Library Ssreflect.ssrfun

Require Import ssreflect.


Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Delimit Scope fun_scope with FUN.
Open Scope fun_scope.

Notation "f ^~ y" := (fun xf x y)
  (at level 10, y at level 8, no associativity, format "f ^~ y") : fun_scope.
Notation "@^~ x" := (fun ff x)
  (at level 10, x at level 8, no associativity, format "@^~ x") : fun_scope.

Delimit Scope pair_scope with PAIR.
Open Scope pair_scope.

Notation "p .1" := (fst p)
  (at level 2, left associativity, format "p .1") : pair_scope.
Notation "p .2" := (snd p)
  (at level 2, left associativity, format "p .2") : pair_scope.

Coercion pair_of_and P Q (PandQ : P Q) := (proj1 PandQ, proj2 PandQ).

Definition all_pair I T U (w : i : I, T i × U i) :=
  (fun i(w i).1, fun i(w i).2).

Reserved Notation "e .[ x ]"
  (at level 2, left associativity, format "e .[ x ]").

Reserved Notation "e .[ x1 , x2 , .. , xn ]" (at level 2, left associativity,
  format "e '[ ' .[ x1 , '/' x2 , '/' .. , '/' xn ] ']'").

Reserved Notation "s `_ i" (at level 3, i at level 2, left associativity,
  format "s `_ i").
Reserved Notation "x ^-1" (at level 3, left associativity, format "x ^-1").

Reserved Notation "x *+ n" (at level 40, left associativity).
Reserved Notation "x *- n" (at level 40, left associativity).
Reserved Notation "x ^+ n" (at level 29, left associativity).
Reserved Notation "x ^- n" (at level 29, left associativity).

Reserved Notation "x *: A" (at level 40).
Reserved Notation "A :* x" (at level 40).

Reserved Notation "A :&: B" (at level 48, left associativity).
Reserved Notation "A :|: B" (at level 52, left associativity).
Reserved Notation "a |: A" (at level 52, left associativity).
Reserved Notation "A :\: B" (at level 50, left associativity).
Reserved Notation "A :\ b" (at level 50, left associativity).

Reserved Notation "<< A >>" (at level 0, format "<< A >>").
Reserved Notation "<[ a ] >" (at level 0, format "<[ a ] >").

Reserved Notation "''C' [ x ]" (at level 8, format "''C' [ x ]").
Reserved Notation "''C_' A [ x ]"
  (at level 8, A at level 2, format "''C_' A [ x ]").
Reserved Notation "''C' ( A )" (at level 8, format "''C' ( A )").
Reserved Notation "''C_' B ( A )"
  (at level 8, B at level 2, format "''C_' B ( A )").
Reserved Notation "''Z' ( A )" (at level 8, format "''Z' ( A )").
Reserved Notation "''C_' ( A ) [ x ]" (at level 8, only parsing).
Reserved Notation "''C_' ( B ) ( A )" (at level 8, only parsing).

Reserved Notation "m %/ d" (at level 40, no associativity).
Reserved Notation "m %% d" (at level 40, no associativity).
Reserved Notation "m %| d" (at level 70, no associativity).
Reserved Notation "m = n %[mod d ]" (at level 70, n at next level,
  format "'[hv ' m '/' = n '/' %[mod d ] ']'").
Reserved Notation "m == n %[mod d ]" (at level 70, n at next level,
  format "'[hv ' m '/' == n '/' %[mod d ] ']'").
Reserved Notation "m <> n %[mod d ]" (at level 70, n at next level,
  format "'[hv ' m '/' <> n '/' %[mod d ] ']'").
Reserved Notation "m != n %[mod d ]" (at level 70, n at next level,
  format "'[hv ' m '/' != n '/' %[mod d ] ']'").

Reserved Notation "a ^` ()" (at level 8, format "a ^` ()").
Reserved Notation "a ^` ( n )" (at level 8, format "a ^` ( n )").

Reserved Notation "`| x |" (at level 0, x at level 99, format "`| x |").

Reserved Notation "x <= y ?= 'iff' c" (at level 70, y, c at next level,
  format "x '[hv' <= y '/' ?= 'iff' c ']'").

Reserved Notation "x <= y :> T" (at level 70, y at next level).
Reserved Notation "x >= y :> T" (at level 70, y at next level, only parsing).
Reserved Notation "x < y :> T" (at level 70, y at next level).
Reserved Notation "x > y :> T" (at level 70, y at next level, only parsing).
Reserved Notation "x <= y ?= 'iff' c :> T" (at level 70, y, c at next level,
  format "x '[hv' <= y '/' ?= 'iff' c :> T ']'").


Module Option.

Definition apply aT rT (f : aTrT) x u := if u is Some y then f y else x.

Definition default T := apply (fun x : Tx).

Definition bind aT rT (f : aToption rT) := apply f None.

Definition map aT rT (f : aTrT) := bind (fun xSome (f x)).

End Option.

Notation oapp := Option.apply.
Notation odflt := Option.default.
Notation obind := Option.bind.
Notation omap := Option.map.
Notation some := (@Some _) (only parsing).


Notation erefl := refl_equal.
Notation ecast i T e x := (let: erefl in _ = i := e return T in x).
Definition esym := sym_eq.
Definition nesym := sym_not_eq.
Definition etrans := trans_eq.
Definition congr1 := f_equal.
Definition congr2 := f_equal2.
Prenex Implicits esym nesym.

Definition all_equal_to T (x0 : T) := x, unkeyed x = x0.

Lemma unitE : all_equal_to tt. Proof. by case. Qed.


Structure wrapped T := Wrap {unwrap : T}.
Canonical wrap T x := @Wrap T x.

Prenex Implicits unwrap wrap Wrap.


Reserved Notation "[ 'rec' a0 ]"
  (at level 0, format "[ 'rec' a0 ]").
Reserved Notation "[ 'rec' a0 , a1 ]"
  (at level 0, format "[ 'rec' a0 , a1 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 ]"
  (at level 0, format "[ 'rec' a0 , a1 , a2 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 ]"
  (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 ]"
  (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 ]"
  (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 ]"
  (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]"
  (at level 0,
  format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ]"
  (at level 0,
  format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ]").
Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]"
  (at level 0,
  format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]").


Section SimplFun.

Variables aT rT : Type.

CoInductive simpl_fun := SimplFun of aTrT.

Definition fun_of_simpl f := fun xlet: SimplFun lam := f in lam x.

Coercion fun_of_simpl : simpl_fun >-> Funclass.

End SimplFun.

Notation "[ 'fun' : T => E ]" := (SimplFun (fun _ : TE))
  (at level 0,
   format "'[hv' [ 'fun' : T => '/ ' E ] ']'") : fun_scope.

Notation "[ 'fun' x => E ]" := (SimplFun (fun xE))
  (at level 0, x ident,
   format "'[hv' [ 'fun' x => '/ ' E ] ']'") : fun_scope.

Notation "[ 'fun' x : T => E ]" := (SimplFun (fun x : TE))
  (at level 0, x ident, only parsing) : fun_scope.

Notation "[ 'fun' x y => E ]" := (fun x[fun y E])
  (at level 0, x ident, y ident,
   format "'[hv' [ 'fun' x y => '/ ' E ] ']'") : fun_scope.

Notation "[ 'fun' x y : T => E ]" := (fun x : T[fun y : T E])
  (at level 0, x ident, y ident, only parsing) : fun_scope.

Notation "[ 'fun' ( x : T ) y => E ]" := (fun x : T[fun y E])
  (at level 0, x ident, y ident, only parsing) : fun_scope.

Notation "[ 'fun' x ( y : T ) => E ]" := (fun x[fun y : T E])
  (at level 0, x ident, y ident, only parsing) : fun_scope.

Notation "[ 'fun' ( x : xT ) ( y : yT ) => E ]" :=
    (fun x : xT[fun y : yT E])
  (at level 0, x ident, y ident, only parsing) : fun_scope.

Definition SimplFunDelta aT rT (f : aTaTrT) := [fun z f z z].


Section ExtensionalEquality.

Variables A B C : Type.

Definition eqfun (f g : BA) : Prop := x, f x = g x.

Definition eqrel (r s : CBA) : Prop := x y, r x y = s x y.

Lemma frefl f : eqfun f f. Proof. by []. Qed.
Lemma fsym f g : eqfun f geqfun g f. Proof. by moveeq_fg x. Qed.

Lemma ftrans f g h : eqfun f geqfun g heqfun f h.
Proof. by moveeq_fg eq_gh x; rewrite eq_fg. Qed.

Lemma rrefl r : eqrel r r. Proof. by []. Qed.

End ExtensionalEquality.

Typeclasses Opaque eqfun.
Typeclasses Opaque eqrel.

Hint Resolve frefl rrefl.

Notation "f1 =1 f2" := (eqfun f1 f2)
  (at level 70, no associativity) : fun_scope.
Notation "f1 =1 f2 :> A" := (f1 =1 (f2 : A))
  (at level 70, f2 at next level, A at level 90) : fun_scope.
Notation "f1 =2 f2" := (eqrel f1 f2)
  (at level 70, no associativity) : fun_scope.
Notation "f1 =2 f2 :> A" := (f1 =2 (f2 : A))
  (at level 70, f2 at next level, A, B at level 90) : fun_scope.

Section Composition.

Variables A B C : Type.

Definition funcomp u (f : BA) (g : CB) x := let: tt := u in f (g x).
Definition catcomp u g f := funcomp u f g.
Local Notation comp := (funcomp tt).

Definition pcomp (f : Boption A) (g : Coption B) x := obind f (g x).

Lemma eq_comp f f' g g' : f =1 f'g =1 g'comp f g =1 comp f' g'.
Proof. by moveeq_ff' eq_gg' x; rewrite /= eq_gg' eq_ff'. Qed.

End Composition.

Notation comp := (funcomp tt).
Notation "@ 'comp'" := (fun A B C ⇒ @funcomp A B C tt).
Notation "f1 \o f2" := (comp f1 f2)
  (at level 50, format "f1 \o '/ ' f2") : fun_scope.
Notation "f1 \; f2" := (catcomp tt f1 f2)
  (at level 60, right associativity, format "f1 \; '/ ' f2") : fun_scope.

Notation "[ 'eta' f ]" := (fun xf x)
  (at level 0, format "[ 'eta' f ]") : fun_scope.

Notation "'fun' => E" := (fun _E) (at level 200, only parsing) : fun_scope.

Notation id := (fun xx).
Notation "@ 'id' T" := (fun x : Tx)
  (at level 10, T at level 8, only parsing) : fun_scope.

Definition id_head T u x : T := let: tt := u in x.
Definition explicit_id_key := tt.
Notation idfun := (id_head tt).
Notation "@ 'idfun' T " := (@id_head T explicit_id_key)
  (at level 10, T at level 8, format "@ 'idfun' T") : fun_scope.

Definition phant_id T1 T2 v1 v2 := phantom T1 v1phantom T2 v2.


Section Tag.

Variables (I : Type) (i : I) (T_ U_ : IType).

Definition tag := projS1.
Definition tagged : w, T_(tag w) := @projS2 I [eta T_].
Definition Tagged x := @existS I [eta T_] i x.

Definition tag2 (w : @sigT2 I T_ U_) := let: existT2 i _ _ := w in i.
Definition tagged2 w : T_(tag2 w) := let: existT2 _ x _ := w in x.
Definition tagged2' w : U_(tag2 w) := let: existT2 _ _ y := w in y.
Definition Tagged2 x y := @existS2 I [eta T_] [eta U_] i x y.

End Tag.

Implicit Arguments Tagged [I i].
Implicit Arguments Tagged2 [I i].
Prenex Implicits tag tagged Tagged tag2 tagged2 tagged2' Tagged2.

Coercion tag_of_tag2 I T_ U_ (w : @sigT2 I T_ U_) :=
  Tagged (fun iT_ i × U_ i)%type (tagged2 w, tagged2' w).

Lemma all_tag I T U :
   ( x : I, {y : T x & U x y}) →
  {f : x, T x & x, U x (f x)}.
Proof. by movefP; (fun xtag (fP x)) ⇒ x; case: (fP x). Qed.

Lemma all_tag2 I T U V :
    ( i : I, {y : T i & U i y & V i y}) →
  {f : i, T i & i, U i (f i) & i, V i (f i)}.
Proof. by case/all_tagf /all_pair[]; f. Qed.


Notation sval := (@proj1_sig _ _).
Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").

Section Sig.

Variables (T : Type) (P Q : TProp).

Lemma svalP (u : sig P) : P (sval u). Proof. by case: u. Qed.

Definition s2val (u : sig2 P Q) := let: exist2 x _ _ := u in x.

Lemma s2valP u : P (s2val u). Proof. by case: u. Qed.

Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed.

End Sig.

Prenex Implicits svalP s2val s2valP s2valP'.

Coercion tag_of_sig I P (u : @sig I P) := Tagged P (svalP u).

Coercion sig_of_sig2 I P Q (u : @sig2 I P Q) :=
  exist (fun iP i Q i) (s2val u) (conj (s2valP u) (s2valP' u)).

Lemma all_sig I T P :
    ( x : I, {y : T x | P x y}) →
  {f : x, T x | x, P x (f x)}.
Proof. by case/all_tagf; f. Qed.

Lemma all_sig2 I T P Q :
    ( x : I, {y : T x | P x y & Q x y}) →
  {f : x, T x | x, P x (f x) & x, Q x (f x)}.
Proof. by case/all_sigf /all_pair[]; f. Qed.

Section Morphism.

Variables (aT rT sT : Type) (f : aTrT).

Definition morphism_1 aF rF := x, f (aF x) = rF (f x).
Definition morphism_2 aOp rOp := x y, f (aOp x y) = rOp (f x) (f y).

Definition homomorphism_1 (aP rP : _Prop) := x, aP xrP (f x).
Definition homomorphism_2 (aR rR : __Prop) :=
   x y, aR x yrR (f x) (f y).

Definition monomorphism_1 (aP rP : _sT) := x, rP (f x) = aP x.
Definition monomorphism_2 (aR rR : __sT) :=
   x y, rR (f x) (f y) = aR x y.

End Morphism.

Notation "{ 'morph' f : x / a >-> r }" :=
  (morphism_1 f (fun xa) (fun xr))
  (at level 0, f at level 99, x ident,
   format "{ 'morph' f : x / a >-> r }") : type_scope.

Notation "{ 'morph' f : x / a }" :=
  (morphism_1 f (fun xa) (fun xa))
  (at level 0, f at level 99, x ident,
   format "{ 'morph' f : x / a }") : type_scope.

Notation "{ 'morph' f : x y / a >-> r }" :=
  (morphism_2 f (fun x ya) (fun x yr))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'morph' f : x y / a >-> r }") : type_scope.

Notation "{ 'morph' f : x y / a }" :=
  (morphism_2 f (fun x ya) (fun x ya))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'morph' f : x y / a }") : type_scope.

Notation "{ 'homo' f : x / a >-> r }" :=
  (homomorphism_1 f (fun xa) (fun xr))
  (at level 0, f at level 99, x ident,
   format "{ 'homo' f : x / a >-> r }") : type_scope.

Notation "{ 'homo' f : x / a }" :=
  (homomorphism_1 f (fun xa) (fun xa))
  (at level 0, f at level 99, x ident,
   format "{ 'homo' f : x / a }") : type_scope.

Notation "{ 'homo' f : x y / a >-> r }" :=
  (homomorphism_2 f (fun x ya) (fun x yr))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'homo' f : x y / a >-> r }") : type_scope.

Notation "{ 'homo' f : x y / a }" :=
  (homomorphism_2 f (fun x ya) (fun x ya))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'homo' f : x y / a }") : type_scope.

Notation "{ 'homo' f : x y /~ a }" :=
  (homomorphism_2 f (fun y xa) (fun x ya))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'homo' f : x y /~ a }") : type_scope.

Notation "{ 'mono' f : x / a >-> r }" :=
  (monomorphism_1 f (fun xa) (fun xr))
  (at level 0, f at level 99, x ident,
   format "{ 'mono' f : x / a >-> r }") : type_scope.

Notation "{ 'mono' f : x / a }" :=
  (monomorphism_1 f (fun xa) (fun xa))
  (at level 0, f at level 99, x ident,
   format "{ 'mono' f : x / a }") : type_scope.

Notation "{ 'mono' f : x y / a >-> r }" :=
  (monomorphism_2 f (fun x ya) (fun x yr))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'mono' f : x y / a >-> r }") : type_scope.

Notation "{ 'mono' f : x y / a }" :=
  (monomorphism_2 f (fun x ya) (fun x ya))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'mono' f : x y / a }") : type_scope.

Notation "{ 'mono' f : x y /~ a }" :=
  (monomorphism_2 f (fun y xa) (fun x ya))
  (at level 0, f at level 99, x ident, y ident,
   format "{ 'mono' f : x y /~ a }") : type_scope.


Section Injections.

Variables (rT aT : Type) (f : aTrT).

Definition injective := x1 x2, f x1 = f x2x1 = x2.

Definition cancel g := x, g (f x) = x.

Definition pcancel g := x, g (f x) = Some x.

Definition ocancel (g : aToption rT) h := x, oapp h x (g x) = x.

Lemma can_pcan g : cancel gpcancel (fun ySome (g y)).
Proof. by movefK x; congr (Some _). Qed.

Lemma pcan_inj g : pcancel ginjective.
Proof. by movefK x y /(congr1 g); rewrite !fK ⇒ [[]]. Qed.

Lemma can_inj g : cancel ginjective.
Proof. by move/can_pcan; exact: pcan_inj. Qed.

Lemma canLR g x y : cancel gx = f yg x = y.
Proof. by movefK →. Qed.

Lemma canRL g x y : cancel gf x = yx = g y.
Proof. by movefK <-. Qed.

End Injections.

Lemma Some_inj {T} : injective (@Some T). Proof. by movex y []. Qed.

Lemma esymK T x y : cancel (@esym T x y) (@esym T y x).
Proof. by case: y /. Qed.

Lemma etrans_id T x y (eqxy : x = y :> T) : etrans (erefl x) eqxy = eqxy.
Proof. by case: y / eqxy. Qed.

Section InjectionsTheory.

Variables (A B C : Type) (f g : BA) (h : CB).

Lemma inj_id : injective (@id A).
Proof. by []. Qed.

Lemma inj_can_sym f' : cancel f f'injective f'cancel f' f.
Proof. movefK injf' x; exact: injf'. Qed.

Lemma inj_comp : injective finjective hinjective (f \o h).
Proof. moveinjf injh x y /injf; exact: injh. Qed.

Lemma can_comp f' h' : cancel f f'cancel h h'cancel (f \o h) (h' \o f').
Proof. by movefK hK x; rewrite /= fK hK. Qed.

Lemma pcan_pcomp f' h' :
  pcancel f f'pcancel h h'pcancel (f \o h) (pcomp h' f').
Proof. by movefK hK x; rewrite /pcomp fK /= hK. Qed.

Lemma eq_inj : injective ff =1 ginjective g.
Proof. by moveinjf eqfg x y; rewrite -2!eqfg; exact: injf. Qed.

Lemma eq_can f' g' : cancel f f'f =1 gf' =1 g'cancel g g'.
Proof. by movefK eqfg eqfg' x; rewrite -eqfg -eqfg'. Qed.

Lemma inj_can_eq f' : cancel f f'injective f'cancel g f'f =1 g.
Proof. by movefK injf' gK x; apply: injf'; rewrite fK. Qed.

End InjectionsTheory.

Section Bijections.

Variables (A B : Type) (f : BA).

CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f.

Hypothesis bijf : bijective.

Lemma bij_inj : injective f.
Proof. by case: bijfg fK _; apply: can_inj fK. Qed.

Lemma bij_can_sym f' : cancel f' f cancel f f'.
Proof.
splitfK; first exact: inj_can_sym fK bij_inj.
by case: bijfh _ hK x; rewrite -[x]hK fK.
Qed.

Lemma bij_can_eq f' f'' : cancel f f'cancel f f''f' =1 f''.
Proof.
by movefK fK'; apply: (inj_can_eq _ bij_inj); apply/bij_can_sym.
Qed.

End Bijections.

Section BijectionsTheory.

Variables (A B C : Type) (f : BA) (h : CB).

Lemma eq_bij : bijective f g, f =1 gbijective g.
Proof. by casef' fK f'K g eqfg; f'; eapply eq_can; eauto. Qed.

Lemma bij_comp : bijective fbijective hbijective (f \o h).
Proof.
by move⇒ [f' fK f'K] [h' hK h'K]; (h' \o f'); apply: can_comp; auto.
Qed.

Lemma bij_can_bij : bijective f f', cancel f f'bijective f'.
Proof. by movebijf; f; first by apply/(bij_can_sym bijf). Qed.

End BijectionsTheory.

Section Involutions.

Variables (A : Type) (f : AA).

Definition involutive := cancel f f.

Hypothesis Hf : involutive.

Lemma inv_inj : injective f. Proof. exact: can_inj Hf. Qed.
Lemma inv_bij : bijective f. Proof. by f. Qed.

End Involutions.

Section OperationProperties.

Variables S T R : Type.

Section SopTisR.
Implicit Type op : STR.
Definition left_inverse e inv op := x, op (inv x) x = e.
Definition right_inverse e inv op := x, op x (inv x) = e.
Definition left_injective op := x, injective (op^~ x).
Definition right_injective op := y, injective (op y).
End SopTisR.

Section SopTisS.
Implicit Type op : STS.
Definition right_id e op := x, op x e = x.
Definition left_zero z op := x, op z x = z.
Definition right_commutative op := x y z, op (op x y) z = op (op x z) y.
Definition left_distributive op add :=
   x y z, op (add x y) z = add (op x z) (op y z).
Definition right_loop inv op := y, cancel (op^~ y) (op^~ (inv y)).
Definition rev_right_loop inv op := y, cancel (op^~ (inv y)) (op^~ y).
End SopTisS.

Section SopTisT.
Implicit Type op : STT.
Definition left_id e op := x, op e x = x.
Definition right_zero z op := x, op x z = z.
Definition left_commutative op := x y z, op x (op y z) = op y (op x z).
Definition right_distributive op add :=
   x y z, op x (add y z) = add (op x y) (op x z).
Definition left_loop inv op := x, cancel (op x) (op (inv x)).
Definition rev_left_loop inv op := x, cancel (op (inv x)) (op x).
End SopTisT.

Section SopSisT.
Implicit Type op : SST.
Definition self_inverse e op := x, op x x = e.
Definition commutative op := x y, op x y = op y x.
End SopSisT.

Section SopSisS.
Implicit Type op : SSS.
Definition idempotent op := x, op x x = x.
Definition associative op := x y z, op x (op y z) = op (op x y) z.
Definition interchange op1 op2 :=
   x y z t, op1 (op2 x y) (op2 z t) = op2 (op1 x z) (op1 y t).
End SopSisS.

End OperationProperties.