(x) returns NaN for x < 0.
- log10f( ) returns .
- __device__ float log1pf ( float x )
-
Calculate the value of $log_{e}(1+x)$ $\lfloor x \rfloor$ loge(1+x). Calculate the value of of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- log1pf( ) returns .
- log1pf(-1) returns +0.
- log1pf(x) returns NaN for x < -1.
- log1pf( ) returns .
- __device__ float log2f ( float x )
-
Calculate the base 2 logarithm of the input argument. Calculate the base 2 logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- log2f( ) returns .
- log2f(1) returns +0.
- log2f(x) returns NaN for x < 0.
- log2f( ) returns .
- __device__ float logbf ( float x )
-
Calculate the floating point representation of the exponent of the input argument. Calculate the floating point representation of the exponent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- logbf returns
- logbf returns
- __device__ float logf ( float x )
-
Calculate the natural logarithm of the input argument. Calculate the natural logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- logf( ) returns .
- logf(1) returns +0.
- logf(x) returns NaN for x < 0.
- logf( ) returns .
- __device__ long int lrintf ( float x )
-
Round input to nearest integer value. Round x to the nearest integer value, with halfway cases rounded towards zero. If the result is outside the range of the return type, the result is undefined.
Returns
Returns rounded integer value.
- __device__ long int lroundf ( float x )
-
Round to nearest integer value. Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the result is undefined.
Note:This function may be slower than alternate rounding methods. See lrintf().
Returns
Returns rounded integer value.
- __device__ float modff ( float x, float* iptr )
-
Break down the input argument into fractional and integral parts. Break down the argument x into fractional and integral parts. The integral part is stored in the argument iptr. Fractional and integral parts are given the same sign as the argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- modff( , iptr) returns a result with the same sign as x.
- modff( , iptr) returns and stores in the object pointed to by iptr.
- modff(NaN, iptr) stores a NaN in the object pointed to by iptr and returns a NaN.
- __device__ float nanf ( const char* tagp )
-
Returns "Not a Number" value. Return a representation of a quiet NaN. Argument tagp selects one of the possible representations.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- nanf(tagp) returns NaN.
- __device__ float nearbyintf ( float x )
-
Round the input argument to the nearest integer. Round argument x to an integer value in single precision floating-point format.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- nearbyintf( ) returns .
- nearbyintf( ) returns .
- __device__ float nextafterf ( float x, float y )
-
Return next representable single-precision floating-point value afer argument. Calculate the next representable single-precision floating-point value following x in the direction of y. For example, if y is greater than x, nextafterf() returns the smallest representable number greater than x
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- nextafterf( , y) returns .
- __device__ float normcdff ( float y )
-
Calculate the standard normal cumulative distribution function. Calculate the cumulative distribution function of the standard normal distribution for input argument y, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- normcdff( ) returns 1
- normcdff( ) returns +0
- __device__ float normcdfinvf ( float y )
-
Calculate the inverse of the standard normal cumulative distribution function. Calculate the inverse of the standard normal cumulative distribution function for input argument y, . The function is defined for input values in the interval .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- normcdfinvf(0) returns .
- normcdfinvf(1) returns .
- normcdfinvf(x) returns NaN if x is not in the interval [0,1].
- __device__ float powf ( float x, float y )
-
Calculate the value of first argument to the power of second argument. Calculate the value of x to the power of y.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- powf( , y) returns for y an integer less than 0.
- powf( , y) returns for y an odd integer greater than 0.
- powf( , y) returns +0 for y > 0 and not and odd integer.
- powf(-1, ) returns 1.
- powf(+1, y) returns 1 for any y, even a NaN.
- powf(x, ) returns 1 for any x, even a NaN.
- powf(x, y) returns a NaN for finite x < 0 and finite non-integer y.
- powf(x, ) returns for .
- powf(x, ) returns +0 for .
- powf(x, ) returns +0 for .
- powf(x, ) returns for .
- powf( , y) returns -0 for y an odd integer less than 0.
- powf( , y) returns +0 for y < 0 and not an odd integer.
- powf( , y) returns for y an odd integer greater than 0.
- powf( , y) returns for y > 0 and not an odd integer.
- powf( , y) returns +0 for y < 0.
- powf( , y) returns for y > 0.
- __device__ float rcbrtf ( float x )
-
Calculate reciprocal cube root function. Calculate reciprocal cube root function of x
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- rcbrt( ) returns .
- rcbrt( ) returns .
- __device__ float remainderf ( float x, float y )
-
Compute single-precision floating-point remainder. Compute single-precision floating-point remainder r of dividing x by y for nonzero y. Thus . The value n is the integer value nearest . In the case when , the even n value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- remainderf(x, 0) returns NaN.
- remainderf( , y) returns NaN.
- remainderf(x, ) returns x for finite x.
- __device__ float remquof ( float x, float y, int* quo )
-
Compute single-precision floating-point remainder and part of quotient. Compute a double-precision floating-point remainder in the same way as the remainderf() function. Argument quo returns part of quotient upon division of x by y. Value quo has the same sign as and may not be the exact quotient but agrees with the exact quotient in the low order 3 bits.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the remainder.
- remquof(x, 0, quo) returns NaN.
- remquof( , y, quo) returns NaN.
- remquof(x, , quo) returns x.
- __device__ float rintf ( float x )
-
Round input to nearest integer value in floating-point. Round x to the nearest integer value in floating-point format, with halfway cases rounded towards zero.
Returns
Returns rounded integer value.
- __device__ float roundf ( float x )
-
Round to nearest integer value in floating-point. Round x to the nearest integer value in floating-point format, with halfway cases rounded away from zero.
Note:This function may be slower than alternate rounding methods. See rintf().
Returns
Returns rounded integer value.
- __device__ float rsqrtf ( float x )
-
Calculate the reciprocal of the square root of the input argument. Calculate the reciprocal of the nonnegative square root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- rsqrtf( ) returns +0.
- rsqrtf( ) returns .
- rsqrtf(x) returns NaN if x is less than 0.
- __device__ float scalblnf ( float x, long int n )
-
Scale floating-point input by integer power of two. Scale x by by efficient manipulation of the floating-point exponent.
Returns
Returns x * .
- scalblnf( , n) returns .
- scalblnf(x, 0) returns x.
- scalblnf( , n) returns .
- __device__ float scalbnf ( float x, int n )
-
Scale floating-point input by integer power of two. Scale x by by efficient manipulation of the floating-point exponent.
Returns
Returns x * .
- scalbnf( , n) returns .
- scalbnf(x, 0) returns x.
- scalbnf( , n) returns .
- __device__ int signbit ( float a )
-
Return the sign bit of the input. Determine whether the floating-point value a is negative.
Returns
Returns a nonzero value if and only if a is negative. Reports the sign bit of all values including infinities, zeros, and NaNs.
- __device__ void sincosf ( float x, float* sptr, float* cptr )
-
Calculate the sine and cosine of the first input argument. Calculate the sine and cosine of the first input argument x (measured in radians). The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- none
-
- __device__ void sincospif ( float x, float* sptr, float* cptr )
-
Calculate the sine and cosine of the first input argument $\times \pi$ ×π. Calculate the sine and cosine of the first input argument, x (measured in radians), . The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- none
- __device__ float sinf ( float x )
-
Calculate the sine of the input argument. Calculate the sine of the input argument x (measured in radians).
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- sinf( ) returns .
- sinf( ) returns NaN.
-
- __device__ float sinhf ( float x )
-
Calculate the hyperbolic sine of the input argument. Calculate the hyperbolic sine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- sinhf( ) returns .
- sinhf( ) returns NaN.
- __device__ float sinpif ( float x )
-
Calculate the sine of the input argument $\times \pi$ ×π. Calculate the sine of x (measured in radians), where x is the input argument.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- sinpif( ) returns .
- sinpif( ) returns NaN.
- __device__ float sqrtf ( float x )
-
Calculate the square root of the input argument. Calculate the nonnegative square root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- sqrtf( ) returns .
- sqrtf( ) returns .
- sqrtf(x) returns NaN if x is less than 0.
- __device__ float tanf ( float x )
-
Calculate the tangent of the input argument. Calculate the tangent of the input argument x (measured in radians).
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C Programming Guide, Appendix C, Table C-3 for a complete list of functions affected.
Returns
- tanf( ) returns .
- tanf( ) returns NaN.
-
- __device__ float tanhf ( float x )
-
Calculate the hyperbolic tangent of the input argument. Calculate the hyperbolic tangent of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- tanhf( ) returns .
- __device__ float tgammaf ( float x )
-
Calculate the gamma function of the input argument. Calculate the gamma function of the input argument x, namely the value of .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
- tgammaf( ) returns .
- tgammaf(2) returns +0.
- tgammaf(x) returns if the correctly calculated value is outside the single floating point range.
- tgammaf(x) returns NaN if x < 0.
- tgammaf( ) returns NaN.
- tgammaf( ) returns .
- __device__ float truncf ( float x )
-
Truncate input argument to the integral part. Round x to the nearest integer value that does not exceed x in magnitude.
Returns
Returns truncated integer value.
- __device__ float y0f ( float x )
-
Calculate the value of the Bessel function of the second kind of order 0 for the input argument. Calculate the value of the Bessel function of the second kind of order 0 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the second kind of order 0.
- y0f(0) returns .
- y0f(x) returns NaN for x < 0.
- y0f( ) returns +0.
- y0f(NaN) returns NaN.
- __device__ float y1f ( float x )
-
Calculate the value of the Bessel function of the second kind of order 1 for the input argument. Calculate the value of the Bessel function of the second kind of order 1 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the second kind of order 1.
- y1f(0) returns .
- y1f(x) returns NaN for x < 0.
- y1f( ) returns +0.
- y1f(NaN) returns NaN.
- __device__ float ynf ( int n, float x )
-
Calculate the value of the Bessel function of the second kind of order n for the input argument. Calculate the value of the Bessel function of the second kind of order n for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the value of the Bessel function of the second kind of order n.
- ynf(n, x) returns NaN for n < 0.
- ynf(n, 0) returns .
- ynf(n, x) returns NaN for x < 0.
- ynf(n, ) returns +0.
- ynf(n, NaN) returns NaN.
Double Precision Mathematical Functions
Description
This section describes double precision mathematical functions.
Functions
- __device__ double acos ( double x )
- Calculate the arc cosine of the input argument.
- __device__ double acosh ( double x )
- Calculate the nonnegative arc hyperbolic cosine of the input argument.
- __device__ double asin ( double x )
- Calculate the arc sine of the input argument.
- __device__ double asinh ( double x )
- Calculate the arc hyperbolic sine of the input argument.
- __device__ double atan ( double x )
- Calculate the arc tangent of the input argument.
- __device__ double atan2 ( double x, double y )
- Calculate the arc tangent of the ratio of first and second input arguments.
- __device__ double atanh ( double x )
- Calculate the arc hyperbolic tangent of the input argument.
- __device__ double cbrt ( double x )
- Calculate the cube root of the input argument.
- __device__ double ceil ( double x )
- Calculate ceiling of the input argument.
- __device__ double copysign ( double x, double y )
- Create value with given magnitude, copying sign of second value.
- __device__ double cos ( double x )
- Calculate the cosine of the input argument.
- __device__ double cosh ( double x )
- Calculate the hyperbolic cosine of the input argument.
- __device__ double cospi ( double x )
- Calculate the cosine of the input argument $\times \pi$ ×π.
- __device__ double erf ( double x )
- Calculate the error function of the input argument.
- __device__ double erfc ( double x )
- Calculate the complementary error function of the input argument.
- __device__ double erfcinv ( double y )
- Calculate the inverse complementary error function of the input argument.
- __device__ double erfcx ( double x )
- Calculate the scaled complementary error function of the input argument.
- __device__ double erfinv ( double y )
- Calculate the inverse error function of the input argument.
- __device__ double exp ( double x )
- Calculate the base $e$ e exponential of the input argument.
- __device__ double exp10 ( double x )
- Calculate the base 10 exponential of the input argument.
- __device__ double exp2 ( double x )
- Calculate the base 2 exponential of the input argument.
- __device__ double expm1 ( double x )
- Calculate the base $e$ e exponential of the input argument, minus 1.
- __device__ double fabs ( double x )
- Calculate the absolute value of the input argument.
- __device__ double fdim ( double x, double y )
- Compute the positive difference between x and y.
- __device__ double floor ( double x )
- Calculate the largest integer less than or equal to x.
- __device__ double fma ( double x, double y, double z )
- Compute $x \times y + z$ x×y+z as a single operation.
- __device__ double fmax ( double , double )
- Determine the maximum numeric value of the arguments.
- __device__ double fmin ( double x, double y )
- Determine the minimum numeric value of the arguments.
- __device__ double fmod ( double x, double y )
- Calculate the floating-point remainder of x / y.
- __device__ double frexp ( double x, int* nptr )
- Extract mantissa and exponent of a floating-point value.
- __device__ double hypot ( double x, double y )
- Calculate the square root of the sum of squares of two arguments.
- __device__ int ilogb ( double x )
- Compute the unbiased integer exponent of the argument.
- __device__ int isfinite ( double a )
- Determine whether argument is finite.
- __device__ int isinf ( double a )
- Determine whether argument is infinite.
- __device__ int isnan ( double a )
- Determine whether argument is a NaN.
- __device__ double j0 ( double x )
- Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
- __device__ double j1 ( double x )
- Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
- __device__ double jn ( int n, double x )
- Calculate the value of the Bessel function of the first kind of order n for the input argument.
- __device__ double ldexp ( double x, int exp )
- Calculate the value of $x\cdot 2^{exp}$ x⋅2exp.
- __device__ double lgamma ( double x )
- Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
- __device__ long long int llrint ( double x )
- Round input to nearest integer value.
- __device__ long long int llround ( double x )
- Round to nearest integer value.
- __device__ double log ( double x )
- Calculate the base $e$ e logarithm of the input argument.
- __device__ double log10 ( double x )
- Calculate the base 10 logarithm of the input argument.
- __device__ double log1p ( double x )
- Calculate the value of $log_{e}(1+x)$ $\lfloor x \rfloor$ loge(1+x).
- __device__ double log2 ( double x )
- Calculate the base 2 logarithm of the input argument.
- __device__ double logb ( double x )
- Calculate the floating point representation of the exponent of the input argument.
- __device__ long int lrint ( double x )
- Round input to nearest integer value.
- __device__ long int lround ( double x )
- Round to nearest integer value.
- __device__ double modf ( double x, double* iptr )
- Break down the input argument into fractional and integral parts.
- __device__ double nan ( const char* tagp )
- Returns "Not a Number" value.
- __device__ double nearbyint ( double x )
- Round the input argument to the nearest integer.
- __device__ double nextafter ( double x, double y )
- Return next representable double-precision floating-point value after argument.
- __device__ double normcdf ( double y )
- Calculate the standard normal cumulative distribution function.
- __device__ double normcdfinv ( double y )
- Calculate the inverse of the standard normal cumulative distribution function.
- __device__ double pow ( double x, double y )
- Calculate the value of first argument to the power of second argument.
- __device__ double rcbrt ( double x )
- Calculate reciprocal cube root function.
- __device__ double remainder ( double x, double y )
- Compute double-precision floating-point remainder.
- __device__ double remquo ( double x, double y, int* quo )
- Compute double-precision floating-point remainder and part of quotient.
- __device__ double rint ( double x )
- Round to nearest integer value in floating-point.
- __device__ double round ( double x )
- Round to nearest integer value in floating-point.
- __device__ double rsqrt ( double x )
- Calculate the reciprocal of the square root of the input argument.
- __device__ double scalbln ( double x, long int n )
- Scale floating-point input by integer power of two.
- __device__ double scalbn ( double x, int n )
- Scale floating-point input by integer power of two.
- __device__ int signbit ( double a )
- Return the sign bit of the input.
- __device__ double sin ( double x )
- Calculate the sine of the input argument.
- __device__ void sincos ( double x, double* sptr, double* cptr )
- Calculate the sine and cosine of the first input argument.
- __device__ void sincospi ( double x, double* sptr, double* cptr )
- Calculate the sine and cosine of the first input argument $\times \pi$ ×π.
- __device__ double sinh ( double x )
- Calculate the hyperbolic sine of the input argument.
- __device__ double sinpi ( double x )
- Calculate the sine of the input argument $\times \pi$ ×π.
- __device__ double sqrt ( double x )
- Calculate the square root of the input argument.
- __device__ double tan ( double x )
- Calculate the tangent of the input argument.
- __device__ double tanh ( double x )
- Calculate the hyperbolic tangent of the input argument.
- __device__ double tgamma ( double x )
- Calculate the gamma function of the input argument.
- __device__ double trunc ( double x )
- Truncate input argument to the integral part.
- __device__ double y0 ( double x )
- Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
- __device__ double y1 ( double x )
- Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
- __device__ double yn ( int n, double x )
- Calculate the value of the Bessel function of the second kind of order n for the input argument.
Functions
- __device__ double acos ( double x )
-
Calculate the arc cosine of the input argument. Calculate the principal value of the arc cosine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Result will be in radians, in the interval [0, ] for x inside [-1, +1].
- acos(1) returns +0.
- acos(x) returns NaN for x outside [-1, +1].
- __device__ double acosh ( double x )
-
Calculate the nonnegative arc hyperbolic cosine of the input argument. Calculate the nonnegative arc hyperbolic cosine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Result will be in the interval [0, ].
- acosh(1) returns 0.
- acosh(x) returns NaN for x in the interval [ , 1).
- __device__ double asin ( double x )
-
Calculate the arc sine of the input argument. Calculate the principal value of the arc sine of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Result will be in radians, in the interval [- /2, + /2] for x inside [-1, +1].
- asin(0) returns +0.
- asin(x) returns NaN for x outside [-1, +1].
- __device__ double asinh ( double x )
-
Calculate the arc hyperbolic sine of the input argument. Calculate the arc hyperbolic sine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- asinh(0) returns 1.
- __device__ double atan ( double x )
-
Calculate the arc tangent of the input argument. Calculate the principal value of the arc tangent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Result will be in radians, in the interval [- /2, + /2].
- atan(0) returns +0.
- __device__ double atan2 ( double x, double y )
-
Calculate the arc tangent of the ratio of first and second input arguments. Calculate the principal value of the arc tangent of the ratio of first and second input arguments x / y. The quadrant of the result is determined by the signs of inputs x and y.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Result will be in radians, in the interval [- /, + ].
- atan2(0, 1) returns +0.
- __device__ double atanh ( double x )
-
Calculate the arc hyperbolic tangent of the input argument. Calculate the arc hyperbolic tangent of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- atanh( ) returns .
- atanh( ) returns .
- atanh(x) returns NaN for x outside interval [-1, 1].
- __device__ double cbrt ( double x )
-
Calculate the cube root of the input argument. Calculate the cube root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- cbrt( ) returns .
- cbrt( ) returns .
- __device__ double ceil ( double x )
-
Calculate ceiling of the input argument. Compute the smallest integer value not less than x.
Returns
Returns expressed as a floating-point number.
- ceil( ) returns .
- ceil( ) returns .
- __device__ double copysign ( double x, double y )
-
Create value with given magnitude, copying sign of second value. Create a floating-point value with the magnitude x and the sign of y.
Returns
Returns a value with the magnitude of x and the sign of y.
- __device__ double cos ( double x )
-
Calculate the cosine of the input argument. Calculate the cosine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- cos( ) returns 1.
- cos( ) returns NaN.
- __device__ double cosh ( double x )
-
Calculate the hyperbolic cosine of the input argument. Calculate the hyperbolic cosine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- cosh(0) returns 1.
- cosh( ) returns .
- __device__ double cospi ( double x )
-
Calculate the cosine of the input argument $\times \pi$ ×π. Calculate the cosine of x (measured in radians), where x is the input argument.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- cospi( ) returns 1.
- cospi( ) returns NaN.
- __device__ double erf ( double x )
-
Calculate the error function of the input argument. Calculate the value of the error function for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- erf( ) returns .
- erf( ) returns .
- __device__ double erfc ( double x )
-
Calculate the complementary error function of the input argument. Calculate the complementary error function of the input argument x, 1 - erf(x).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- erfc( ) returns 2.
- erfc( ) returns +0.
- __device__ double erfcinv ( double y )
-
Calculate the inverse complementary error function of the input argument. Calculate the inverse complementary error function of the input argument y, for y in the interval [0, 2]. The inverse complementary error function find the value x that satisfies the equation y = erfc(x), for , and .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- erfcinv(0) returns .
- erfcinv(2) returns .
- __device__ double erfcx ( double x )
-
Calculate the scaled complementary error function of the input argument. Calculate the scaled complementary error function of the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- erfcx( ) returns
- erfcx( ) returns +0
- erfcx(x) returns if the correctly calculated value is outside the double floating point range.
- __device__ double erfinv ( double y )
-
Calculate the inverse error function of the input argument. Calculate the inverse error function of the input argument y, for y in the interval [-1, 1]. The inverse error function finds the value x that satisfies the equation y = erf(x), for , and .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- erfinv(1) returns .
- erfinv(-1) returns .
- __device__ double exp ( double x )
-
Calculate the base $e$ e exponential of the input argument. Calculate the base exponential of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- __device__ double exp10 ( double x )
-
Calculate the base 10 exponential of the input argument. Calculate the base 10 exponential of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- __device__ double exp2 ( double x )
-
Calculate the base 2 exponential of the input argument. Calculate the base 2 exponential of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- __device__ double expm1 ( double x )
-
Calculate the base $e$ e exponential of the input argument, minus 1. Calculate the base exponential of the input argument x, minus 1.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- __device__ double fabs ( double x )
-
Calculate the absolute value of the input argument. Calculate the absolute value of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the absolute value of the input argument.
- fabs( ) returns .
- fabs( ) returns 0.
- __device__ double fdim ( double x, double y )
-
Compute the positive difference between x and y. Compute the positive difference between x and y. The positive difference is x - y when x > y and +0 otherwise.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the positive difference between x and y.
- fdim(x, y) returns x - y if x > y.
- fdim(x, y) returns +0 if xy.
- __device__ double floor ( double x )
-
Calculate the largest integer less than or equal to x. Calculates the largest integer value which is less than or equal to x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns expressed as a floating-point number.
- floor( ) returns .
- floor( ) returns .
- __device__ double fma ( double x, double y, double z )
-
Compute $x \times y + z$ x×y+z as a single operation. Compute the value of as a single ternary operation. After computing the value to infinite precision, the value is rounded once.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the rounded value of as a single operation.
- fma( , , z) returns NaN.
- fma( , , z) returns NaN.
- fma(x, y, ) returns NaN if is an exact .
- fma(x, y, ) returns NaN if is an exact .
- __device__ double fmax ( double , double )
-
Determine the maximum numeric value of the arguments. Determines the maximum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the maximum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
- __device__ double fmin ( double x, double y )
-
Determine the minimum numeric value of the arguments. Determines the minimum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the minimum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
- __device__ double fmod ( double x, double y )
-
Calculate the floating-point remainder of x / y. Calculate the floating-point remainder of x / y. The absolute value of the computed value is always less than y's absolute value and will have the same sign as x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- Returns the floating point remainder of x / y.
- fmod( , y) returns if y is not zero.
- fmod(x, y) returns NaN and raised an invalid floating point exception if x is or y is zero.
- fmod(x, y) returns zero if y is zero or the result would overflow.
- fmod(x, ) returns x if x is finite.
- fmod(x, 0) returns NaN.
- __device__ double frexp ( double x, int* nptr )
-
Extract mantissa and exponent of a floating-point value. Decompose the floating-point value x into a component m for the normalized fraction element and another term n for the exponent. The absolute value of m will be greater than or equal to 0.5 and less than 1.0 or it will be equal to 0; . The integer exponent n will be stored in the location to which nptr points.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the fractional component m.
- frexp(0, nptr) returns 0 for the fractional component and zero for the integer component.
- frexp( , nptr) returns and stores zero in the location pointed to by nptr.
- frexp( , nptr) returns and stores an unspecified value in the location to which nptr points.
- frexp(NaN, y) returns a NaN and stores an unspecified value in the location to which nptr points.
- __device__ double hypot ( double x, double y )
-
Calculate the square root of the sum of squares of two arguments. Calculate the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the length of the hypotenuse . If the correct value would overflow, returns . If the correct value would underflow, returns 0.
- __device__ int ilogb ( double x )
-
Compute the unbiased integer exponent of the argument. Calculates the unbiased integer exponent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- If successful, returns the unbiased exponent of the argument.
- ilogb(0) returns INT_MIN.
- ilogb(NaN) returns NaN.
- ilogb(x) returns INT_MAX if x is or the correct value is greater than INT_MAX.
- ilogb(x) return INT_MIN if the correct value is less than INT_MIN.
- __device__ int isfinite ( double a )
-
Determine whether argument is finite. Determine whether the floating-point value a is a finite value (zero, subnormal, or normal and not infinity or NaN).
Returns
Returns a nonzero value if and only if a is a finite value.
- __device__ int isinf ( double a )
-
Determine whether argument is infinite. Determine whether the floating-point value a is an infinite value (positive or negative).
Returns
Returns a nonzero value if and only if a is a infinite value.
- __device__ int isnan ( double a )
-
Determine whether argument is a NaN. Determine whether the floating-point value a is a NaN.
Returns
Returns a nonzero value if and only if a is a NaN value.
- __device__ double j0 ( double x )
-
Calculate the value of the Bessel function of the first kind of order 0 for the input argument. Calculate the value of the Bessel function of the first kind of order 0 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the value of the Bessel function of the first kind of order 0.
- j0( ) returns +0.
- j0(NaN) returns NaN.
- __device__ double j1 ( double x )
-
Calculate the value of the Bessel function of the first kind of order 1 for the input argument. Calculate the value of the Bessel function of the first kind of order 1 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the value of the Bessel function of the first kind of order 1.
- j1( ) returns .
- j1( ) returns +0.
- j1(NaN) returns NaN.
- __device__ double jn ( int n, double x )
-
Calculate the value of the Bessel function of the first kind of order n for the input argument. Calculate the value of the Bessel function of the first kind of order n for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the value of the Bessel function of the first kind of order n.
- jn(n, NaN) returns NaN.
- jn(n, x) returns NaN for n < 0.
- jn(n, ) returns +0.
- __device__ double ldexp ( double x, int exp )
-
Calculate the value of $x\cdot 2^{exp}$ x⋅2exp. Calculate the value of of the input arguments x and exp.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- ldexp(x) returns if the correctly calculated value is outside the double floating point range.
- __device__ double lgamma ( double x )
-
Calculate the natural logarithm of the absolute value of the gamma function of the input argument. Calculate the natural logarithm of the absolute value of the gamma function of the input argument x, namely the value of
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- lgamma(1) returns +0.
- lgamma(2) returns +0.
- lgamma(x) returns if the correctly calculated value is outside the double floating point range.
- lgamma(x) returns if x 0.
- lgamma( ) returns .
- lgamma( ) returns .
- __device__ long long int llrint ( double x )
-
Round input to nearest integer value. Round x to the nearest integer value, with halfway cases rounded towards zero. If the result is outside the range of the return type, the result is undefined.
Returns
Returns rounded integer value.
- __device__ long long int llround ( double x )
-
Round to nearest integer value. Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the result is undefined.
Note:This function may be slower than alternate rounding methods. See llrint().
Returns
Returns rounded integer value.
- __device__ double log ( double x )
-
Calculate the base $e$ e logarithm of the input argument. Calculate the base logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- log( ) returns .
- log(1) returns +0.
- log(x) returns NaN for x < 0.
- log( ) returns
- __device__ double log10 ( double x )
-
Calculate the base 10 logarithm of the input argument. Calculate the base 10 logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- log10( ) returns .
- log10(1) returns +0.
- log10(x) returns NaN for x < 0.
- log10( ) returns .
- __device__ double log1p ( double x )
-
Calculate the value of $log_{e}(1+x)$ $\lfloor x \rfloor$ loge(1+x). Calculate the value of of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- log1p( ) returns .
- log1p(-1) returns +0.
- log1p(x) returns NaN for x < -1.
- log1p( ) returns .
- __device__ double log2 ( double x )
-
Calculate the base 2 logarithm of the input argument. Calculate the base 2 logarithm of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- log2( ) returns .
- log2(1) returns +0.
- log2(x) returns NaN for x < 0.
- log2( ) returns .
- __device__ double logb ( double x )
-
Calculate the floating point representation of the exponent of the input argument. Calculate the floating point representation of the exponent of the input argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- logb returns
- logb returns
- __device__ long int lrint ( double x )
-
Round input to nearest integer value. Round x to the nearest integer value, with halfway cases rounded towards zero. If the result is outside the range of the return type, the result is undefined.
Returns
Returns rounded integer value.
- __device__ long int lround ( double x )
-
Round to nearest integer value. Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the result is undefined.
Note:This function may be slower than alternate rounding methods. See lrint().
Returns
Returns rounded integer value.
- __device__ double modf ( double x, double* iptr )
-
Break down the input argument into fractional and integral parts. Break down the argument x into fractional and integral parts. The integral part is stored in the argument iptr. Fractional and integral parts are given the same sign as the argument x.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- modf( , iptr) returns a result with the same sign as x.
- modf( , iptr) returns and stores in the object pointed to by iptr.
- modf(NaN, iptr) stores a NaN in the object pointed to by iptr and returns a NaN.
- __device__ double nan ( const char* tagp )
-
Returns "Not a Number" value. Return a representation of a quiet NaN. Argument tagp selects one of the possible representations.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- nan(tagp) returns NaN.
- __device__ double nearbyint ( double x )
-
Round the input argument to the nearest integer. Round argument x to an integer value in double precision floating-point format.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- nearbyint( ) returns .
- nearbyint( ) returns .
- __device__ double nextafter ( double x, double y )
-
Return next representable double-precision floating-point value after argument. Calculate the next representable double-precision floating-point value following x in the direction of y. For example, if y is greater than x, nextafter() returns the smallest representable number greater than x
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- nextafter( , y) returns .
- __device__ double normcdf ( double y )
-
Calculate the standard normal cumulative distribution function. Calculate the cumulative distribution function of the standard normal distribution for input argument y, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- normcdf( ) returns 1
- normcdf( ) returns +0
- __device__ double normcdfinv ( double y )
-
Calculate the inverse of the standard normal cumulative distribution function. Calculate the inverse of the standard normal cumulative distribution function for input argument y, . The function is defined for input values in the interval .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- normcdfinv(0) returns .
- normcdfinv(1) returns .
- normcdfinv(x) returns NaN if x is not in the interval [0,1].
- __device__ double pow ( double x, double y )
-
Calculate the value of first argument to the power of second argument. Calculate the value of x to the power of y
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- pow( , y) returns for y an integer less than 0.
- pow( , y) returns for y an odd integer greater than 0.
- pow( , y) returns +0 for y > 0 and not and odd integer.
- pow(-1, ) returns 1.
- pow(+1, y) returns 1 for any y, even a NaN.
- pow(x, ) returns 1 for any x, even a NaN.
- pow(x, y) returns a NaN for finite x < 0 and finite non-integer y.
- pow(x, ) returns for .
- pow(x, ) returns +0 for .
- pow(x, ) returns +0 for .
- pow(x, ) returns for .
- pow( , y) returns -0 for y an odd integer less than 0.
- pow( , y) returns +0 for y < 0 and not an odd integer.
- pow( , y) returns for y an odd integer greater than 0.
- pow( , y) returns for y > 0 and not an odd integer.
- pow( , y) returns +0 for y < 0.
- pow( , y) returns for y > 0.
- __device__ double rcbrt ( double x )
-
Calculate reciprocal cube root function. Calculate reciprocal cube root function of x
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- rcbrt( ) returns .
- rcbrt( ) returns .
- __device__ double remainder ( double x, double y )
-
Compute double-precision floating-point remainder. Compute double-precision floating-point remainder r of dividing x by y for nonzero y. Thus . The value n is the integer value nearest . In the case when , the even n value is chosen.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- remainder(x, 0) returns NaN.
- remainder( , y) returns NaN.
- remainder(x, ) returns x for finite x.
- __device__ double remquo ( double x, double y, int* quo )
-
Compute double-precision floating-point remainder and part of quotient. Compute a double-precision floating-point remainder in the same way as the remainder() function. Argument quo returns part of quotient upon division of x by y. Value quo has the same sign as and may not be the exact quotient but agrees with the exact quotient in the low order 3 bits.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the remainder.
- remquo(x, 0, quo) returns NaN.
- remquo( , y, quo) returns NaN.
- remquo(x, , quo) returns x.
- __device__ double rint ( double x )
-
Round to nearest integer value in floating-point. Round x to the nearest integer value in floating-point format, with halfway cases rounded towards zero.
Returns
Returns rounded integer value.
- __device__ double round ( double x )
-
Round to nearest integer value in floating-point. Round x to the nearest integer value in floating-point format, with halfway cases rounded away from zero.
Note:This function may be slower than alternate rounding methods. See rint().
Returns
Returns rounded integer value.
- __device__ double rsqrt ( double x )
-
Calculate the reciprocal of the square root of the input argument. Calculate the reciprocal of the nonnegative square root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- rsqrt( ) returns +0.
- rsqrt( ) returns .
- rsqrt(x) returns NaN if x is less than 0.
- __device__ double scalbln ( double x, long int n )
-
Scale floating-point input by integer power of two. Scale x by by efficient manipulation of the floating-point exponent.
Returns
Returns x * .
- scalbln( , n) returns .
- scalbln(x, 0) returns x.
- scalbln( , n) returns .
- __device__ double scalbn ( double x, int n )
-
Scale floating-point input by integer power of two. Scale x by by efficient manipulation of the floating-point exponent.
Returns
Returns x * .
- scalbn( , n) returns .
- scalbn(x, 0) returns x.
- scalbn( , n) returns .
- __device__ int signbit ( double a )
-
Return the sign bit of the input. Determine whether the floating-point value a is negative.
Returns
Returns a nonzero value if and only if a is negative. Reports the sign bit of all values including infinities, zeros, and NaNs.
- __device__ double sin ( double x )
-
Calculate the sine of the input argument. Calculate the sine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- sin( ) returns .
- sin( ) returns NaN.
- __device__ void sincos ( double x, double* sptr, double* cptr )
-
Calculate the sine and cosine of the first input argument. Calculate the sine and cosine of the first input argument x (measured in radians). The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- none
- __device__ void sincospi ( double x, double* sptr, double* cptr )
-
Calculate the sine and cosine of the first input argument $\times \pi$ ×π. Calculate the sine and cosine of the first input argument, x (measured in radians), . The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- none
- __device__ double sinh ( double x )
-
Calculate the hyperbolic sine of the input argument. Calculate the hyperbolic sine of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- sinh( ) returns .
- __device__ double sinpi ( double x )
-
Calculate the sine of the input argument $\times \pi$ ×π. Calculate the sine of x (measured in radians), where x is the input argument.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- sinpi( ) returns .
- sinpi( ) returns NaN.
- __device__ double sqrt ( double x )
-
Calculate the square root of the input argument. Calculate the nonnegative square root of x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns .
- sqrt( ) returns .
- sqrt( ) returns .
- sqrt(x) returns NaN if x is less than 0.
- __device__ double tan ( double x )
-
Calculate the tangent of the input argument. Calculate the tangent of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- tan( ) returns .
- tan( ) returns NaN.
- __device__ double tanh ( double x )
-
Calculate the hyperbolic tangent of the input argument. Calculate the hyperbolic tangent of the input argument x (measured in radians).
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- tanh( ) returns .
- __device__ double tgamma ( double x )
-
Calculate the gamma function of the input argument. Calculate the gamma function of the input argument x, namely the value of .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
- tgamma( ) returns .
- tgamma(2) returns +0.
- tgamma(x) returns if the correctly calculated value is outside the double floating point range.
- tgamma(x) returns NaN if x < 0.
- tgamma( ) returns NaN.
- tgamma( ) returns .
- __device__ double trunc ( double x )
-
Truncate input argument to the integral part. Round x to the nearest integer value that does not exceed x in magnitude.
Returns
Returns truncated integer value.
- __device__ double y0 ( double x )
-
Calculate the value of the Bessel function of the second kind of order 0 for the input argument. Calculate the value of the Bessel function of the second kind of order 0 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the value of the Bessel function of the second kind of order 0.
- y0(0) returns .
- y0(x) returns NaN for x < 0.
- y0( ) returns +0.
- y0(NaN) returns NaN.
- __device__ double y1 ( double x )
-
Calculate the value of the Bessel function of the second kind of order 1 for the input argument. Calculate the value of the Bessel function of the second kind of order 1 for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the value of the Bessel function of the second kind of order 1.
- y1(0) returns .
- y1(x) returns NaN for x < 0.
- y1( ) returns +0.
- y1(NaN) returns NaN.
- __device__ double yn ( int n, double x )
-
Calculate the value of the Bessel function of the second kind of order n for the input argument. Calculate the value of the Bessel function of the second kind of order n for the input argument x, .
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the value of the Bessel function of the second kind of order n.
- yn(n, x) returns NaN for n < 0.
- yn(n, 0) returns .
- yn(n, x) returns NaN for x < 0.
- yn(n, ) returns +0.
- yn(n, NaN) returns NaN.
Single Precision Intrinsics
Description
This section describes single precision intrinsic functions that are only supported in device code.
Functions
- __device__ __cudart_builtin__ float __cosf ( float x )
- Calculate the fast approximate cosine of the input argument.
- __device__ __cudart_builtin__ float __exp10f ( float x )
- Calculate the fast approximate base 10 exponential of the input argument.
- __device__ __cudart_builtin__ float __expf ( float x )
- Calculate the fast approximate base $e$ e exponential of the input argument.
- __device__ float __fadd_rd ( float x, float y )
- Add two floating point values in round-down mode.
- __device__ float __fadd_rn ( float x, float y )
- Add two floating point values in round-to-nearest-even mode.
- __device__ float __fadd_ru ( float x, float y )
- Add two floating point values in round-up mode.
- __device__ float __fadd_rz ( float x, float y )
- Add two floating point values in round-towards-zero mode.
- __device__ float __fdiv_rd ( float x, float y )
- Divide two floating point values in round-down mode.
- __device__ float __fdiv_rn ( float x, float y )
- Divide two floating point values in round-to-nearest-even mode.
- __device__ float __fdiv_ru ( float x, float y )
- Divide two floating point values in round-up mode.
- __device__ float __fdiv_rz ( float x, float y )
- Divide two floating point values in round-towards-zero mode.
- __device__ float __fdividef ( float x, float y )
- Calculate the fast approximate division of the input arguments.
- __device__ float __fmaf_rd ( float x, float y, float z )
- Compute $x \times y + z$ x×y+z as a single operation, in round-down mode.
- __device__ float __fmaf_rn ( float x, float y, float z )
- Compute $x \times y + z$ x×y+z as a single operation, in round-to-nearest-even mode.
- __device__ float __fmaf_ru ( float x, float y, float z )
- Compute $x \times y + z$ x×y+z as a single operation, in round-up mode.
- __device__ float __fmaf_rz ( float x, float y, float z )
- Compute $x \times y + z$ x×y+z as a single operation, in round-towards-zero mode.
- __device__ float __fmul_rd ( float x, float y )
- Multiply two floating point values in round-down mode.
- __device__ float __fmul_rn ( float x, float y )
- Multiply two floating point values in round-to-nearest-even mode.
- __device__ float __fmul_ru ( float x, float y )
- Multiply two floating point values in round-up mode.
- __device__ float __fmul_rz ( float x, float y )
- Multiply two floating point values in round-towards-zero mode.
- __device__ float __frcp_rd ( float x )
- Compute $\frac{1}{x}$ 1x in round-down mode.
- __device__ float __frcp_rn ( float x )
- Compute $\frac{1}{x}$ 1x in round-to-nearest-even mode.
- __device__ float __frcp_ru ( float x )
- Compute $\frac{1}{x}$ 1x in round-up mode.
- __device__ float __frcp_rz ( float x )
- Compute $\frac{1}{x}$ 1x in round-towards-zero mode.
- __device__ float __frsqrt_rn ( float x )
- Compute $1/\sqrt{x}$ 1/x in round-to-nearest-even mode.
- __device__ float __fsqrt_rd ( float x )
- Compute $\sqrt{x}$ x in round-down mode.
- __device__ float __fsqrt_rn ( float x )
- Compute $\sqrt{x}$ x in round-to-nearest-even mode.
- __device__ float __fsqrt_ru ( float x )
- Compute $\sqrt{x}$ x in round-up mode.
- __device__ float __fsqrt_rz ( float x )
- Compute $\sqrt{x}$ x in round-towards-zero mode.
- __device__ __cudart_builtin__ float __log10f ( float x )
- Calculate the fast approximate base 10 logarithm of the input argument.
- __device__ __cudart_builtin__ float __log2f ( float x )
- Calculate the fast approximate base 2 logarithm of the input argument.
- __device__ __cudart_builtin__ float __logf ( float x )
- Calculate the fast approximate base $e$ e logarithm of the input argument.
- __device__ __cudart_builtin__ float __powf ( float x, float y )
- Calculate the fast approximate of $x^y$ xy.
- __device__ float __saturatef ( float x )
- Clamp the input argument to [+0.0, 1.0].
- __device__ __cudart_builtin__ void __sincosf ( float x, float* sptr, float* cptr )
- Calculate the fast approximate of sine and cosine of the first input argument.
- __device__ __cudart_builtin__ float __sinf ( float x )
- Calculate the fast approximate sine of the input argument.
- __device__ __cudart_builtin__ float __tanf ( float x )
- Calculate the fast approximate tangent of the input argument.
Functions
- __device__ __cudart_builtin__ float __cosf ( float x )
-
Calculate the fast approximate cosine of the input argument. Calculate the fast approximate cosine of the input argument x, measured in radians.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Input and output in the denormal range is flushed to sign preserving 0.0.
Returns
Returns the approximate cosine of x.
-
- __device__ __cudart_builtin__ float __exp10f ( float x )
-
Calculate the fast approximate base 10 exponential of the input argument. Calculate the fast approximate base 10 exponential of the input argument x, .
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Most input and output values around denormal range are flushed to sign preserving 0.0.
Returns
Returns an approximation to .
-
- __device__ __cudart_builtin__ float __expf ( float x )
-
Calculate the fast approximate base $e$ e exponential of the input argument. Calculate the fast approximate base exponential of the input argument x, .
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Most input and output values around denormal range are flushed to sign preserving 0.0.
Returns
Returns an approximation to .
-
- __device__ float __fadd_rd ( float x, float y )
-
Add two floating point values in round-down mode. Compute the sum of x and y in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ float __fadd_rn ( float x, float y )
-
Add two floating point values in round-to-nearest-even mode. Compute the sum of x and y in round-to-nearest-even rounding mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ float __fadd_ru ( float x, float y )
-
Add two floating point values in round-up mode. Compute the sum of x and y in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ float __fadd_rz ( float x, float y )
-
Add two floating point values in round-towards-zero mode. Compute the sum of x and y in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ float __fdiv_rd ( float x, float y )
-
Divide two floating point values in round-down mode. Divide two floating point values x by y in round-down (to negative infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns x / y.
- __device__ float __fdiv_rn ( float x, float y )
-
Divide two floating point values in round-to-nearest-even mode. Divide two floating point values x by y in round-to-nearest-even mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns x / y.
- __device__ float __fdiv_ru ( float x, float y )
-
Divide two floating point values in round-up mode. Divide two floating point values x by y in round-up (to positive infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns x / y.
- __device__ float __fdiv_rz ( float x, float y )
-
Divide two floating point values in round-towards-zero mode. Divide two floating point values x by y in round-towards-zero mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns x / y.
- __device__ float __fdividef ( float x, float y )
-
Calculate the fast approximate division of the input arguments. Calculate the fast approximate division of x by y.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
Returns
Returns x / y.
- __fdividef( , y) returns NaN for .
- __fdividef(x, y) returns 0 for and .
- __device__ float __fmaf_rd ( float x, float y, float z )
-
Compute $x \times y + z$ x×y+z as a single operation, in round-down mode. Computes the value of as a single ternary operation, rounding the result once in round-down (to negative infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
- __device__ float __fmaf_rn ( float x, float y, float z )
-
Compute $x \times y + z$ x×y+z as a single operation, in round-to-nearest-even mode. Computes the value of as a single ternary operation, rounding the result once in round-to-nearest-even mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
- __device__ float __fmaf_ru ( float x, float y, float z )
-
Compute $x \times y + z$ x×y+z as a single operation, in round-up mode. Computes the value of as a single ternary operation, rounding the result once in round-up (to positive infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
- __device__ float __fmaf_rz ( float x, float y, float z )
-
Compute $x \times y + z$ x×y+z as a single operation, in round-towards-zero mode. Computes the value of as a single ternary operation, rounding the result once in round-towards-zero mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
- __device__ float __fmul_rd ( float x, float y )
-
Multiply two floating point values in round-down mode. Compute the product of x and y in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ float __fmul_rn ( float x, float y )
-
Multiply two floating point values in round-to-nearest-even mode. Compute the product of x and y in round-to-nearest-even mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ float __fmul_ru ( float x, float y )
-
Multiply two floating point values in round-up mode. Compute the product of x and y in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ float __fmul_rz ( float x, float y )
-
Multiply two floating point values in round-towards-zero mode. Compute the product of x and y in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ float __frcp_rd ( float x )
-
Compute $\frac{1}{x}$ 1x in round-down mode. Compute the reciprocal of x in round-down (to negative infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __frcp_rn ( float x )
-
Compute $\frac{1}{x}$ 1x in round-to-nearest-even mode. Compute the reciprocal of x in round-to-nearest-even mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __frcp_ru ( float x )
-
Compute $\frac{1}{x}$ 1x in round-up mode. Compute the reciprocal of x in round-up (to positive infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __frcp_rz ( float x )
-
Compute $\frac{1}{x}$ 1x in round-towards-zero mode. Compute the reciprocal of x in round-towards-zero mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __frsqrt_rn ( float x )
-
Compute $1/\sqrt{x}$ 1/x in round-to-nearest-even mode. Compute the reciprocal square root of x in round-to-nearest-even mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __fsqrt_rd ( float x )
-
Compute $\sqrt{x}$ x in round-down mode. Compute the square root of x in round-down (to negative infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __fsqrt_rn ( float x )
-
Compute $\sqrt{x}$ x in round-to-nearest-even mode. Compute the square root of x in round-to-nearest-even mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __fsqrt_ru ( float x )
-
Compute $\sqrt{x}$ x in round-up mode. Compute the square root of x in round-up (to positive infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ float __fsqrt_rz ( float x )
-
Compute $\sqrt{x}$ x in round-towards-zero mode. Compute the square root of x in round-towards-zero mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-1.
Returns
Returns .
- __device__ __cudart_builtin__ float __log10f ( float x )
-
Calculate the fast approximate base 10 logarithm of the input argument. Calculate the fast approximate base 10 logarithm of the input argument x.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Most input and output values around denormal range are flushed to sign preserving 0.0.
Returns
Returns an approximation to .
-
- __device__ __cudart_builtin__ float __log2f ( float x )
-
Calculate the fast approximate base 2 logarithm of the input argument. Calculate the fast approximate base 2 logarithm of the input argument x.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Input and output in the denormal range is flushed to sign preserving 0.0.
Returns
Returns an approximation to .
-
- __device__ __cudart_builtin__ float __logf ( float x )
-
Calculate the fast approximate base $e$ e logarithm of the input argument. Calculate the fast approximate base logarithm of the input argument x.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Most input and output values around denormal range are flushed to sign preserving 0.0.
Returns
Returns an approximation to .
-
- __device__ __cudart_builtin__ float __powf ( float x, float y )
-
Calculate the fast approximate of $x^y$ xy. Calculate the fast approximate of x, the first input argument, raised to the power of y, the second input argument, .
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Most input and output values around denormal range are flushed to sign preserving 0.0.
Returns
Returns an approximation to .
-
- __device__ float __saturatef ( float x )
-
Clamp the input argument to [+0.0, 1.0]. Clamp the input argument x to be within the interval [+0.0, 1.0].
Returns
- __saturatef(x) returns 0 if x < 0.
- __saturatef(x) returns 1 if x > 1.
- __saturatef(x) returns x if .
- __saturatef(NaN) returns 0.
- __device__ __cudart_builtin__ void __sincosf ( float x, float* sptr, float* cptr )
-
Calculate the fast approximate of sine and cosine of the first input argument. Calculate the fast approximate of sine and cosine of the first input argument x (measured in radians). The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Denorm input/output is flushed to sign preserving 0.0.
Returns
- none
-
- __device__ __cudart_builtin__ float __sinf ( float x )
-
Calculate the fast approximate sine of the input argument. Calculate the fast approximate sine of the input argument x, measured in radians.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-4.
-
Input and output in the denormal range is flushed to sign preserving 0.0.
Returns
Returns the approximate sine of x.
-
- __device__ __cudart_builtin__ float __tanf ( float x )
-
Calculate the fast approximate tangent of the input argument. Calculate the fast approximate tangent of the input argument x, measured in radians.
Returns
Returns the approximate tangent of x.
Double Precision Intrinsics
Description
This section describes double precision intrinsic functions that are only supported in device code.
Functions
- __device__ double __dadd_rd ( double x, double y )
- Add two floating point values in round-down mode.
- __device__ double __dadd_rn ( double x, double y )
- Add two floating point values in round-to-nearest-even mode.
- __device__ double __dadd_ru ( double x, double y )
- Add two floating point values in round-up mode.
- __device__ double __dadd_rz ( double x, double y )
- Add two floating point values in round-towards-zero mode.
- __device__ double __ddiv_rd ( double x, double y )
- Divide two floating point values in round-down mode.
- __device__ double __ddiv_rn ( double x, double y )
- Divide two floating point values in round-to-nearest-even mode.
- __device__ double __ddiv_ru ( double x, double y )
- Divide two floating point values in round-up mode.
- __device__ double __ddiv_rz ( double x, double y )
- Divide two floating point values in round-towards-zero mode.
- __device__ double __dmul_rd ( double x, double y )
- Multiply two floating point values in round-down mode.
- __device__ double __dmul_rn ( double x, double y )
- Multiply two floating point values in round-to-nearest-even mode.
- __device__ double __dmul_ru ( double x, double y )
- Multiply two floating point values in round-up mode.
- __device__ double __dmul_rz ( double x, double y )
- Multiply two floating point values in round-towards-zero mode.
- __device__ double __drcp_rd ( double x )
- Compute $\frac{1}{x}$ 1x in round-down mode.
- __device__ double __drcp_rn ( double x )
- Compute $\frac{1}{x}$ 1x in round-to-nearest-even mode.
- __device__ double __drcp_ru ( double x )
- Compute $\frac{1}{x}$ 1x in round-up mode.
- __device__ double __drcp_rz ( double x )
- Compute $\frac{1}{x}$ 1x in round-towards-zero mode.
- __device__ double __dsqrt_rd ( double x )
- Compute $\sqrt{x}$ x in round-down mode.
- __device__ double __dsqrt_rn ( double x )
- Compute $\sqrt{x}$ x in round-to-nearest-even mode.
- __device__ double __dsqrt_ru ( double x )
- Compute $\sqrt{x}$ x in round-up mode.
- __device__ double __dsqrt_rz ( double x )
- Compute $\sqrt{x}$ x in round-towards-zero mode.
- __device__ double __fma_rd ( double x, double y, double z )
- Compute $x \times y + z$ x×y+z as a single operation in round-down mode.
- __device__ double __fma_rn ( double x, double y, double z )
- Compute $x \times y + z$ x×y+z as a single operation in round-to-nearest-even mode.
- __device__ double __fma_ru ( double x, double y, double z )
- Compute $x \times y + z$ x×y+z as a single operation in round-up mode.
- __device__ double __fma_rz ( double x, double y, double z )
- Compute $x \times y + z$ x×y+z as a single operation in round-towards-zero mode.
Functions
- __device__ double __dadd_rd ( double x, double y )
-
Add two floating point values in round-down mode. Adds two floating point values x and y in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ double __dadd_rn ( double x, double y )
-
Add two floating point values in round-to-nearest-even mode. Adds two floating point values x and y in round-to-nearest-even mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ double __dadd_ru ( double x, double y )
-
Add two floating point values in round-up mode. Adds two floating point values x and y in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ double __dadd_rz ( double x, double y )
-
Add two floating point values in round-towards-zero mode. Adds two floating point values x and y in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x + y.
-
- __device__ double __ddiv_rd ( double x, double y )
-
Divide two floating point values in round-down mode. Divides two floating point values x by y in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns x / y.
-
- __device__ double __ddiv_rn ( double x, double y )
-
Divide two floating point values in round-to-nearest-even mode. Divides two floating point values x by y in round-to-nearest-even mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns x / y.
-
- __device__ double __ddiv_ru ( double x, double y )
-
Divide two floating point values in round-up mode. Divides two floating point values x by y in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns x / y.
-
- __device__ double __ddiv_rz ( double x, double y )
-
Divide two floating point values in round-towards-zero mode. Divides two floating point values x by y in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns x / y.
-
- __device__ double __dmul_rd ( double x, double y )
-
Multiply two floating point values in round-down mode. Multiplies two floating point values x and y in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ double __dmul_rn ( double x, double y )
-
Multiply two floating point values in round-to-nearest-even mode. Multiplies two floating point values x and y in round-to-nearest-even mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ double __dmul_ru ( double x, double y )
-
Multiply two floating point values in round-up mode. Multiplies two floating point values x and y in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ double __dmul_rz ( double x, double y )
-
Multiply two floating point values in round-towards-zero mode. Multiplies two floating point values x and y in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
This operation will never be merged into a single multiply-add instruction.
Returns
Returns x * y.
-
- __device__ double __drcp_rd ( double x )
-
Compute $\frac{1}{x}$ 1x in round-down mode. Compute the reciprocal of x in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __drcp_rn ( double x )
-
Compute $\frac{1}{x}$ 1x in round-to-nearest-even mode. Compute the reciprocal of x in round-to-nearest-even mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __drcp_ru ( double x )
-
Compute $\frac{1}{x}$ 1x in round-up mode. Compute the reciprocal of x in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __drcp_rz ( double x )
-
Compute $\frac{1}{x}$ 1x in round-towards-zero mode. Compute the reciprocal of x in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __dsqrt_rd ( double x )
-
Compute $\sqrt{x}$ x in round-down mode. Compute the square root of x in round-down (to negative infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __dsqrt_rn ( double x )
-
Compute $\sqrt{x}$ x in round-to-nearest-even mode. Compute the square root of x in round-to-nearest-even mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __dsqrt_ru ( double x )
-
Compute $\sqrt{x}$ x in round-up mode. Compute the square root of x in round-up (to positive infinity) mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __dsqrt_rz ( double x )
-
Compute $\sqrt{x}$ x in round-towards-zero mode. Compute the square root of x in round-towards-zero mode.
Note:-
For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
-
Requires compute capability >= 2.0.
Returns
Returns .
-
- __device__ double __fma_rd ( double x, double y, double z )
-
Compute $x \times y + z$ x×y+z as a single operation in round-down mode. Computes the value of as a single ternary operation, rounding the result once in round-down (to negative infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact
- fmaf(x, y, ) returns NaN if is an exact
- __device__ double __fma_rn ( double x, double y, double z )
-
Compute $x \times y + z$ x×y+z as a single operation in round-to-nearest-even mode. Computes the value of as a single ternary operation, rounding the result once in round-to-nearest-even mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact
- fmaf(x, y, ) returns NaN if is an exact
- __device__ double __fma_ru ( double x, double y, double z )
-
Compute $x \times y + z$ x×y+z as a single operation in round-up mode. Computes the value of as a single ternary operation, rounding the result once in round-up (to postive infinity) mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact
- fmaf(x, y, ) returns NaN if is an exact
- __device__ double __fma_rz ( double x, double y, double z )
-
Compute $x \times y + z$ x×y+z as a single operation in round-towards-zero mode. Computes the value of as a single ternary operation, rounding the result once in round-towards-zero mode.
Note:For accuracy information for this function see the CUDA C Programming Guide, Appendix C, Table C-2.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact
- fmaf(x, y, ) returns NaN if is an exact
Integer Intrinsics
Description
This section describes integer intrinsic functions that are only supported in device code.
Functions
- __device__ unsigned int __brev ( unsigned int x )
- Reverse the bit order of a 32 bit unsigned integer.
- __device__ unsigned long long int __brevll ( unsigned long long int x )
- Reverse the bit order of a 64 bit unsigned integer.
- __device__ unsigned int __byte_perm ( unsigned int x, unsigned int y, unsigned int s )
- Return selected bytes from two 32 bit unsigned integers.
- __device__ int __clz ( int x )
- Return the number of consecutive high-order zero bits in a 32 bit integer.
- __device__ int __clzll ( long long int x )
- Count the number of consecutive high-order zero bits in a 64 bit integer.
- __device__ int __ffs ( int x )
- Find the position of the least significant bit set to 1 in a 32 bit integer.
- __device__ int __ffsll ( long long int x )
- Find the position of the least significant bit set to 1 in a 64 bit integer.
- __device__ int __mul24 ( int x, int y )
- Calculate the least significant 32 bits of the product of the least significant 24 bits of two integers.
- __device__ long long int __mul64hi ( long long int x, long long int y )
- Calculate the most significant 64 bits of the product of the two 64 bit integers.
- __device__ int __mulhi ( int x, int y )
- Calculate the most significant 32 bits of the product of the two 32 bit integers.
- __device__ int __popc ( unsigned int x )
- Count the number of bits that are set to 1 in a 32 bit integer.
- __device__ int __popcll ( unsigned long long int x )
- Count the number of bits that are set to 1 in a 64 bit integer.
- __device__ unsigned int __sad ( int x, int y, unsigned int z )
- Calculate $|x - y| + z$ |x−y|+z , the sum of absolute difference.
- __device__ unsigned int __umul24 ( unsigned int x, unsigned int y )
- Calculate the least significant 32 bits of the product of the least significant 24 bits of two unsigned integers.
- __device__ unsigned long long int __umul64hi ( unsigned long long int x, unsigned long long int y )
- Calculate the most significant 64 bits of the product of the two 64 unsigned bit integers.
- __device__ unsigned int __umulhi ( unsigned int x, unsigned int y )
- Calculate the most significant 32 bits of the product of the two 32 bit unsigned integers.
- __device__ unsigned int __usad ( unsigned int x, unsigned int y, unsigned int z )
- Calculate $|x - y| + z$ |x−y|+z , the sum of absolute difference.
Functions
- __device__ unsigned int __brev ( unsigned int x )
-
Reverse the bit order of a 32 bit unsigned integer. Reverses the bit order of the 32 bit unsigned integer x.
Returns
Returns the bit-reversed value of x. i.e. bit N of the return value corresponds to bit 31-N of x.
- __device__ unsigned long long int __brevll ( unsigned long long int x )
-
Reverse the bit order of a 64 bit unsigned integer. Reverses the bit order of the 64 bit unsigned integer x.
Returns
Returns the bit-reversed value of x. i.e. bit N of the return value corresponds to bit 63-N of x.
- __device__ unsigned int __byte_perm ( unsigned int x, unsigned int y, unsigned int s )
-
Return selected bytes from two 32 bit unsigned integers. byte_perm(x,y,s) returns a 32-bit integer consisting of four bytes from eight input bytes provided in the two input integers x and y, as specified by a selector, s.
The input bytes are indexed as follows: input[0] = x<0:7> input[1] = x<8:15> input[2] = x<16:23> input[3] = x<24:31> input[4] = y<0:7> input[5] = y<8:15> input[6] = y<16:23> input[7] = y<24:31> The selector indices are stored in 4-bit nibbles (with the upper 16-bits of the selector not being used): selector[0] = s<0:3> selector[1] = s<4:7> selector[2] = s<8:11> selector[3] = s<12:15>
Returns
The returned value r is computed to be: result[n] := input[selector[n]] where result[n] is the nth byte of r.
- __device__ int __clz ( int x )
-
Return the number of consecutive high-order zero bits in a 32 bit integer. Count the number of consecutive leading zero bits, starting at the most significant bit (bit 31) of x.
Returns
Returns a value between 0 and 32 inclusive representing the number of zero bits.
- __device__ int __clzll ( long long int x )
-
Count the number of consecutive high-order zero bits in a 64 bit integer. Count the number of consecutive leading zero bits, starting at the most significant bit (bit 63) of x.
Returns
Returns a value between 0 and 64 inclusive representing the number of zero bits.
- __device__ int __ffs ( int x )
-
Find the position of the least significant bit set to 1 in a 32 bit integer. Find the position of the first (least significant) bit set to 1 in x, where the least significant bit position is 1.
Returns
Returns a value between 0 and 32 inclusive representing the position of the first bit set.
- __ffs(0) returns 0.
- __device__ int __ffsll ( long long int x )
-
Find the position of the least significant bit set to 1 in a 64 bit integer. Find the position of the first (least significant) bit set to 1 in x, where the least significant bit position is 1.
Returns
Returns a value between 0 and 64 inclusive representing the position of the first bit set.
- __ffsll(0) returns 0.
- __device__ int __mul24 ( int x, int y )
-
Calculate the least significant 32 bits of the product of the least significant 24 bits of two integers. Calculate the least significant 32 bits of the product of the least significant 24 bits of x and y. The high order 8 bits of x and y are ignored.
Returns
Returns the least significant 32 bits of the product x * y.
- __device__ long long int __mul64hi ( long long int x, long long int y )
-
Calculate the most significant 64 bits of the product of the two 64 bit integers. Calculate the most significant 64 bits of the 128-bit product x * y, where x and y are 64-bit integers.
Returns
Returns the most significant 64 bits of the product x * y.
- __device__ int __mulhi ( int x, int y )
-
Calculate the most significant 32 bits of the product of the two 32 bit integers. Calculate the most significant 32 bits of the 64-bit product x * y, where x and y are 32-bit integers.
Returns
Returns the most significant 32 bits of the product x * y.
- __device__ int __popc ( unsigned int x )
-
Count the number of bits that are set to 1 in a 32 bit integer. Count the number of bits that are set to 1 in x.
Returns
Returns a value between 0 and 32 inclusive representing the number of set bits.
- __device__ int __popcll ( unsigned long long int x )
-
Count the number of bits that are set to 1 in a 64 bit integer. Count the number of bits that are set to 1 in x.
Returns
Returns a value between 0 and 64 inclusive representing the number of set bits.
- __device__ unsigned int __sad ( int x, int y, unsigned int z )
-
Calculate $|x - y| + z$ |x−y|+z , the sum of absolute difference. Calculate , the 32-bit sum of the third argument z plus and the absolute value of the difference between the first argument, x, and second argument, y.
Inputs x and y are signed 32-bit integers, input z is a 32-bit unsigned integer.
Returns
Returns .
- __device__ unsigned int __umul24 ( unsigned int x, unsigned int y )
-
Calculate the least significant 32 bits of the product of the least significant 24 bits of two unsigned integers. Calculate the least significant 32 bits of the product of the least significant 24 bits of x and y. The high order 8 bits of x and y are ignored.
Returns
Returns the least significant 32 bits of the product x * y.
- __device__ unsigned long long int __umul64hi ( unsigned long long int x, unsigned long long int y )
-
Calculate the most significant 64 bits of the product of the two 64 unsigned bit integers. Calculate the most significant 64 bits of the 128-bit product x * y, where x and y are 64-bit unsigned integers.
Returns
Returns the most significant 64 bits of the product x * y.
- __device__ unsigned int __umulhi ( unsigned int x, unsigned int y )
-
Calculate the most significant 32 bits of the product of the two 32 bit unsigned integers. Calculate the most significant 32 bits of the 64-bit product x * y, where x and y are 32-bit unsigned integers.
Returns
Returns the most significant 32 bits of the product x * y.
- __device__ unsigned int __usad ( unsigned int x, unsigned int y, unsigned int z )
-
Calculate $|x - y| + z$ |x−y|+z , the sum of absolute difference. Calculate , the 32-bit sum of the third argument z plus and the absolute value of the difference between the first argument, x, and second argument, y.
Inputs x, y, and z are unsigned 32-bit integers.
Returns
Returns .
Type Casting Intrinsics
Description
This section describes type casting intrinsic functions that are only supported in device code.
Functions
- __device__ float __double2float_rd ( double x )
- Convert a double to a float in round-down mode.
- __device__ float __double2float_rn ( double x )
- Convert a double to a float in round-to-nearest-even mode.
- __device__ float __double2float_ru ( double x )
- Convert a double to a float in round-up mode.
- __device__ float __double2float_rz ( double x )
- Convert a double to a float in round-towards-zero mode.
- __device__ int __double2hiint ( double x )
- Reinterpret high 32 bits in a double as a signed integer.
- __device__ int __double2int_rd ( double x )
- Convert a double to a signed int in round-down mode.
- __device__ int __double2int_rn ( double x )
- Convert a double to a signed int in round-to-nearest-even mode.
- __device__ int __double2int_ru ( double x )
- Convert a double to a signed int in round-up mode.
- __device__ int __double2int_rz ( double )
- Convert a double to a signed int in round-towards-zero mode.
- __device__ long long int __double2ll_rd ( double x )
- Convert a double to a signed 64-bit int in round-down mode.
- __device__ long long int __double2ll_rn ( double x )
- Convert a double to a signed 64-bit int in round-to-nearest-even mode.
- __device__ long long int __double2ll_ru ( double x )
- Convert a double to a signed 64-bit int in round-up mode.
- __device__ long long int __double2ll_rz ( double )
- Convert a double to a signed 64-bit int in round-towards-zero mode.
- __device__ int __double2loint ( double x )
- Reinterpret low 32 bits in a double as a signed integer.
- __device__ unsigned int __double2uint_rd ( double x )
- Convert a double to an unsigned int in round-down mode.
- __device__ unsigned int __double2uint_rn ( double x )
- Convert a double to an unsigned int in round-to-nearest-even mode.
- __device__ unsigned int __double2uint_ru ( double x )
- Convert a double to an unsigned int in round-up mode.
- __device__ unsigned int __double2uint_rz ( double )
- Convert a double to an unsigned int in round-towards-zero mode.
- __device__ unsigned long long int __double2ull_rd ( double x )
- Convert a double to an unsigned 64-bit int in round-down mode.
- __device__ unsigned long long int __double2ull_rn ( double x )
- Convert a double to an unsigned 64-bit int in round-to-nearest-even mode.
- __device__ unsigned long long int __double2ull_ru ( double x )
- Convert a double to an unsigned 64-bit int in round-up mode.
- __device__ unsigned long long int __double2ull_rz ( double )
- Convert a double to an unsigned 64-bit int in round-towards-zero mode.
- __device__ long long int __double_as_longlong ( double x )
- Reinterpret bits in a double as a 64-bit signed integer.
- __device__ unsigned short __float2half_rn ( float x )
- Convert a single-precision float to a half-precision float in round-to-nearest-even mode.
- __device__ int __float2int_rd ( float x )
- Convert a float to a signed integer in round-down mode.
- __device__ int __float2int_rn ( float x )
- Convert a float to a signed integer in round-to-nearest-even mode.
- __device__ int __float2int_ru ( float )
- Convert a float to a signed integer in round-up mode.
- __device__ int __float2int_rz ( float x )
- Convert a float to a signed integer in round-towards-zero mode.
- __device__ long long int __float2ll_rd ( float x )
- Convert a float to a signed 64-bit integer in round-down mode.
- __device__ long long int __float2ll_rn ( float x )
- Convert a float to a signed 64-bit integer in round-to-nearest-even mode.
- __device__ long long int __float2ll_ru ( float x )
- Convert a float to a signed 64-bit integer in round-up mode.
- __device__ long long int __float2ll_rz ( float x )
- Convert a float to a signed 64-bit integer in round-towards-zero mode.
- __device__ unsigned int __float2uint_rd ( float x )
- Convert a float to an unsigned integer in round-down mode.
- __device__ unsigned int __float2uint_rn ( float x )
- Convert a float to an unsigned integer in round-to-nearest-even mode.
- __device__ unsigned int __float2uint_ru ( float x )
- Convert a float to an unsigned integer in round-up mode.
- __device__ unsigned int __float2uint_rz ( float x )
- Convert a float to an unsigned integer in round-towards-zero mode.
- __device__ unsigned long long int __float2ull_rd ( float x )
- Convert a float to an unsigned 64-bit integer in round-down mode.
- __device__ unsigned long long int __float2ull_rn ( float x )
- Convert a float to an unsigned 64-bit integer in round-to-nearest-even mode.
- __device__ unsigned long long int __float2ull_ru ( float x )
- Convert a float to an unsigned 64-bit integer in round-up mode.
- __device__ unsigned long long int __float2ull_rz ( float x )
- Convert a float to an unsigned 64-bit integer in round-towards-zero mode.
- __device__ int __float_as_int ( float x )
- Reinterpret bits in a float as a signed integer.
- __device__ float __half2float ( unsigned short x )
- Convert a half-precision float to a single-precision float in round-to-nearest-even mode.
- __device__ double __hiloint2double ( int hi, int lo )
- Reinterpret high and low 32-bit integer values as a double.
- __device__ double __int2double_rn ( int x )
- Convert a signed int to a double.
- __device__ float __int2float_rd ( int x )
- Convert a signed integer to a float in round-down mode.
- __device__ float __int2float_rn ( int x )
- Convert a signed integer to a float in round-to-nearest-even mode.
- __device__ float __int2float_ru ( int x )
- Convert a signed integer to a float in round-up mode.
- __device__ float __int2float_rz ( int x )
- Convert a signed integer to a float in round-towards-zero mode.
- __device__ float __int_as_float ( int x )
- Reinterpret bits in an integer as a float.
- __device__ double __ll2double_rd ( long long int x )
- Convert a signed 64-bit int to a double in round-down mode.
- __device__ double __ll2double_rn ( long long int x )
- Convert a signed 64-bit int to a double in round-to-nearest-even mode.
- __device__ double __ll2double_ru ( long long int x )
- Convert a signed 64-bit int to a double in round-up mode.
- __device__ double __ll2double_rz ( long long int x )
- Convert a signed 64-bit int to a double in round-towards-zero mode.
- __device__ float __ll2float_rd ( long long int x )
- Convert a signed integer to a float in round-down mode.
- __device__ float __ll2float_rn ( long long int x )
- Convert a signed 64-bit integer to a float in round-to-nearest-even mode.
- __device__ float __ll2float_ru ( long long int x )
- Convert a signed integer to a float in round-up mode.
- __device__ float __ll2float_rz ( long long int x )
- Convert a signed integer to a float in round-towards-zero mode.
- __device__ double __longlong_as_double ( long long int x )
- Reinterpret bits in a 64-bit signed integer as a double.
- __device__ double __uint2double_rn ( unsigned int x )
- Convert an unsigned int to a double.
- __device__ float __uint2float_rd ( unsigned int x )
- Convert an unsigned integer to a float in round-down mode.
- __device__ float __uint2float_rn ( unsigned int x )
- Convert an unsigned integer to a float in round-to-nearest-even mode.
- __device__ float __uint2float_ru ( unsigned int x )
- Convert an unsigned integer to a float in round-up mode.
- __device__ float __uint2float_rz ( unsigned int x )
- Convert an unsigned integer to a float in round-towards-zero mode.
- __device__ double __ull2double_rd ( unsigned long long int x )
- Convert an unsigned 64-bit int to a double in round-down mode.
- __device__ double __ull2double_rn ( unsigned long long int x )
- Convert an unsigned 64-bit int to a double in round-to-nearest-even mode.
- __device__ double __ull2double_ru ( unsigned long long int x )
- Convert an unsigned 64-bit int to a double in round-up mode.
- __device__ double __ull2double_rz ( unsigned long long int x )
- Convert an unsigned 64-bit int to a double in round-towards-zero mode.
- __device__ float __ull2float_rd ( unsigned long long int x )
- Convert an unsigned integer to a float in round-down mode.
- __device__ float __ull2float_rn ( unsigned long long int x )
- Convert an unsigned integer to a float in round-to-nearest-even mode.
- __device__ float __ull2float_ru ( unsigned long long int x )
- Convert an unsigned integer to a float in round-up mode.
- __device__ float __ull2float_rz ( unsigned long long int x )
- Convert an unsigned integer to a float in round-towards-zero mode.
Functions
- __device__ float __double2float_rd ( double x )
-
Convert a double to a float in round-down mode. Convert the double-precision floating point value x to a single-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ float __double2float_rn ( double x )
-
Convert a double to a float in round-to-nearest-even mode. Convert the double-precision floating point value x to a single-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ float __double2float_ru ( double x )
-
Convert a double to a float in round-up mode. Convert the double-precision floating point value x to a single-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ float __double2float_rz ( double x )
-
Convert a double to a float in round-towards-zero mode. Convert the double-precision floating point value x to a single-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ int __double2hiint ( double x )
-
Reinterpret high 32 bits in a double as a signed integer. Reinterpret the high 32 bits in the double-precision floating point value x as a signed integer.
Returns
Returns reinterpreted value.
- __device__ int __double2int_rd ( double x )
-
Convert a double to a signed int in round-down mode. Convert the double-precision floating point value x to a signed integer value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ int __double2int_rn ( double x )
-
Convert a double to a signed int in round-to-nearest-even mode. Convert the double-precision floating point value x to a signed integer value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ int __double2int_ru ( double x )
-
Convert a double to a signed int in round-up mode. Convert the double-precision floating point value x to a signed integer value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ int __double2int_rz ( double )
-
Convert a double to a signed int in round-towards-zero mode. Convert the double-precision floating point value x to a signed integer value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ long long int __double2ll_rd ( double x )
-
Convert a double to a signed 64-bit int in round-down mode. Convert the double-precision floating point value x to a signed 64-bit integer value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ long long int __double2ll_rn ( double x )
-
Convert a double to a signed 64-bit int in round-to-nearest-even mode. Convert the double-precision floating point value x to a signed 64-bit integer value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ long long int __double2ll_ru ( double x )
-
Convert a double to a signed 64-bit int in round-up mode. Convert the double-precision floating point value x to a signed 64-bit integer value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ long long int __double2ll_rz ( double )
-
Convert a double to a signed 64-bit int in round-towards-zero mode. Convert the double-precision floating point value x to a signed 64-bit integer value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ int __double2loint ( double x )
-
Reinterpret low 32 bits in a double as a signed integer. Reinterpret the low 32 bits in the double-precision floating point value x as a signed integer.
Returns
Returns reinterpreted value.
- __device__ unsigned int __double2uint_rd ( double x )
-
Convert a double to an unsigned int in round-down mode. Convert the double-precision floating point value x to an unsigned integer value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ unsigned int __double2uint_rn ( double x )
-
Convert a double to an unsigned int in round-to-nearest-even mode. Convert the double-precision floating point value x to an unsigned integer value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ unsigned int __double2uint_ru ( double x )
-
Convert a double to an unsigned int in round-up mode. Convert the double-precision floating point value x to an unsigned integer value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ unsigned int __double2uint_rz ( double )
-
Convert a double to an unsigned int in round-towards-zero mode. Convert the double-precision floating point value x to an unsigned integer value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ unsigned long long int __double2ull_rd ( double x )
-
Convert a double to an unsigned 64-bit int in round-down mode. Convert the double-precision floating point value x to an unsigned 64-bit integer value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ unsigned long long int __double2ull_rn ( double x )
-
Convert a double to an unsigned 64-bit int in round-to-nearest-even mode. Convert the double-precision floating point value x to an unsigned 64-bit integer value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ unsigned long long int __double2ull_ru ( double x )
-
Convert a double to an unsigned 64-bit int in round-up mode. Convert the double-precision floating point value x to an unsigned 64-bit integer value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ unsigned long long int __double2ull_rz ( double )
-
Convert a double to an unsigned 64-bit int in round-towards-zero mode. Convert the double-precision floating point value x to an unsigned 64-bit integer value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ long long int __double_as_longlong ( double x )
-
Reinterpret bits in a double as a 64-bit signed integer. Reinterpret the bits in the double-precision floating point value x as a signed 64-bit integer.
Returns
Returns reinterpreted value.
- __device__ unsigned short __float2half_rn ( float x )
-
Convert a single-precision float to a half-precision float in round-to-nearest-even mode. Convert the single-precision float value x to a half-precision floating point value represented in unsigned short format, in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ int __float2int_rd ( float x )
-
Convert a float to a signed integer in round-down mode. Convert the single-precision floating point value x to a signed integer in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ int __float2int_rn ( float x )
-
Convert a float to a signed integer in round-to-nearest-even mode. Convert the single-precision floating point value x to a signed integer in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ int __float2int_ru ( float )
-
Convert a float to a signed integer in round-up mode. Convert the single-precision floating point value x to a signed integer in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ int __float2int_rz ( float x )
-
Convert a float to a signed integer in round-towards-zero mode. Convert the single-precision floating point value x to a signed integer in round-towards-zero mode.
Returns
Returns converted value.
- __device__ long long int __float2ll_rd ( float x )
-
Convert a float to a signed 64-bit integer in round-down mode. Convert the single-precision floating point value x to a signed 64-bit integer in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ long long int __float2ll_rn ( float x )
-
Convert a float to a signed 64-bit integer in round-to-nearest-even mode. Convert the single-precision floating point value x to a signed 64-bit integer in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ long long int __float2ll_ru ( float x )
-
Convert a float to a signed 64-bit integer in round-up mode. Convert the single-precision floating point value x to a signed 64-bit integer in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ long long int __float2ll_rz ( float x )
-
Convert a float to a signed 64-bit integer in round-towards-zero mode. Convert the single-precision floating point value x to a signed 64-bit integer in round-towards-zero mode.
Returns
Returns converted value.
- __device__ unsigned int __float2uint_rd ( float x )
-
Convert a float to an unsigned integer in round-down mode. Convert the single-precision floating point value x to an unsigned integer in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ unsigned int __float2uint_rn ( float x )
-
Convert a float to an unsigned integer in round-to-nearest-even mode. Convert the single-precision floating point value x to an unsigned integer in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ unsigned int __float2uint_ru ( float x )
-
Convert a float to an unsigned integer in round-up mode. Convert the single-precision floating point value x to an unsigned integer in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ unsigned int __float2uint_rz ( float x )
-
Convert a float to an unsigned integer in round-towards-zero mode. Convert the single-precision floating point value x to an unsigned integer in round-towards-zero mode.
Returns
Returns converted value.
- __device__ unsigned long long int __float2ull_rd ( float x )
-
Convert a float to an unsigned 64-bit integer in round-down mode. Convert the single-precision floating point value x to an unsigned 64-bit integer in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ unsigned long long int __float2ull_rn ( float x )
-
Convert a float to an unsigned 64-bit integer in round-to-nearest-even mode. Convert the single-precision floating point value x to an unsigned 64-bit integer in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ unsigned long long int __float2ull_ru ( float x )
-
Convert a float to an unsigned 64-bit integer in round-up mode. Convert the single-precision floating point value x to an unsigned 64-bit integer in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ unsigned long long int __float2ull_rz ( float x )
-
Convert a float to an unsigned 64-bit integer in round-towards-zero mode. Convert the single-precision floating point value x to an unsigned 64-bit integer in round-towards_zero mode.
Returns
Returns converted value.
- __device__ int __float_as_int ( float x )
-
Reinterpret bits in a float as a signed integer. Reinterpret the bits in the single-precision floating point value x as a signed integer.
Returns
Returns reinterpreted value.
- __device__ float __half2float ( unsigned short x )
-
Convert a half-precision float to a single-precision float in round-to-nearest-even mode. Convert the half-precision floating point value x represented in unsigned short format to a single-precision floating point value.
Returns
Returns converted value.
- __device__ double __hiloint2double ( int hi, int lo )
-
Reinterpret high and low 32-bit integer values as a double. Reinterpret the integer value of hi as the high 32 bits of a double-precision floating point value and the integer value of lo as the low 32 bits of the same double-precision floating point value.
Returns
Returns reinterpreted value.
- __device__ double __int2double_rn ( int x )
-
Convert a signed int to a double. Convert the signed integer value x to a double-precision floating point value.
Returns
Returns converted value.
- __device__ float __int2float_rd ( int x )
-
Convert a signed integer to a float in round-down mode. Convert the signed integer value x to a single-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ float __int2float_rn ( int x )
-
Convert a signed integer to a float in round-to-nearest-even mode. Convert the signed integer value x to a single-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ float __int2float_ru ( int x )
-
Convert a signed integer to a float in round-up mode. Convert the signed integer value x to a single-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ float __int2float_rz ( int x )
-
Convert a signed integer to a float in round-towards-zero mode. Convert the signed integer value x to a single-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ float __int_as_float ( int x )
-
Reinterpret bits in an integer as a float. Reinterpret the bits in the signed integer value x as a single-precision floating point value.
Returns
Returns reinterpreted value.
- __device__ double __ll2double_rd ( long long int x )
-
Convert a signed 64-bit int to a double in round-down mode. Convert the signed 64-bit integer value x to a double-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ double __ll2double_rn ( long long int x )
-
Convert a signed 64-bit int to a double in round-to-nearest-even mode. Convert the signed 64-bit integer value x to a double-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ double __ll2double_ru ( long long int x )
-
Convert a signed 64-bit int to a double in round-up mode. Convert the signed 64-bit integer value x to a double-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ double __ll2double_rz ( long long int x )
-
Convert a signed 64-bit int to a double in round-towards-zero mode. Convert the signed 64-bit integer value x to a double-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ float __ll2float_rd ( long long int x )
-
Convert a signed integer to a float in round-down mode. Convert the signed integer value x to a single-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ float __ll2float_rn ( long long int x )
-
Convert a signed 64-bit integer to a float in round-to-nearest-even mode. Convert the signed 64-bit integer value x to a single-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ float __ll2float_ru ( long long int x )
-
Convert a signed integer to a float in round-up mode. Convert the signed integer value x to a single-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ float __ll2float_rz ( long long int x )
-
Convert a signed integer to a float in round-towards-zero mode. Convert the signed integer value x to a single-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ double __longlong_as_double ( long long int x )
-
Reinterpret bits in a 64-bit signed integer as a double. Reinterpret the bits in the 64-bit signed integer value x as a double-precision floating point value.
Returns
Returns reinterpreted value.
- __device__ double __uint2double_rn ( unsigned int x )
-
Convert an unsigned int to a double. Convert the unsigned integer value x to a double-precision floating point value.
Returns
Returns converted value.
- __device__ float __uint2float_rd ( unsigned int x )
-
Convert an unsigned integer to a float in round-down mode. Convert the unsigned integer value x to a single-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ float __uint2float_rn ( unsigned int x )
-
Convert an unsigned integer to a float in round-to-nearest-even mode. Convert the unsigned integer value x to a single-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ float __uint2float_ru ( unsigned int x )
-
Convert an unsigned integer to a float in round-up mode. Convert the unsigned integer value x to a single-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ float __uint2float_rz ( unsigned int x )
-
Convert an unsigned integer to a float in round-towards-zero mode. Convert the unsigned integer value x to a single-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ double __ull2double_rd ( unsigned long long int x )
-
Convert an unsigned 64-bit int to a double in round-down mode. Convert the unsigned 64-bit integer value x to a double-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ double __ull2double_rn ( unsigned long long int x )
-
Convert an unsigned 64-bit int to a double in round-to-nearest-even mode. Convert the unsigned 64-bit integer value x to a double-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ double __ull2double_ru ( unsigned long long int x )
-
Convert an unsigned 64-bit int to a double in round-up mode. Convert the unsigned 64-bit integer value x to a double-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ double __ull2double_rz ( unsigned long long int x )
-
Convert an unsigned 64-bit int to a double in round-towards-zero mode. Convert the unsigned 64-bit integer value x to a double-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
- __device__ float __ull2float_rd ( unsigned long long int x )
-
Convert an unsigned integer to a float in round-down mode. Convert the unsigned integer value x to a single-precision floating point value in round-down (to negative infinity) mode.
Returns
Returns converted value.
- __device__ float __ull2float_rn ( unsigned long long int x )
-
Convert an unsigned integer to a float in round-to-nearest-even mode. Convert the unsigned integer value x to a single-precision floating point value in round-to-nearest-even mode.
Returns
Returns converted value.
- __device__ float __ull2float_ru ( unsigned long long int x )
-
Convert an unsigned integer to a float in round-up mode. Convert the unsigned integer value x to a single-precision floating point value in round-up (to positive infinity) mode.
Returns
Returns converted value.
- __device__ float __ull2float_rz ( unsigned long long int x )
-
Convert an unsigned integer to a float in round-towards-zero mode. Convert the unsigned integer value x to a single-precision floating point value in round-towards-zero mode.
Returns
Returns converted value.
Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.
Trademarks
NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.