infolists SciMax Toolbox init_ctensor

SciMax Toolbox >> init_atensor

init_atensor

Maxima Function

Calling Sequence

init_atensor (alg_type, opt_dims)
init_atensor(alg_type)

Description

Initializes the atensor package with the specified algebra type. alg_type can be one of the following:

universal: The universal algebra has no commutation rules.

grassmann: The Grassman algebra is defined by the commutation relation u.v+v.u=0.

clifford: The Clifford algebra is defined by the commutation relation u.v+v.u=-2*sf(u,v) where sf is a symmetric scalar-valued function. For this algebra, opt_dims can be up to three nonnegative integers, representing the number of positive, degenerate, and negative dimensions of the algebra, respectively. If any opt_dims values are supplied, atensor will configure the values of adim and aform appropriately. Otherwise, adim will default to 0 and aform will not be defined.

symmetric: The symmetric algebra is defined by the commutation relation u.v-v.u=0.

symplectic: The symplectic algebra is defined by the commutation relation u.v-v.u=2*af(u,v) where af is an antisymmetric scalar-valued function. For the symplectic algebra, opt_dims can be up to two nonnegative integers, representing the nondegenerate and degenerate dimensions, respectively. If any opt_dims values are supplied, atensor will configure the values of adim and aform appropriately. Otherwise, adim will default to 0 and aform will not be defined.

lie_envelop: The algebra of the Lie envelope is defined by the commutation relation u.v-v.u=2*av(u,v) where av is an antisymmetric function.

The init_atensor function also recognizes several predefined algebra types:

complex implements the algebra of complex numbers as the Clifford algebra Cl(0,1). The call init_atensor(complex) is equivalent to init_atensor(clifford,0,0,1).

quaternion implements the algebra of quaternions. The call init_atensor(quaternion) is equivalent to init_atensor(clifford,0,0,2).

pauli implements the algebra of Pauli-spinors as the Clifford-algebra Cl(3,0). A call to init_atensor(pauli) is equivalent to init_atensor(clifford,3).

dirac implements the algebra of Dirac-spinors as the Clifford-algebra Cl(3,1). A call to init_atensor(dirac) is equivalent to init_atensor(clifford,3,0,1).

infolists SciMax Toolbox init_ctensor