SHOGUN  v1.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
WDSVMOcas.h
Go to the documentation of this file.
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 3 of the License, or
5  * (at your option) any later version.
6  *
7  * Written (W) 2007-2008 Vojtech Franc
8  * Written (W) 2007-2009 Soeren Sonnenburg
9  * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
10  */
11 
12 #ifndef _WDSVMOCAS_H___
13 #define _WDSVMOCAS_H___
14 
15 #include <shogun/lib/common.h>
16 #include <shogun/machine/Machine.h>
19 #include <shogun/features/Labels.h>
20 
21 namespace shogun
22 {
23 template <class ST> class CStringFeatures;
24 
26 class CWDSVMOcas : public CMachine
27 {
28  public:
30  CWDSVMOcas();
31 
36  CWDSVMOcas(E_SVM_TYPE type);
37 
46  CWDSVMOcas(
47  float64_t C, int32_t d, int32_t from_d,
48  CStringFeatures<uint8_t>* traindat, CLabels* trainlab);
49  virtual ~CWDSVMOcas();
50 
55  virtual inline EClassifierType get_classifier_type() { return CT_WDSVMOCAS; }
56 
63  inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
64 
69  inline float64_t get_C1() { return C1; }
70 
75  inline float64_t get_C2() { return C2; }
76 
81  inline void set_epsilon(float64_t eps) { epsilon=eps; }
82 
87  inline float64_t get_epsilon() { return epsilon; }
88 
94  {
96  SG_REF(feat);
97  features=feat;
98  }
99 
105  {
106  SG_REF(features);
107  return features;
108  }
109 
114  inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
115 
120  inline bool get_bias_enabled() { return use_bias; }
121 
126  inline void set_bufsize(int32_t sz) { bufsize=sz; }
127 
132  inline int32_t get_bufsize() { return bufsize; }
133 
139  inline void set_degree(int32_t d, int32_t from_d)
140  {
141  degree=d;
142  from_degree=from_d;
143  }
144 
149  inline int32_t get_degree() { return degree; }
150 
155  CLabels* apply();
156 
162  virtual CLabels* apply(CFeatures* data);
163 
169  inline virtual float64_t apply(int32_t num)
170  {
171  ASSERT(features);
172  if (!wd_weights)
173  set_wd_weights();
174 
175  int32_t len=0;
176  float64_t sum=0;
177  bool free_vec;
178  uint8_t* vec=features->get_feature_vector(num, len, free_vec);
179  //SG_INFO("len %d, string_length %d\n", len, string_length);
180  ASSERT(len==string_length);
181 
182  for (int32_t j=0; j<string_length; j++)
183  {
184  int32_t offs=w_dim_single_char*j;
185  int32_t val=0;
186  for (int32_t k=0; (j+k<string_length) && (k<degree); k++)
187  {
188  val=val*alphabet_size + vec[j+k];
189  sum+=wd_weights[k] * w[offs+val];
190  offs+=w_offsets[k];
191  }
192  }
193  features->free_feature_vector(vec, num, free_vec);
194  return sum/normalization_const;
195  }
196 
199  {
200  ASSERT(features);
202  for (int32_t i=0; i<degree; i++)
204 
206  SG_DEBUG("normalization_const:%f\n", normalization_const);
207  }
208 
214 
215 
216  protected:
221  int32_t set_wd_weights();
222 
231  static void compute_W(
232  float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha,
233  uint32_t nSel, void* ptr );
234 
241  static float64_t update_W(float64_t t, void* ptr );
242 
248  static void* add_new_cut_helper(void* ptr);
249 
258  static int add_new_cut(
259  float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length,
260  uint32_t nSel, void* ptr );
261 
267  static void* compute_output_helper(void* ptr);
268 
274  static int compute_output( float64_t *output, void* ptr );
275 
282  static int sort( float64_t* vals, float64_t* data, uint32_t size);
283 
285  static inline void print(ocas_return_value_T value)
286  {
287  return;
288  }
289 
290 
292  inline virtual const char* get_name() const { return "WDSVMOcas"; }
293 
294  protected:
303  virtual bool train_machine(CFeatures* data=NULL);
304 
305  protected:
309  bool use_bias;
311  int32_t bufsize;
319  E_SVM_TYPE method;
320 
322  int32_t degree;
324  int32_t from_degree;
328  int32_t num_vec;
330  int32_t string_length;
332  int32_t alphabet_size;
333 
336 
342  int32_t* w_offsets;
344  int32_t w_dim;
353 
358 };
359 }
360 #endif

SHOGUN Machine Learning Toolbox - Documentation