
BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

NAME
:, ., [, alias, bg, bind, break, builtin, caller, cd, command, compgen, complete, compopt, continue, declare,
dirs, disown, echo, enable, eval, exec, exit, export, false, fc, fg, getopts, hash, help, history, jobs, kill, let, lo-
cal, logout, mapfile, popd, printf, pushd, pwd, read, readarray, readonly, return, set, shift, shopt, source, sus-
pend, test, times, trap, true, type, typeset, ulimit, umask, unalias, unset, wait - bash built-in commands, see
bash(1)

BASH BUILTIN COMMANDS
Unless otherwise noted, each builtin command documented in this section as accepting options preceded by
- accepts -- to signify the end of the options. The :, true, false, and test/[builtins do not accept options
and do not treat -- specially. The exit, logout, return, break, continue, let, and shift builtins accept and
process arguments beginning with - without requiring --. Other builtins that accept arguments but are not
specified as accepting options interpret arguments beginning with - as invalid options and require -- to
prevent this interpretation.

: [arguments]
No effect; the command does nothing beyond expanding arguments and performing any specified
redirections. The return status is zero.

. [-p path] filename [arguments]
source [-p path] filename [arguments]

The . command (source) reads and execute commands from filename in the current shell environ-
ment and returns the exit status of the last command executed from filename.

If filename does not contain a slash, . searches for it. If the -p option is supplied, . treats path as a
colon-separated list of directories in which to find filename; otherwise, . uses the entries in PATH
to find the directory containing filename. filename does not need to be executable. When bash is
not in posix mode, it searches the current directory if filename is not found in PATH, but does not
search the current directory if -p is supplied. If the sourcepath option to the shopt builtin com-
mand is turned off, . does not search PATH.

If any arguments are supplied, they become the positional parameters when filename is executed.
Otherwise the positional parameters are unchanged.

If the -T option is enabled, . inherits any trap on DEBUG; if it is not, any DEBUG trap string is
saved and restored around the call to ., and . unsets the DEBUG trap while it executes. If -T is
not set, and the sourced file changes the DEBUG trap, the new value persists after . completes.
The return status is the status of the last command executed from filename (0 if no commands are
executed), and non-zero if filename is not found or cannot be read.

alias [-p] [name[=value] . . .]
With no arguments or with the -p option, alias prints the list of aliases in the form alias
name=value on standard output. When arguments are supplied, define an alias for each name
whose value is given. A trailing space in value causes the next word to be checked for alias substi-
tution when the alias is expanded during command parsing. For each name in the argument list for
which no value is supplied, print the name and value of the alias name. alias returns true unless a
name is given (without a corresponding =value) for which no alias has been defined.

bg [jobspec . . .]
Resume each suspended job jobspec in the background, as if it had been started with &. If job-
spec is not present, the shell uses its notion of the current job. bg jobspec returns 0 unless run
when job control is disabled or, when run with job control enabled, any specified jobspec was not
found or was started without job control.

bind [-m keymap] [-lsvSVX]
bind [-m keymap] [-q function] [-u function] [-r keyseq]
bind [-m keymap] -f filename
bind [-m keymap] -x keyseq[:] shell-command

GNU Bash 5.3 2023 January 27 1

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

bind [-m keymap] keyseq:function-name
bind [-m keymap] -p|-P [readline-command]
bind [-m keymap] keyseq:readline-command
bind readline-command-line

Display current readline key and function bindings, bind a key sequence to a readline function or
macro or to a shell command, or set a readline variable. Each non-option argument is a key bind-
ing or command as it would appear in a readline initialization file such as .inputrc, but each bind-
ing or command must be passed as a separate argument; e.g., \C-x\C-r: re-read-init-file. In the
following descriptions, output available to be re-read is formatted as commands that would appear
in a readline initialization file or that would be supplied as individual arguments to a bind com-
mand. Options, if supplied, have the following meanings:
-m keymap

Use keymap as the keymap to be affected by the subsequent bindings. Acceptable
keymap names are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-move,
vi-command, and vi-insert. vi is equivalent to vi-command (vi-move is also a syn-
onym); emacs is equivalent to emacs-standard.

-l List the names of all readline functions.
-p Display readline function names and bindings in such a way that they can be used as an

argument to a subsequent bind command or in a readline initialization file. If arguments
remain after option processing, bind treats them as readline command names and re-
stricts output to those names.

-P List current readline function names and bindings. If arguments remain after option pro-
cessing, bind treats them as readline command names and restricts output to those
names.

-s Display readline key sequences bound to macros and the strings they output in such a
way that they can be used as an argument to a subsequent bind command or in a readline
initialization file.

-S Display readline key sequences bound to macros and the strings they output.
-v Display readline variable names and values in such a way that they can be used as an ar-

gument to a subsequent bind command or in a readline initialization file.
-V List current readline variable names and values.
-f filename

Read key bindings from filename.
-q function

Display key sequences that invoke the named readline function.
-u function

Unbind all key sequences bound to the named readline function.
-r keyseq

Remove any current binding for keyseq.
-x keyseq[:]shell-command

Cause shell-command to be executed whenever keyseq is entered. The separator be-
tween keyseq and shell-command is either whitespace or a colon optionally followed by
whitespace. If the separator is whitespace, shell-command must be enclosed in double
quotes and readline expands any of its special backslash-escapes in shell-command be-
fore saving it. If the separator is a colon, any enclosing double quotes are optional, and
readline does not expand the command string before saving it. Since the entire key bind-
ing expression must be a single argument, it should be enclosed in single quotes. When
shell-command is executed, the shell sets the READLINE_LINE variable to the contents
of the readline line buffer and the READLINE_POINT and READLINE_MARK variables
to the current location of the insertion point and the saved insertion point (the mark), re-
spectively. The shell assigns any numeric argument the user supplied to the READ-
LINE_ARGUMENT variable. If there was no argument, that variable is not set. If the ex-
ecuted command changes the value of any of READLINE_LINE, READLINE_POINT, or
READLINE_MARK, those new values will be reflected in the editing state.

GNU Bash 5.3 2023 January 27 2

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

-X List all key sequences bound to shell commands and the associated commands in a for-
mat that can be reused as an argument to a subsequent bind command.

The return value is 0 unless an unrecognized option is supplied or an error occurred.

break [n]
Exit from within a for, while, until, or select loop. If n is specified, break exits n enclosing loops.
n must be ≥ 1. If n is greater than the number of enclosing loops, all enclosing loops are exited.
The return value is 0 unless n is not greater than or equal to 1.

builtin shell-builtin [arguments]
Execute the specified shell builtin shell-builtin, passing it arguments, and return its exit status.
This is useful when defining a function whose name is the same as a shell builtin, retaining the
functionality of the builtin within the function. The cd builtin is commonly redefined this way.
The return status is false if shell-builtin is not a shell builtin command.

caller [expr]
Returns the context of any active subroutine call (a shell function or a script executed with the . or
source builtins).

Without expr, caller displays the line number and source filename of the current subroutine call.
If a non-negative integer is supplied as expr, caller displays the line number, subroutine name, and
source file corresponding to that position in the current execution call stack. This extra informa-
tion may be used, for example, to print a stack trace. The current frame is frame 0.

The return value is 0 unless the shell is not executing a subroutine call or expr does not correspond
to a valid position in the call stack.

cd [-L] [-@] [dir]
cd -P [-e] [-@] [dir]

Change the current directory to dir. if dir is not supplied, the value of the HOME shell variable is
used as dir. If dir is the empty string, cd treats it as an error. The variable CDPATH exists, and dir
does not begin with a slash (/), cd uses it as a search path: the shell searches each directory name
in CDPATH for dir. Alternative directory names in CDPATH are separated by a colon (:). A null
directory name in CDPATH is the same as the current directory, i.e.,

The -P option causes cd to use the physical directory structure by resolving symbolic links while
traversing dir and before processing instances of . . in dir (see also the -P option to the set builtin
command).

The -L option forces cd to follow symbolic links by resolving the link after processing instances
of . . in dir. If . . appears in dir, cd processes it by removing the immediately previous pathname
component from dir, back to a slash or the beginning of dir, and verifying that the portion of dir it
has processed to that point is still a valid directory name after removing the pathname component.
If it is not a valid directory name, cd returns a non-zero status. If neither -L nor -P is supplied,
cd behaves as if -L had been supplied.

If the -e option is supplied with -P, and cd cannot successfully determine the current working di-
rectory after a successful directory change, it returns a non-zero status.

On systems that support it, the -@ option presents the extended attributes associated with a file as
a directory.

An argument of - is converted to $OLDPWD before attempting the directory change.

If cd uses a non-empty directory name from CDPATH, or if - is the first argument, and the direc-
tory change is successful, cd writes the absolute pathname of the new working directory to the
standard output.

If the directory change is successful, cd sets the value of the PWD environment variable to the
new directory name, and sets the OLDPWD environment variable to the value of the current
working directory before the change.

GNU Bash 5.3 2023 January 27 3

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

The return value is true if the directory was successfully changed; false otherwise.

command [-pVv] command [arg . . .]
The command builtin runs command with args suppressing the normal shell function lookup for
command. Only builtin commands or commands found in the PATH named command are exe-
cuted. If the -p option is supplied, the search for command is performed using a default value for
PATH that is guaranteed to find all of the standard utilities.

If either the -V or -v option is supplied, command prints a description of command . The -v op-
tion displays a single word indicating the command or filename used to invoke command; the -V
option produces a more verbose description.

If the -V or -v option is supplied, the exit status is zero if command was found, and non-zero if
not. If neither option is supplied and an error occurred or command cannot be found, the exit sta-
tus is 127. Otherwise, the exit status of the command builtin is the exit status of command .

compgen [-V varname] [option] [word]
Generate possible completion matches for word according to the options, which may be any option
accepted by the complete builtin with the exceptions of -p, -r, -D, -E, and -I, and write the
matches to the standard output.

If the -V option is supplied, compgen stores the generated completions into the indexed array
variable varname instead of writing them to the standard output.

When using the -F or -C options, the various shell variables set by the programmable completion
facilities, while available, will not have useful values.

The matches will be generated in the same way as if the programmable completion code had gen-
erated them directly from a completion specification with the same flags. If word is specified, only
those completions matching word will be displayed or stored.

The return value is true unless an invalid option is supplied, or no matches were generated.

complete [-abcdefgjksuv] [-o comp-option] [-DEI] [-A action]
[-G globpat] [-W wordlist] [-F function] [-C command]
[-X filterpat] [-P prefix] [-S suffix] name [name . . .]

complete -pr [-DEI] [name . . .]
Specify how arguments to each name should be completed.

If the -p option is supplied, or if no options or names are supplied, print existing completion spec-
ifications in a way that allows them to be reused as input. The -r option removes a completion
specification for each name, or, if no names are supplied, all completion specifications.

The -D option indicates that other supplied options and actions should apply to the command
completion; that is, completion attempted on a command for which no completion has previously
been defined. The -E option indicates that other supplied options and actions should apply to
command completion; that is, completion attempted on a blank line. The -I option indicates that
other supplied options and actions should apply to completion on the initial non-assignment word
on the line, or after a command delimiter such as ; or |, which is usually command name comple-
tion. If multiple options are supplied, the -D option takes precedence over -E, and both take
precedence over -I. If any of -D, -E, or -I are supplied, any other name arguments are ignored;
these completions only apply to the case specified by the option.

The process of applying these completion specifications when attempting word completion is de-
scribed in bash(1).

Other options, if specified, have the following meanings. The arguments to the -G, -W, and -X
options (and, if necessary, the -P and -S options) should be quoted to protect them from expan-
sion before the complete builtin is invoked.

-o comp-option
The comp-option controls several aspects of the compspec’s behavior beyond the simple
generation of completions. comp-option may be one of:

GNU Bash 5.3 2023 January 27 4

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

bashdefault
Perform the rest of the default bash completions if the compspec generates no
matches.

default Use readline’s default filename completion if the compspec generates no
matches.

dirnames
Perform directory name completion if the compspec generates no matches.

filenames
Tell readline that the compspec generates filenames, so it can perform any
filename-specific processing (such as adding a slash to directory names, quot-
ing special characters, or suppressing trailing spaces). This is intended to be
used with shell functions.

fullquote
Tell readline to quote all the completed words even if they are not filenames.

noquote Tell readline not to quote the completed words if they are filenames (quoting
filenames is the default).

nosort Tell readline not to sort the list of possible completions alphabetically.
nospace Tell readline not to append a space (the default) to words completed at the end

of the line.
plusdirs After generating any matches defined by the compspec, attempt directory

name completion and add any matches to the results of the other actions.
-A action

The action may be one of the following to generate a list of possible completions:
alias Alias names. May also be specified as -a.
arrayvar

Array variable names.
binding Readline key binding names.
builtin Names of shell builtin commands. May also be specified as -b.
command

Command names. May also be specified as -c.
directory

Directory names. May also be specified as -d.
disabled

Names of disabled shell builtins.
enabled Names of enabled shell builtins.
export Names of exported shell variables. May also be specified as -e.
file File and directory names, similar to readline’s filename completion. May also

be specified as -f.
function

Names of shell functions.
group Group names. May also be specified as -g.
helptopic

Help topics as accepted by the help builtin.
hostname

Hostnames, as taken from the file specified by the HOSTFILE shell variable.
job Job names, if job control is active. May also be specified as -j.
keyword

Shell reserved words. May also be specified as -k.
running Names of running jobs, if job control is active.
service Service names. May also be specified as -s.
setopt Valid arguments for the -o option to the set builtin.
shopt Shell option names as accepted by the shopt builtin.

GNU Bash 5.3 2023 January 27 5

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

signal Signal names.
stopped Names of stopped jobs, if job control is active.
user User names. May also be specified as -u.
variable Names of all shell variables. May also be specified as -v.

-C command
command is executed in a subshell environment, and its output is used as the possible
completions. Arguments are passed as with the -F option.

-F function
The shell function function is executed in the current shell environment. When the func-
tion is executed, the first argument ($1) is the name of the command whose arguments
are being completed, the second argument ($2) is the word being completed, and the
third argument ($3) is the word preceding the word being completed on the current com-
mand line. When function finishes, programmable completion retrieves the possible
completions from the value of the COMPREPLY array variable.

-G globpat
Expand the pathname expansion pattern globpat to generate the possible completions.

-P prefix
Add prefix to the beginning of each possible completion after all other options have been
applied.

-S suffix Append suffix to each possible completion after all other options have been applied.
-W wordlist

Split the wordlist using the characters in the IFS special variable as delimiters, and ex-
pand each resulting word. Shell quoting is honored within wordlist, in order to provide a
mechanism for the words to contain shell metacharacters or characters in the value of
IFS. The possible completions are the members of the resultant list which match a prefix
of the word being completed.

-X filterpat
filterpat is a pattern as used for pathname expansion. It is applied to the list of possible
completions generated by the preceding options and arguments, and each completion
matching filterpat is removed from the list. A leading ! in filterpat negates the pattern;
in this case, any completion not matching filterpat is removed.

The return value is true unless an invalid option is supplied, an option other than -p, -r, -D, -E,
or -I is supplied without a name argument, an attempt is made to remove a completion specifica-
tion for a name for which no specification exists, or an error occurs adding a completion specifica-
tion.

compopt [-o option] [-DEI] [+o option] [name]
Modify completion options for each name according to the options, or for the currently-executing
completion if no names are supplied. If no options are supplied, display the completion options
for each name or the current completion. The possible values of option are those valid for the
complete builtin described above.

The -D option indicates that other supplied options should apply to the command completion; the
-E option indicates that other supplied options should apply to command completion; and the -I
option indicates that other supplied options should apply to completion on the initial word on the
line. These are determined in the same way as the complete builtin.

If multiple options are supplied, the -D option takes precedence over -E, and both take prece-
dence over -I.

The return value is true unless an invalid option is supplied, an attempt is made to modify the op-
tions for a name for which no completion specification exists, or an output error occurs.

continue [n]
continue resumes the next iteration of the enclosing for, while, until, or select loop. If n is speci-
fied, bash resumes the nth enclosing loop. n must be ≥ 1. If n is greater than the number of en-
closing loops, the shell resumes the last enclosing loop (the loop). The return value is 0 unless n is

GNU Bash 5.3 2023 January 27 6

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

not greater than or equal to 1.

declare [-aAfFgiIlnrtux] [-p] [name[=value] . . .]
typeset [-aAfFgiIlnrtux] [-p] [name[=value] . . .]

Declare variables and/or give them attributes. If no names are given then display the values of
variables or functions. The -p option will display the attributes and values of each name. When
-p is used with name arguments, additional options, other than -f and -F, are ignored.

When -p is supplied without name arguments, declare will display the attributes and values of all
variables having the attributes specified by the additional options. If no other options are supplied
with -p, declare will display the attributes and values of all shell variables. The -f option restricts
the display to shell functions.

The -F option inhibits the display of function definitions; only the function name and attributes
are printed. If the extdebug shell option is enabled using shopt, the source file name and line
number where each name is defined are displayed as well. The -F option implies -f.

The -g option forces variables to be created or modified at the global scope, even when declare is
executed in a shell function. It is ignored when declare is not executed in a shell function.

The -I option causes local variables to inherit the attributes (except the nameref attribute) and
value of any existing variable with the same name at a surrounding scope. If there is no existing
variable, the local variable is initially unset.

The following options can be used to restrict output to variables with the specified attribute or to
give variables attributes:
-a Each name is an indexed array variable (see Arrays in bash(1)).
-A Each name is an associative array variable (see Arrays in bash(1)).
-f Each name refers to a shell function.
-i The variable is treated as an integer; arithmetic evaluation (see ARITHMETIC EVALUA-

TION in bash(1)) is performed when the variable is assigned a value.
-l When the variable is assigned a value, all upper-case characters are converted to lower-

case. The upper-case attribute is disabled.
-n Give each name the nameref attribute, making it a name reference to another variable.

That other variable is defined by the value of name. All references, assignments, and at-
tribute modifications to name, except those using or changing the -n attribute itself, are
performed on the variable referenced by name’s value. The nameref attribute cannot be
applied to array variables.

-r Make names readonly. These names cannot then be assigned values by subsequent as-
signment statements or unset.

-t Give each name the trace attribute. Traced functions inherit the DEBUG and RETURN
traps from the calling shell. The trace attribute has no special meaning for variables.

-u When the variable is assigned a value, all lower-case characters are converted to upper-
case. The lower-case attribute is disabled.

-x Mark each name for export to subsequent commands via the environment.

Using instead of turns off the specified attribute instead, with the exceptions that +a and +A may
not be used to destroy array variables and +r will not remove the readonly attribute.

When used in a function, declare and typeset make each name local, as with the local command,
unless the -g option is supplied. If a variable name is followed by =value, the value of the vari-
able is set to value. When using -a or -A and the compound assignment syntax to create array
variables, additional attributes do not take effect until subsequent assignments.

The return value is 0 unless an invalid option is encountered, an attempt is made to define a func-
tion using an attempt is made to assign a value to a readonly variable, an attempt is made to assign
a value to an array variable without using the compound assignment syntax (see Arrays in
bash(1)), one of the names is not a valid shell variable name, an attempt is made to turn off read-
only status for a readonly variable, an attempt is made to turn off array status for an array variable,
or an attempt is made to display a non-existent function with -f.

GNU Bash 5.3 2023 January 27 7

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

dirs [-clpv] [+n] [-n]
Without options, display the list of currently remembered directories. The default display is on a
single line with directory names separated by spaces. Directories are added to the list with the
pushd command; the popd command removes entries from the list. The current directory is al-
ways the first directory in the stack.

Options, if supplied, have the following meanings:
-c Clears the directory stack by deleting all of the entries.
-l Produces a listing using full pathnames; the default listing format uses a tilde to denote

the home directory.
-p Print the directory stack with one entry per line.
-v Print the directory stack with one entry per line, prefixing each entry with its index in the

stack.
+n Displays the nth entry counting from the left of the list shown by dirs when invoked

without options, starting with zero.
-n Displays the nth entry counting from the right of the list shown by dirs when invoked

without options, starting with zero.

The return value is 0 unless an invalid option is supplied or n indexes beyond the end of the direc-
tory stack.

disown [-ar] [-h] [id . . .]
Without options, remove each id from the table of active jobs. Each id may be a job specification
jobspec or a process ID pid; if id is a pid, disown uses the job containing pid as jobspec.

If the -h option is supplied, disown does not remove the jobs corresponding to each id from the
jobs table, but rather marks them so the shell does not send SIGHUP to the job if the shell receives
a SIGHUP.

If no id is supplied, the -a option means to remove or mark all jobs; the -r option without an id
argument removes or marks running jobs. If no id is supplied, and neither the -a nor the -r op-
tion is supplied, disown removes or marks the current job.

The return value is 0 unless an id does not specify a valid job.

echo [-neE] [arg . . .]
Output the args, separated by spaces, followed by a newline. The return status is 0 unless a write
error occurs. If -n is specified, the trailing newline is not printed.

If the -e option is given, echo interprets the following backslash-escaped characters. The -E op-
tion disables interpretation of these escape characters, even on systems where they are interpreted
by default. The xpg_echo shell option determines whether or not echo interprets any options and
expands these escape characters. echo does not interpret -- to mean the end of options.

echo interprets the following escape sequences:
\a alert (bell)
\b backspace
\c suppress further output
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\0nnn The eight-bit character whose value is the octal value nnn (zero to three octal digits).
\xHH The eight-bit character whose value is the hexadecimal value HH (one or two hex digits).

GNU Bash 5.3 2023 January 27 8

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

\uHHHH
The Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHH
(one to four hex digits).

\UHHHHHHHH
The Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHHH-
HHH (one to eight hex digits).

echo writes any unrecognized backslash-escaped characters unchanged.

enable [-a] [-dnps] [-f filename] [name . . .]
Enable and disable builtin shell commands. Disabling a builtin allows an executable file which
has the same name as a shell builtin to be executed without specifying a full pathname, even
though the shell normally searches for builtins before files.

If -n is supplied, each name is disabled; otherwise, names are enabled. For example, to use the
test binary found using PATH instead of the shell builtin version, run

If no name arguments are supplied, or if the -p option is supplied, print a list of shell builtins.
With no other option arguments, the list consists of all enabled shell builtins. If -n is supplied,
print only disabled builtins. If -a is supplied, the list printed includes all builtins, with an indica-
tion of whether or not each is enabled. The -s option means to restrict the output to the POSIX
special builtins.

The -f option means to load the new builtin command name from shared object filename, on sys-
tems that support dynamic loading. If filename does not contain a slash, Bash will use the value of
the BASH_LOADABLES_PATH variable as a colon-separated list of directories in which to
search for filename. The default for BASH_LOADABLES_PATH is system-dependent, and may
include to force a search of the current directory. The -d option will delete a builtin previously
loaded with -f. If -s is used with -f, the new builtin becomes a POSIX special builtin.

If no options are supplied and a name is not a shell builtin, enable will attempt to load name from
a shared object named name, as if the command were

The return value is 0 unless a name is not a shell builtin or there is an error loading a new builtin
from a shared object.

eval [arg . . .]
Concatenate the args together into a single command, separating them with spaces. Bash then
reads and execute this command, and returns its exit status as the return status of eval. If there are
no args, or only null arguments, eval returns 0.

exec [-cl] [-a name] [command [arguments]]
If command is specified, it replaces the shell without creating a new process. command cannot be
a shell builtin or function. The arguments become the arguments to command. If the -l option is
supplied, the shell places a dash at the beginning of the zeroth argument passed to command . This
is what login(1) does. The -c option causes command to be executed with an empty environment.
If -a is supplied, the shell passes name as the zeroth argument to the executed command.

If command cannot be executed for some reason, a non-interactive shell exits, unless the execfail
shell option is enabled. In that case, it returns a non-zero status. An interactive shell returns a
non-zero status if the file cannot be executed. A subshell exits unconditionally if exec fails.

If command is not specified, any redirections take effect in the current shell, and the return status
is 0. If there is a redirection error, the return status is 1.

exit [n] Cause the shell to exit with a status of n. If n is omitted, the exit status is that of the last command
executed. Any trap on EXIT is executed before the shell terminates.

export [-fn] [name[=value]] . . .
export -p [-f]

The supplied names are marked for automatic export to the environment of subsequently executed
commands. If the -f option is given, the names refer to functions.

GNU Bash 5.3 2023 January 27 9

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

The -n option unexports, or removes the export attribute, from each name. If no names are given,
or if only the -p option is supplied, export displays a list of names of all exported variables on the
standard output. Using -p and -f together displays exported functions. The -p option displays
output in a form that may be reused as input.

export allows the value of a variable to be set when it is exported or unexported by following the
variable name with =value. This sets the value of the variable to value while modifying the export
attribute. export returns an exit status of 0 unless an invalid option is encountered, one of the
names is not a valid shell variable name, or -f is supplied with a name that is not a function.

false Does nothing; returns a non-zero status.

fc [-e ename] [-lnr] [first] [last]
fc -s [pat=rep] [cmd]

The first form selects a range of commands from first to last from the history list and displays or
edits and re-executes them. First and last may be specified as a string (to locate the last command
beginning with that string) or as a number (an index into the history list, where a negative number
is used as an offset from the current command number).

When listing, a first or last of 0 is equivalent to -1 and -0 is equivalent to the current command
(usually the fc command); otherwise 0 is equivalent to -1 and -0 is invalid. If last is not speci-
fied, it is set to the current command for listing (so that prints the last 10 commands) and to first
otherwise. If first is not specified, it is set to the previous command for editing and -16 for list-
ing.

If the -l option is supplied, the commands are listed on the standard output. The -n option sup-
presses the command numbers when listing. The -r option reverses the order of the commands.

Otherwise, fc invokes the editor named by ename on a file containing those commands. If ename
is not supplied, fc uses the value of the FCEDIT variable, and the value of EDITOR if FCEDIT is
not set. If neither variable is set, fc uses vi. When editing is complete, fc reads the file containing
the edited commands and echoes and executes them.

In the second form, fc re-executes command after replacing each instance of pat with rep. Com-
mand is interpreted the same as first above.

A useful alias to use with fc is so that typing runs the last command beginning with and typing re-
executes the last command.

If the first form is used, the return value is zero unless an invalid option is encountered or first or
last specify history lines out of range. When editing and re-executing a file of commands, the re-
turn value is the value of the last command executed or failure if an error occurs with the tempo-
rary file. If the second form is used, the return status is that of the re-executed command, unless
cmd does not specify a valid history entry, in which case fc returns a non-zero status.

fg [jobspec]
Resume jobspec in the foreground, and make it the current job. If jobspec is not present, fg uses
the shell’s notion of the current job. The return value is that of the command placed into the fore-
ground, or failure if run when job control is disabled or, when run with job control enabled, if job-
spec does not specify a valid job or jobspec specifies a job that was started without job control.

getopts optstring name [arg . . .]
getopts is used by shell scripts and functions to parse positional parameters and obtain options and
their arguments. optstring contains the option characters to be recognized; if a character is fol-
lowed by a colon, the option is expected to have an argument, which should be separated from it
by white space. The colon and question mark characters may not be used as option characters.

Each time it is invoked, getopts places the next option in the shell variable name, initializing name
if it does not exist, and the index of the next argument to be processed into the variable OPTIND.
OPTIND is initialized to 1 each time the shell or a shell script is invoked. When an option requires
an argument, getopts places that argument into the variable OPTARG.

GNU Bash 5.3 2023 January 27 10

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

The shell does not reset OPTIND automatically; it must be manually reset between multiple calls
to getopts within the same shell invocation to use a new set of parameters.

When it reaches the end of options, getopts exits with a return value greater than zero. OPTIND is
set to the index of the first non-option argument, and name is set to ?.

getopts normally parses the positional parameters, but if more arguments are supplied as arg val-
ues, getopts parses those instead.

getopts can report errors in two ways. If the first character of optstring is a colon, getopts uses
silent error reporting. In normal operation, getopts prints diagnostic messages when it encounters
invalid options or missing option arguments. If the variable OPTERR is set to 0, getopts does not
display any error messages, even if the first character of optstring is not a colon.

If getopts detects an invalid option, it places ? into name and, if not silent, prints an error message
and unsets OPTARG. If getopts is silent, it assigns the option character found to OPTARG and
does not print a diagnostic message.

If a required argument is not found, and getopts is not silent, it sets the value of name to a ques-
tion mark (?), unsets OPTARG, and prints a diagnostic message. If getopts is silent, it sets the
value of name to a colon (:) and sets OPTARG to the option character found.

getopts returns true if an option, specified or unspecified, is found. It returns false if the end of
options is encountered or an error occurs.

hash [-lr] [-p filename] [-dt] [name]
Each time hash is invoked, it remembers the full pathname of the command name as determined
by searching the directories in $PATH. Any previously-remembered pathname associated with
name is discarded. If the -p option is supplied, hash uses filename as the full pathname of the
command.

The -r option causes the shell to forget all remembered locations. Assigning to the PATH vari-
able also clears all hashed filenames. The -d option causes the shell to forget the remembered lo-
cation of each name.

If the -t option is supplied, hash prints the full pathname corresponding to each name. If multiple
name arguments are supplied with -t, hash prints the name before the corresponding hashed full
pathname. The -l option displays output in a format that may be reused as input.

If no arguments are given, or if only -l is supplied, hash prints information about remembered
commands. The -t, -d, and -p options (the options that act on the name arguments) are mutually
exclusive. Only one will be active. If more than one is supplied, -t has higher priority than -p,
and both have higher priority than -d.

The return status is zero unless a name is not found or an invalid option is supplied.

help [-dms] [pattern]
Display helpful information about builtin commands. If pattern is specified, help gives detailed
help on all commands matching pattern as described below; otherwise it displays a list of all the
builtins and shell compound commands.

Options, if supplied, have the follow meanings:

-d Display a short description of each pattern
-m Display the description of each pattern in a manpage-like format
-s Display only a short usage synopsis for each pattern

If pattern contains pattern matching characters (see Pattern Matching above) it’s treated as a shell
pattern and help prints the description of each help topic matching pattern.

If not, and pattern exactly matches the name of a help topic, help prints the description associated
with that topic. Otherwise, help performs prefix matching and prints the descriptions of all match-
ing help topics.

GNU Bash 5.3 2023 January 27 11

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

The return status is 0 unless no command matches pattern.

history [n]
history -c
history -d offset
history -d start-end
history -anrw [filename]
history -p arg [arg . . .]
history -s arg [arg . . .]

With no options, display the command history list with numbers. Entries prefixed with a * have
been modified. An argument of n lists only the last n entries. If the shell variable HISTTIME-
FORMAT is set and not null, it is used as a format string for strftime(3) to display the time stamp
associated with each displayed history entry. If history uses HISTTIMEFORMAT, it does not
print an intervening space between the formatted time stamp and the history entry.

If filename is supplied, history uses it as the name of the history file; if not, it uses the value of
HISTFILE. If filename is not supplied and HISTFILE is unset or null, the -a, -n, -r, and -w op-
tions have no effect.

Options, if supplied, have the following meanings:
-c Clear the history list by deleting all the entries. This can be used with the other options to

replace the history list.
-d offset

Delete the history entry at position offset. If offset is negative, it is interpreted as relative
to one greater than the last history position, so negative indices count back from the end
of the history, and an index of -1 refers to the current history -d command.

-d start-end
Delete the range of history entries between positions start and end, inclusive. Positive
and negative values for start and end are interpreted as described above.

-a Append the history lines to the history file. These are history lines entered since the be-
ginning of the current bash session, but not already appended to the history file.

-n Read the history lines not already read from the history file and add them to the current
history list. These are lines appended to the history file since the beginning of the current
bash session.

-r Read the history file and append its contents to the current history list.
-w Write the current history list to the history file, overwriting the history file.
-p Perform history substitution on the following args and display the result on the standard

output, without storing the results in the history list. Each arg must be quoted to disable
normal history expansion.

-s Store the args in the history list as a single entry. The last command in the history list is
removed before adding the args.

If the HISTTIMEFORMAT variable is set, history writes the time stamp information associated
with each history entry to the history file, marked with the history comment character as described
above. When the history file is read, lines beginning with the history comment character followed
immediately by a digit are interpreted as timestamps for the following history entry.

The return value is 0 unless an invalid option is encountered, an error occurs while reading or writ-
ing the history file, an invalid offset or range is supplied as an argument to -d, or the history ex-
pansion supplied as an argument to -p fails.

jobs [-lnprs] [jobspec . . .]
jobs -x command [args . . .]

The first form lists the active jobs. The options have the following meanings:
-l List process IDs in addition to the normal information.
-n Display information only about jobs that have changed status since the user was last noti-

fied of their status.

GNU Bash 5.3 2023 January 27 12

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

-p List only the process ID of the job’s process group leader.
-r Display only running jobs.
-s Display only stopped jobs.

If jobspec is supplied, jobs restricts output to information about that job. The return status is 0
unless an invalid option is encountered or an invalid jobspec is supplied.

If the -x option is supplied, jobs replaces any jobspec found in command or args with the corre-
sponding process group ID, and executes command , passing it args, returning its exit status.

kill [-s sigspec | -n signum | -sigspec] id [. . .]
kill -l|-L [sigspec | exit_status]

Send the signal specified by sigspec or signum to the processes named by each id . Each id may
be a job specification jobspec or a process ID pid. sigspec is either a case-insensitive signal name
such as SIGKILL (with or without the SIG prefix) or a signal number; signum is a signal number.
If sigspec is not supplied, then kill sends SIGTERM.

The -l option lists the signal names. If any arguments are supplied when -l is given, kill lists the
names of the signals corresponding to the arguments, and the return status is 0. The exit_status ar-
gument to -l is a number specifying either a signal number or the exit status of a process termi-
nated by a signal; if it is supplied, kill prints the name of the signal that caused the process to ter-
minate. kill assumes that process exit statuses are greater than 128; anything less than that is a
signal number. The -L option is equivalent to -l.

kill returns true if at least one signal was successfully sent, or false if an error occurs or an invalid
option is encountered.

let arg [arg . . .]
Each arg is evaluated as an arithmetic expression (see ARITHMETIC EVALUATION in bash(1)).
If the last arg evaluates to 0, let returns 1; otherwise let returns 0.

local [option] [name[=value] . . . | -]
For each argument, create a local variable named name and assign it value. The option can be any
of the options accepted by declare. When local is used within a function, it causes the variable
name to have a visible scope restricted to that function and its children. It is an error to use local
when not within a function.

If name is -, it makes the set of shell options local to the function in which local is invoked: any
shell options changed using the set builtin inside the function after the call to local are restored to
their original values when the function returns. The restore is performed as if a series of set com-
mands were executed to restore the values that were in place before the function.

With no operands, local writes a list of local variables to the standard output.

The return status is 0 unless local is used outside a function, an invalid name is supplied, or name
is a readonly variable.

logout [n]
Exit a login shell, returning a status of n to the shell’s parent.

mapfile [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd] [-C callback] [-c quantum] [array]
readarray [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd] [-C callback] [-c quantum] [array]

Read lines from the standard input, or from file descriptor fd if the -u option is supplied, into the
indexed array variable array. The variable MAPFILE is the default array. Options, if supplied,
have the following meanings:
-d Use the first character of delim to terminate each input line, rather than newline. If delim

is the empty string, mapfile will terminate a line when it reads a NUL character.
-n Copy at most count lines. If count is 0, copy all lines.
-O Begin assigning to array at index origin. The default index is 0.
-s Discard the first count lines read.

GNU Bash 5.3 2023 January 27 13

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

-t Remove a trailing delim (default newline) from each line read.
-u Read lines from file descriptor fd instead of the standard input.
-C Evaluate callback each time quantum lines are read. The -c option specifies quantum.
-c Specify the number of lines read between each call to callback.

If -C is specified without -c, the default quantum is 5000. When callback is evaluated, it is sup-
plied the index of the next array element to be assigned and the line to be assigned to that element
as additional arguments. callback is evaluated after the line is read but before the array element is
assigned.

If not supplied with an explicit origin, mapfile will clear array before assigning to it.

mapfile returns zero unless an invalid option or option argument is supplied, array is invalid or
unassignable, or if array is not an indexed array.

popd [-n] [+n] [-n]
Remove entries from the directory stack. The elements are numbered from 0 starting at the first
directory listed by dirs, so popd is equivalent to With no arguments, popd removes the top direc-
tory from the stack, and changes to the new top directory. Arguments, if supplied, have the fol-
lowing meanings:
-n Suppress the normal change of directory when removing directories from the stack, only

manipulate the stack.
+n Remove the nth entry counting from the left of the list shown by dirs, starting with zero,

from the stack. For example: removes the first directory, the second.
-n Remove the nth entry counting from the right of the list shown by dirs, starting with zero.

For example: removes the last directory, the next to last.

If the top element of the directory stack is modified, and the -n option was not supplied, popd
uses the cd builtin to change to the directory at the top of the stack. If the cd fails, popd returns a
non-zero value.

Otherwise, popd returns false if an invalid option is supplied, the directory stack is empty, or n
specifies a non-existent directory stack entry.

If the popd command is successful, bash runs dirs to show the final contents of the directory
stack, and the return status is 0.

printf [-v var] format [arguments]
Write the formatted arguments to the standard output under the control of the format. The -v op-
tion assigns the output to the variable var rather than printing it to the standard output.

The format is a character string which contains three types of objects: plain characters, which are
simply copied to standard output, character escape sequences, which are converted and copied to
the standard output, and format specifications, each of which causes printing of the next successive
argument. In addition to the standard printf (3) format characters cCsSndiouxXeEfFgGaA,
printf interprets the following additional format specifiers:
%b causes printf to expand backslash escape sequences in the corresponding argument in the

same way as echo -e.
%q causes printf to output the corresponding argument in a format that can be reused as shell

input. %q and %Q use the $ quoting style if any characters in the argument string re-
quire it, and backslash quoting otherwise. If the format string uses the printf alternate
form, these two formats quote the argument string using single quotes.

%Q like %q, but applies any supplied precision to the argument before quoting it.
%(datefmt)T

causes printf to output the date-time string resulting from using datefmt as a format
string for strftime(3). The corresponding argument is an integer representing the number
of seconds since the epoch. This format specifier recognizes two special argument val-
ues: -1 represents the current time, and -2 represents the time the shell was invoked. If
no argument is specified, conversion behaves as if -1 had been supplied. This is an ex-
ception to the usual printf behavior.

GNU Bash 5.3 2023 January 27 14

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

The %b, %q, and %T format specifiers all use the field width and precision arguments from the
format specification and write that many bytes from (or use that wide a field for) the expanded ar-
gument, which usually contains more characters than the original.

The %n format specifier accepts a corresponding argument that is treated as a shell variable name.

The %s and %c format specifiers accept an l (long) modifier, which forces them to convert the ar-
gument string to a wide-character string and apply any supplied field width and precision in terms
of characters, not bytes. The %S and %C format specifiers are equivalent to %ls and %lc, respec-
tively.

Arguments to non-string format specifiers are treated as C constants, except that a leading plus or
minus sign is allowed, and if the leading character is a single or double quote, the value is the nu-
meric value of the following character, using the current locale.

The format is reused as necessary to consume all of the arguments. If the format requires more ar-
guments than are supplied, the extra format specifications behave as if a zero value or null string,
as appropriate, had been supplied. The return value is zero on success, non-zero if an invalid op-
tion is supplied or a write or assignment error occurs.

pushd [-n] [+n] [-n]
pushd [-n] [dir]

Add a directory to the top of the directory stack, or rotate the stack, making the new top of the
stack the current working directory. With no arguments, pushd exchanges the top two elements of
the directory stack. Arguments, if supplied, have the following meanings:
-n Suppress the normal change of directory when rotating or adding directories to the stack,

only manipulate the stack.
+n Rotate the stack so that the nth directory (counting from the left of the list shown by dirs,

starting with zero) is at the top.
-n Rotates the stack so that the nth directory (counting from the right of the list shown by

dirs, starting with zero) is at the top.
dir Adds dir to the directory stack at the top.

After the stack has been modified, if the -n option was not supplied, pushd uses the cd builtin to
change to the directory at the top of the stack. If the cd fails, pushd returns a non-zero value.

Otherwise, if no arguments are supplied, pushd returns zero unless the directory stack is empty.
When rotating the directory stack, pushd returns zero unless the directory stack is empty or n
specifies a non-existent directory stack element.

If the pushd command is successful, bash runs dirs to show the final contents of the directory
stack.

pwd [-LP]
Print the absolute pathname of the current working directory. The pathname printed contains no
symbolic links if the -P option is supplied or the -o physical option to the set builtin command is
enabled. If the -L option is used, the pathname printed may contain symbolic links. The return
status is 0 unless an error occurs while reading the name of the current directory or an invalid op-
tion is supplied.

read [-Eers] [-a aname] [-d delim] [-i text] [-n nchars] [-N nchars] [-p prompt] [-t timeout] [-u fd]
[name . . .]

Read one line from the standard input, or from the file descriptor fd supplied as an argument to the
-u option, split it into words as described in bash (1) under Word Splitting, and assign the first
word to the first name, the second word to the second name, and so on. If there are more words
than names, the remaining words and their intervening delimiters are assigned to the last name. If
there are fewer words read from the input stream than names, the remaining names are assigned
empty values. The characters in the value of the IFS variable are used to split the line into words
using the same rules the shell uses for expansion (described in bash (1) under Word Splitting).
The backslash character (\) removes any special meaning for the next character read and is used

GNU Bash 5.3 2023 January 27 15

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

for line continuation.

Options, if supplied, have the following meanings:
-a aname

The words are assigned to sequential indices of the array variable aname, starting at 0.
aname is unset before any new values are assigned. Other name arguments are ignored.

-d delim
The first character of delim terminates the input line, rather than newline. If delim is the
empty string, read will terminate a line when it reads a NUL character.

-e If the standard input is coming from a terminal, read uses readline (see READLINE in
bash(1)) to obtain the line. Readline uses the current (or default, if line editing was not
previously active) editing settings, but uses readline’s default filename completion.

-E If the standard input is coming from a terminal, read uses readline (see READLINE in
bash(1)) to obtain the line. Readline uses the current (or default, if line editing was not
previously active) editing settings, but uses bash’s default completion, including program-
mable completion.

-i text If readline is being used to read the line, read places text into the editing buffer before
editing begins.

-n nchars
read returns after reading nchars characters rather than waiting for a complete line of in-
put, unless it encounters EOF or read times out, but honors a delimiter if it reads fewer
than nchars characters before the delimiter.

-N nchars
read returns after reading exactly nchars characters rather than waiting for a complete
line of input, unless it encounters EOF or read times out. Any delimiter characters in the
input are not treated specially and do not cause read to return until it has read nchars
characters. The result is not split on the characters in IFS; the intent is that the variable is
assigned exactly the characters read (with the exception of backslash; see the -r option
below).

-p prompt
Display prompt on standard error, without a trailing newline, before attempting to read
any input, but only if input is coming from a terminal.

-r Backslash does not act as an escape character. The backslash is considered to be part of
the line. In particular, a backslash-newline pair may not then be used as a line continua-
tion.

-s Silent mode. If input is coming from a terminal, characters are not echoed.
-t timeout

Cause read to time out and return failure if it does not read a complete line of input (or a
specified number of characters) within timeout seconds. timeout may be a decimal num-
ber with a fractional portion following the decimal point. This option is only effective if
read is reading input from a terminal, pipe, or other special file; it has no effect when
reading from regular files. If read times out, it saves any partial input read into the speci-
fied variable name, and the exit status is greater than 128. If timeout is 0, read returns
immediately, without trying to read any data. In this case, the exit status is 0 if input is
available on the specified file descriptor, or the read will return EOF, non-zero otherwise.

-u fd Read input from file descriptor fd instead of the standard input.

Other than the case where delim is the empty string, read ignores any NUL characters in the input.

If no names are supplied, read assigns the line read, without the ending delimiter but otherwise
unmodified, to the variable REPLY.

The exit status is zero, unless end-of-file is encountered, read times out (in which case the status is
greater than 128), a variable assignment error (such as assigning to a readonly variable) occurs, or
an invalid file descriptor is supplied as the argument to -u.

GNU Bash 5.3 2023 January 27 16

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

readonly [-aAf] [-p] [name[=word] . . .]
The given names are marked readonly; the values of these names may not be changed by subse-
quent assignment or unset. If the -f option is supplied, each name refers to a shell function. The
-a option restricts the variables to indexed arrays; the -A option restricts the variables to associa-
tive arrays. If both options are supplied, -A takes precedence. If no name arguments are sup-
plied, or if the -p option is supplied, print a list of all readonly names. The other options may be
used to restrict the output to a subset of the set of readonly names. The -p option displays output
in a format that may be reused as input.

readonly allows the value of a variable to be set at the same time the readonly attribute is changed
by following the variable name with =value. This sets the value of the variable is to value while
modifying the readonly attribute.

The return status is 0 unless an invalid option is encountered, one of the names is not a valid shell
variable name, or -f is supplied with a name that is not a function.

return [n]
Stop executing a shell function or sourced file and return the value specified by n to its caller. If n
is omitted, the return status is that of the last command executed. If return is executed by a trap
handler, the last command used to determine the status is the last command executed before the
trap handler. If return is executed during a DEBUG trap, the last command used to determine the
status is the last command executed by the trap handler before return was invoked.

When return is used to terminate execution of a script being executed by the . (source) com-
mand, it causes the shell to stop executing that script and return either n or the exit status of the
last command executed within the script as the exit status of the script. If n is supplied, the return
value is its least significant 8 bits.

Any command associated with the RETURN trap is executed before execution resumes after the
function or script.

The return status is non-zero if return is supplied a non-numeric argument, or is used outside a
function and not during execution of a script by . or source.

set [-abefhkmnptuvxBCEHPT] [-o option-name] [--] [-] [arg . . .]
set [+abefhkmnptuvxBCEHPT] [+o option-name] [--] [-] [arg . . .]
set -o
set +o Without options, display the name and value of each shell variable in a format that can be reused

as input for setting or resetting the currently-set variables. Read-only variables cannot be reset. In
posix mode, only shell variables are listed. The output is sorted according to the current locale.
When options are specified, they set or unset shell attributes. Any arguments remaining after op-
tion processing are treated as values for the positional parameters and are assigned, in order, to $1,
$2, . . ., $n. Options, if specified, have the following meanings:
-a Each variable or function that is created or modified is given the export attribute and

marked for export to the environment of subsequent commands.
-b Report the status of terminated background jobs immediately, rather than before the next

primary prompt or after a foreground command terminates. This is effective only when
job control is enabled.

-e Exit immediately if a pipeline (which may consist of a single simple command), a list, or
a compound command (see SHELL GRAMMAR in bash(1)), exits with a non-zero sta-
tus. The shell does not exit if the command that fails is part of the command list imme-
diately following a while or until reserved word, part of the test following the if or elif
reserved words, part of any command executed in a && or || list except the command
following the final && or ||, any command in a pipeline but the last (subject to the state
of the pipefail shell option), or if the command’s return value is being inverted with !. If
a compound command other than a subshell returns a non-zero status because a com-
mand failed while -e was being ignored, the shell does not exit. A trap on ERR, if set,
is executed before the shell exits. This option applies to the shell environment and each
subshell environment separately (see COMMAND EXECUTION ENVIRONMENT in

GNU Bash 5.3 2023 January 27 17

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

bash(1)), and may cause subshells to exit before executing all the commands in the sub-
shell.

If a compound command or shell function executes in a context where -e is being ig-
nored, none of the commands executed within the compound command or function body
will be affected by the -e setting, even if -e is set and a command returns a failure sta-
tus. If a compound command or shell function sets -e while executing in a context
where -e is ignored, that setting will not have any effect until the compound command
or the command containing the function call completes.

-f Disable pathname expansion.
-h Remember the location of commands as they are looked up for execution. This is en-

abled by default.
-k All arguments in the form of assignment statements are placed in the environment for a

command, not just those that precede the command name.
-m Monitor mode. Job control is enabled. This option is on by default for interactive shells

on systems that support it (see JOB CONTROL in bash(1)). All processes run in a sepa-
rate process group. When a background job completes, the shell prints a line containing
its exit status.

-n Read commands but do not execute them. This may be used to check a shell script for
syntax errors. This is ignored by interactive shells.

-o option-name
The option-name can be one of the following:
allexport

Same as -a.
braceexpand

Same as -B.
emacs Use an emacs-style command line editing interface. This is enabled by default

when the shell is interactive, unless the shell is started with the --noediting
option. This also affects the editing interface used for read -e.

errexit Same as -e.
errtrace Same as -E.
functrace

Same as -T.
hashall Same as -h.
histexpand

Same as -H.
history Enable command history, as described in bash(1) under HISTORY. This op-

tion is on by default in interactive shells.
ignoreeof

The effect is as if the shell command had been executed (see Shell Variables
in bash(1)).

keyword
Same as -k.

monitor Same as -m.
noclobber

Same as -C.
noexec Same as -n.
noglob Same as -f.
nolog Currently ignored.
notify Same as -b.
nounset Same as -u.
onecmd Same as -t.
physical Same as -P.

GNU Bash 5.3 2023 January 27 18

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

pipefail If set, the return value of a pipeline is the value of the last (rightmost) com-
mand to exit with a non-zero status, or zero if all commands in the pipeline
exit successfully. This option is disabled by default.

posix Enable posix mode; change the behavior of bash where the default operation
differs from the POSIX standard to match the standard. See SEE ALSO in
bash(1) for a reference to a document that details how posix mode affects
bash’s behavior.

privileged
Same as -p.

verbose Same as -v.
vi Use a vi-style command line editing interface. This also affects the editing in-

terface used for read -e.
xtrace Same as -x.
If -o is supplied with no option-name, set prints the current shell option settings. If +o
is supplied with no option-name, set prints a series of set commands to recreate the cur-
rent option settings on the standard output.

-p Turn on privileged mode. In this mode, the shell does not read the $ENV and
$BASH_ENV files, shell functions are not inherited from the environment, and the SHEL-
LOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if they appear in the envi-
ronment, are ignored. If the shell is started with the effective user (group) id not equal to
the real user (group) id, and the -p option is not supplied, these actions are taken and the
effective user id is set to the real user id. If the -p option is supplied at startup, the ef-
fective user id is not reset. Turning this option off causes the effective user and group
ids to be set to the real user and group ids.

-r Enable restricted shell mode. This option cannot be unset once it has been set.
-t Exit after reading and executing one command.
-u Treat unset variables and parameters other than the special parameters and or array vari-

ables subscripted with or as an error when performing parameter expansion. If expan-
sion is attempted on an unset variable or parameter, the shell prints an error message,
and, if not interactive, exits with a non-zero status.

-v Print shell input lines as they are read.
-x After expanding each simple command, for command, case command, select command,

or arithmetic for command, display the expanded value of PS4, followed by the com-
mand and its expanded arguments or associated word list, to the standard error.

-B The shell performs brace expansion (see Brace Expansion in bash(1)). This is on by
default.

-C If set, bash does not overwrite an existing file with the >, >&, and <> redirection opera-
tors. Using the redirection operator >| instead of > will override this and force the cre-
ation of an output file.

-E If set, any trap on ERR is inherited by shell functions, command substitutions, and com-
mands executed in a subshell environment. The ERR trap is normally not inherited in
such cases.

-H Enable ! style history substitution. This option is on by default when the shell is inter-
active.

-P If set, the shell does not resolve symbolic links when executing commands such as cd
that change the current working directory. It uses the physical directory structure in-
stead. By default, bash follows the logical chain of directories when performing com-
mands which change the current directory.

-T If set, any traps on DEBUG and RETURN are inherited by shell functions, command
substitutions, and commands executed in a subshell environment. The DEBUG and
RETURN traps are normally not inherited in such cases.

-- If no arguments follow this option, unset the positional parameters. Otherwise, set the
positional parameters to the args, even if some of them begin with a -.

GNU Bash 5.3 2023 January 27 19

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

- Signal the end of options, and assign all remaining args to the positional parameters.
The -x and -v options are turned off. If there are no args, the positional parameters re-
main unchanged.

The options are off by default unless otherwise noted. Using + rather than - causes these options
to be turned off. The options can also be specified as arguments to an invocation of the shell. The
current set of options may be found in $-. The return status is always zero unless an invalid op-
tion is encountered.

shift [n]
Rename positional parameters from n+1 . . . to $1 Parameters represented by the numbers $#
down to $#-n+1 are unset. n must be a non-negative number less than or equal to $#. If n is 0, no
parameters are changed. If n is not given, it is assumed to be 1. If n is greater than $#, the posi-
tional parameters are not changed. The return status is greater than zero if n is greater than $# or
less than zero; otherwise 0.

shopt [-pqsu] [-o] [optname . . .]
Toggle the values of settings controlling optional shell behavior. The settings can be either those
listed below, or, if the -o option is used, those available with the -o option to the set builtin com-
mand.

With no options, or with the -p option, display a list of all settable options, with an indication of
whether or not each is set; if any optnames are supplied, the output is restricted to those options.
The -p option displays output in a form that may be reused as input.

Other options have the following meanings:
-s Enable (set) each optname.
-u Disable (unset) each optname.
-q Suppresses normal output (quiet mode); the return status indicates whether the optname is

set or unset. If multiple optname arguments are supplied with -q, the return status is zero
if all optnames are enabled; non-zero otherwise.

-o Restricts the values of optname to be those defined for the -o option to the set builtin.

If either -s or -u is used with no optname arguments, shopt shows only those options which are
set or unset, respectively. Unless otherwise noted, the shopt options are disabled (unset) by de-
fault.

The return status when listing options is zero if all optnames are enabled, non-zero otherwise.
When setting or unsetting options, the return status is zero unless an optname is not a valid shell
option.

The list of shopt options is:

array_expand_once
If set, the shell suppresses multiple evaluation of associative and indexed array sub-
scripts during arithmetic expression evaluation, while executing builtins that can perform
variable assignments, and while executing builtins that perform array dereferencing.

assoc_expand_once
Deprecated; a synonym for array_expand_once.

autocd If set, a command name that is the name of a directory is executed as if it were the argu-
ment to the cd command. This option is only used by interactive shells.

bash_source_fullpath
If set, filenames added to the BASH_SOURCE array variable are converted to full path-
names (see Shell Variables above).

cdable_vars
If set, an argument to the cd builtin command that is not a directory is assumed to be the
name of a variable whose value is the directory to change to.

cdspell If set, the cd command attempts to correct minor errors in the spelling of a directory
component. Minor errors include transposed characters, a missing character, and one
extra character. If cd corrects the directory name, it prints the corrected filename, and

GNU Bash 5.3 2023 January 27 20

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

the command proceeds. This option is only used by interactive shells.
checkhash

If set, bash checks that a command found in the hash table exists before trying to exe-
cute it. If a hashed command no longer exists, bash performs a normal path search.

checkjobs
If set, bash lists the status of any stopped and running jobs before exiting an interactive
shell. If any jobs are running, bash defers the exit until a second exit is attempted with-
out an intervening command (see JOB CONTROL in bash(1)). The shell always post-
pones exiting if any jobs are stopped.

checkwinsize
If set, bash checks the window size after each external (non-builtin) command and, if
necessary, updates the values of LINES and COLUMNS, using the file descriptor associ-
ated with the standard error if it is a terminal. This option is enabled by default.

cmdhist If set, bash attempts to save all lines of a multiple-line command in the same history en-
try. This allows easy re-editing of multi-line commands. This option is enabled by de-
fault, but only has an effect if command history is enabled, as described in bash(1) under
HISTORY.

compat31
compat32
compat40
compat41
compat42
compat43
compat44

These control aspects of the shell’s compatibility mode (see SHELL COMPATIBILITY
MODE in bash(1)).

complete_fullquote
If set, bash quotes all shell metacharacters in filenames and directory names when per-
forming completion. If not set, bash removes metacharacters such as the dollar sign
from the set of characters that will be quoted in completed filenames when these
metacharacters appear in shell variable references in words to be completed. This means
that dollar signs in variable names that expand to directories will not be quoted; how-
ever, any dollar signs appearing in filenames will not be quoted, either. This is active
only when bash is using backslashes to quote completed filenames. This variable is set
by default, which is the default bash behavior in versions through 4.2.

direxpand
If set, bash replaces directory names with the results of word expansion when perform-
ing filename completion. This changes the contents of the readline editing buffer. If
not set, bash attempts to preserve what the user typed.

dirspell If set, bash attempts spelling correction on directory names during word completion if
the directory name initially supplied does not exist.

dotglob If set, bash includes filenames beginning with a in the results of pathname expansion.
The filenames . and .. must always be matched explicitly, even if dotglob is set.

execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as an ar-
gument to the exec builtin. An interactive shell does not exit if exec fails.

expand_aliases
If set, aliases are expanded as described in bash(1) under ALIASES. This option is en-
abled by default for interactive shells.

extdebug
If set at shell invocation, or in a shell startup file, arrange to execute the debugger profile
before the shell starts, identical to the --debugger option. If set after invocation, be-
havior intended for use by debuggers is enabled:

GNU Bash 5.3 2023 January 27 21

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

1. The -F option to the declare builtin displays the source file name and line
number corresponding to each function name supplied as an argument.

2. If the command run by the DEBUG trap returns a non-zero value, the next
command is skipped and not executed.

3. If the command run by the DEBUG trap returns a value of 2, and the shell is
executing in a subroutine (a shell function or a shell script executed by the . or
source builtins), the shell simulates a call to return.

4. BASH_ARGC and BASH_ARGV are updated as described in their descriptions
in bash(1)).

5. Function tracing is enabled: command substitution, shell functions, and sub-
shells invoked with (command) inherit the DEBUG and RETURN traps.

6. Error tracing is enabled: command substitution, shell functions, and subshells
invoked with (command) inherit the ERR trap.

extglob If set, enable the extended pattern matching features described in bash(1) under Path-
name Expansion.

extquote
If set, $string and $string quoting is performed within ${parameter} expansions en-
closed in double quotes. This option is enabled by default.

failglob If set, patterns which fail to match filenames during pathname expansion result in an ex-
pansion error.

force_fignore
If set, the suffixes specified by the FIGNORE shell variable cause words to be ignored
when performing word completion even if the ignored words are the only possible com-
pletions. See Shell Variables in bash(1) for a description of FIGNORE. This option is
enabled by default.

globasciiranges
If set, range expressions used in pattern matching bracket expressions (see Pattern
Matching in bash(1)) behave as if in the traditional C locale when performing compar-
isons. That is, pattern matching does not take the current locale’s collating sequence
into account, so b will not collate between A and B, and upper-case and lower-case
ASCII characters will collate together.

globskipdots
If set, pathname expansion will never match the filenames . and .. even if the pattern
begins with a This option is enabled by default.

globstar If set, the pattern ** used in a pathname expansion context will match all files and zero
or more directories and subdirectories. If the pattern is followed by a /, only directories
and subdirectories match.

gnu_errfmt
If set, shell error messages are written in the standard GNU error message format.

histappend
If set, the history list is appended to the file named by the value of the HISTFILE vari-
able when the shell exits, rather than overwriting the file.

histreedit
If set, and readline is being used, the user is given the opportunity to re-edit a failed his-
tory substitution.

histverify
If set, and readline is being used, the results of history substitution are not immediately
passed to the shell parser. Instead, the resulting line is loaded into the readline editing
buffer, allowing further modification.

hostcomplete
If set, and readline is being used, bash will attempt to perform hostname completion
when a word containing a @ is being completed (see Completing under READLINE in
bash(1)). This is enabled by default.

GNU Bash 5.3 2023 January 27 22

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

huponexit
If set, bash will send SIGHUP to all jobs when an interactive login shell exits.

inherit_errexit
If set, command substitution inherits the value of the errexit option, instead of unsetting
it in the subshell environment. This option is enabled when posix mode is enabled.

interactive_comments
In an interactive shell, a word beginning with # causes that word and all remaining char-
acters on that line to be ignored, as in a non-interactive shell (see COMMENTS in
bash(1)). This option is enabled by default.

lastpipe If set, and job control is not active, the shell runs the last command of a pipeline not exe-
cuted in the background in the current shell environment.

lithist If set, and the cmdhist option is enabled, multi-line commands are saved to the history
with embedded newlines rather than using semicolon separators where possible.

localvar_inherit
If set, local variables inherit the value and attributes of a variable of the same name that
exists at a previous scope before any new value is assigned. The nameref attribute is not
inherited.

localvar_unset
If set, calling unset on local variables in previous function scopes marks them so subse-
quent lookups find them unset until that function returns. This is identical to the behav-
ior of unsetting local variables at the current function scope.

login_shell
The shell sets this option if it is started as a login shell (see INVOCATION in bash(1)).
The value may not be changed.

mailwarn
If set, and a file that bash is checking for mail has been accessed since the last time it
was checked, bash displays the message

no_empty_cmd_completion
If set, and readline is being used, bash does not search PATH for possible completions
when completion is attempted on an empty line.

nocaseglob
If set, bash matches filenames in a case-insensitive fashion when performing pathname
expansion (see Pathname Expansion in bash(1)).

nocasematch
If set, bash matches patterns in a case-insensitive fashion when performing matching
while executing case or [[conditional commands, when performing pattern substitution
word expansions, or when filtering possible completions as part of programmable com-
pletion.

noexpand_translation
If set, bash encloses the translated results of $. . . quoting in single quotes instead of
double quotes. If the string is not translated, this has no effect.

nullglob
If set, pathname expansion patterns which match no files (see Pathname Expansion in
bash(1)) expand to nothing and are removed, rather than expanding to themselves.

patsub_replacement
If set, bash expands occurrences of & in the replacement string of pattern substitution to
the text matched by the pattern, as described under Parameter Expansion in bash(1).
This option is enabled by default.

progcomp
If set, enable the programmable completion facilities (see Programmable Completion
in bash(1)). This option is enabled by default.

progcomp_alias
If set, and programmable completion is enabled, bash treats a command name that
doesn’t have any completions as a possible alias and attempts alias expansion. If it has

GNU Bash 5.3 2023 January 27 23

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

an alias, bash attempts programmable completion using the command word resulting
from the expanded alias.

promptvars
If set, prompt strings undergo parameter expansion, command substitution, arithmetic
expansion, and quote removal after being expanded as described in PROMPTING in
bash(1). This option is enabled by default.

restricted_shell
The shell sets this option if it is started in restricted mode (see RESTRICTED SHELL in
bash(1)). The value may not be changed. This is not reset when the startup files are ex-
ecuted, allowing the startup files to discover whether or not a shell is restricted.

shift_verbose
If set, the shift builtin prints an error message when the shift count exceeds the number
of positional parameters.

sourcepath
If set, the . (source) builtin uses the value of PATH to find the directory containing the
file supplied as an argument when the -p option is not supplied. This option is enabled
by default.

varredir_close
If set, the shell automatically closes file descriptors assigned using the {varname} redi-
rection syntax (see REDIRECTION in bash(1)) instead of leaving them open when the
command completes.

xpg_echo
If set, the echo builtin expands backslash-escape sequences by default. If the posix shell
option is also enabled, echo does not interpret any options.

suspend [-f]
Suspend the execution of this shell until it receives a SIGCONT signal. A login shell, or a shell
without job control enabled, cannot be suspended; the -f option will override this and force the
suspension. The return status is 0 unless the shell is a login shell or job control is not enabled and
-f is not supplied.

test expr
[expr] Return a status of 0 (true) or 1 (false) depending on the evaluation of the conditional expression

expr. Each operator and operand must be a separate argument. Expressions are composed of the
primaries described in bash(1) under CONDITIONAL EXPRESSIONS. test does not accept any
options, nor does it accept and ignore an argument of -- as signifying the end of options.

Expressions may be combined using the following operators, listed in decreasing order of prece-
dence. The evaluation depends on the number of arguments; see below. test uses operator prece-
dence when there are five or more arguments.
! expr True if expr is false.
(expr) Returns the value of expr. This may be used to override normal operator precedence.
expr1 -a expr2

True if both expr1 and expr2 are true.
expr1 -o expr2

True if either expr1 or expr2 is true.

test and [evaluate conditional expressions using a set of rules based on the number of arguments.

0 arguments
The expression is false.

1 argument
The expression is true if and only if the argument is not null.

2 arguments
If the first argument is !, the expression is true if and only if the second argument is null.
If the first argument is one of the unary conditional operators listed in bash(1) under
CONDITIONAL EXPRESSIONS, the expression is true if the unary test is true. If the first

GNU Bash 5.3 2023 January 27 24

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

argument is not a valid unary conditional operator, the expression is false.
3 arguments

The following conditions are applied in the order listed. If the second argument is one of
the binary conditional operators listed in bash(1) under CONDITIONAL EXPRESSIONS,
the result of the expression is the result of the binary test using the first and third argu-
ments as operands. The -a and -o operators are considered binary operators when there
are three arguments. If the first argument is !, the value is the negation of the two-argu-
ment test using the second and third arguments. If the first argument is exactly (and the
third argument is exactly), the result is the one-argument test of the second argument.
Otherwise, the expression is false.

4 arguments
The following conditions are applied in the order listed. If the first argument is !, the re-
sult is the negation of the three-argument expression composed of the remaining argu-
ments. If the first argument is exactly (and the fourth argument is exactly), the result is
the two-argument test of the second and third arguments. Otherwise, the expression is
parsed and evaluated according to precedence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence using the rules listed
above.

When the shell is in posix mode, or if the expression is part of the [[command, the < and > opera-
tors sort using the current locale. If the shell is not in posix mode, the test and [commands sort
lexicographically using ASCII ordering.

The historical operator-precedence parsing with 4 or more arguments can lead to ambiguities when
it encounters strings that look like primaries. The POSIX standard has deprecated the -a and -o
primaries and enclosing expressions within parentheses. Scripts should no longer use them. It’s
much more reliable to restrict test invocations to a single primary, and to replace uses of -a and -o
with the shell’s && and || list operators.

times Print the accumulated user and system times for the shell and for processes run from the shell.
The return status is 0.

trap [-lpP] [[action] sigspec . . .]
The action is a command that is read and executed when the shell receives any of the signals
sigspec. If action is absent (and there is a single sigspec) or -, each specified sigspec is reset to
the value it had when the shell was started. If action is the null string the signal specified by each
sigspec is ignored by the shell and by the commands it invokes.

If no arguments are supplied, trap displays the actions associated with each trapped signal as a set
of trap commands that can be reused as shell input to restore the current signal dispositions. If -p
is given, and action is not present, then trap displays the actions associated with each sigspec or,
if none are supplied, for all trapped signals, as a set of trap commands that can be reused as shell
input to restore the current signal dispositions. The -P option behaves similarly, but displays only
the actions associated with each sigspec argument. -P requires at least one sigspec argument.
The -P or -p options may be used in a subshell environment (e.g., command substitution) and, as
long as they are used before trap is used to change a signal’s handling, will display the state of its
parent’s traps.

The -l option prints a list of signal names and their corresponding numbers. Each sigspec is either
a signal name defined in <signal.h>, or a signal number. Signal names are case insensitive and the
SIG prefix is optional. If -l is supplied with no sigspec arguments, it prints a list of valid signal
names.

If a sigspec is EXIT (0), action is executed on exit from the shell. If a sigspec is DEBUG, action is
executed before every simple command, for command, case command, select command, ((arith-
metic command, [[conditional command, arithmetic for command, and before the first command
executes in a shell function (see SHELL GRAMMAR in bash(1)). Refer to the description of the
extdebug shell option (see shopt in bash(1)) for details of its effect on the DEBUG trap. If a

GNU Bash 5.3 2023 January 27 25

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

sigspec is RETURN, action is executed each time a shell function or a script executed with the . or
source builtins finishes executing.

If a sigspec is ERR, action is executed whenever a pipeline (which may consist of a single simple
command), a list, or a compound command returns a non-zero exit status, subject to the following
conditions. The ERR trap is not executed if the failed command is part of the command list imme-
diately following a while or until reserved word, part of the test in an if statement, part of a com-
mand executed in a && or || list except the command following the final && or ||, any command
in a pipeline but the last (subject to the state of the pipefail shell option), or if the command’s re-
turn value is being inverted using !. These are the same conditions obeyed by the errexit (-e) op-
tion.

When the shell is not interactive, signals ignored upon entry to the shell cannot be trapped or reset.
Interactive shells permit trapping signals ignored on entry. Trapped signals that are not being ig-
nored are reset to their original values in a subshell or subshell environment when one is created.
The return status is false if any sigspec is invalid; otherwise trap returns true.

true Does nothing, returns a 0 status.

type [-aftpP] name [name . . .]
Indicate how each name would be interpreted if used as a command name.

If the -t option is used, type prints a string which is one of alias, keyword , function, builtin, or
file if name is an alias, shell reserved word, function, builtin, or executable file, respectively. If
the name is not found, type prints nothing and returns a non-zero exit status.

If the -p option is used, type either returns the pathname of the executable file that would be
found by searching $PATH for name or nothing if would not return file. The -P option forces a
PATH search for each name, even if would not return file. If name is present in the table of hashed
commands, -p and -P print the hashed value, which is not necessarily the file that appears first in
PATH.

If the -a option is used, type prints all of the places that contain a command named name. This
includes aliases, reserved words, functions, and builtins, but the path search options (-p and -P)
can be supplied to restrict the output to executable files. type does not consult the table of hashed
commands when using -a with -p, and only performs a PATH search for name.

The -f option suppresses shell function lookup, as with the command builtin. type returns true if
all of the arguments are found, false if any are not found.

ulimit [-HS] -a
ulimit [-HS] [-bcdefiklmnpqrstuvxPRT [limit]]

Provides control over the resources available to the shell and to processes it starts, on systems that
allow such control.

The -H and -S options specify whether the hard or soft limit is set for the given resource. A hard
limit cannot be increased by a non-root user once it is set; a soft limit may be increased up to the
value of the hard limit. If neither -H nor -S is specified, ulimit sets both the soft and hard limits.

The value of limit can be a number in the unit specified for the resource or one of the special val-
ues hard, soft, or unlimited, which stand for the current hard limit, the current soft limit, and no
limit, respectively. If limit is omitted, ulimit prints the current value of the soft limit of the re-
source, unless the -H option is given. When more than one resource is specified, the limit name
and unit, if appropriate, are printed before the value. Other options are interpreted as follows:
-a Report all current limits; no limits are set.
-b The maximum socket buffer size.
-c The maximum size of core files created.
-d The maximum size of a process’s data segment.
-e The maximum scheduling priority (

GNU Bash 5.3 2023 January 27 26

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

-f The maximum size of files written by the shell and its children.
-i The maximum number of pending signals.
-k The maximum number of kqueues that may be allocated.
-l The maximum size that may be locked into memory.
-m The maximum resident set size (many systems do not honor this limit).
-n The maximum number of open file descriptors (most systems do not allow this value to

be set).
-p The pipe size in 512-byte blocks (this may not be set).
-q The maximum number of bytes in POSIX message queues.
-r The maximum real-time scheduling priority.
-s The maximum stack size.
-t The maximum amount of cpu time in seconds.
-u The maximum number of processes available to a single user.
-v The maximum amount of virtual memory available to the shell and, on some systems, to

its children.
-x The maximum number of file locks.
-P The maximum number of pseudoterminals.
-R The maximum time a real-time process can run before blocking, in microseconds.
-T The maximum number of threads.

If limit is supplied, and the -a option is not used, limit is the new value of the specified resource.
If no option is supplied, then -f is assumed.

Values are in 1024-byte increments, except for -t, which is in seconds; -R, which is in microsec-
onds; -p, which is in units of 512-byte blocks; -P, -T, -b, -k, -n, and -u, which are unscaled
values; and, when in posix mode, -c and -f, which are in 512-byte increments. The return status
is 0 unless an invalid option or argument is supplied, or an error occurs while setting a new limit.

umask [-p] [-S] [mode]
Set the user file-creation mask to mode. If mode begins with a digit, it is interpreted as an octal
number; otherwise it is interpreted as a symbolic mode mask similar to that accepted by chmod(1).
If mode is omitted, umask prints the current value of the mask. The -S option without a mode ar-
gument prints the mask in a symbolic format; the default output is an octal number. If the -p op-
tion is supplied, and mode is omitted, the output is in a form that may be reused as input. The re-
turn status is zero if the mode was successfully changed or if no mode argument was supplied, and
non-zero otherwise.

unalias [-a] [name . . .]
Remove each name from the list of defined aliases. If -a is supplied, remove all alias definitions.
The return value is true unless a supplied name is not a defined alias.

unset [-fv] [-n] [name . . .]
For each name, remove the corresponding variable or function. If the -v option is given, each
name refers to a shell variable, and that variable is removed. If -f is specified, each name refers to
a shell function, and the function definition is removed. If the -n option is supplied, and name is a
variable with the nameref attribute, name will be unset rather than the variable it references. -n
has no effect if the -f option is supplied. Read-only variables and functions may not be unset.
When variables or functions are removed, they are also removed from the environment passed to
subsequent commands. If no options are supplied, each name refers to a variable; if there is no
variable by that name, a function with that name, if any, is unset. Some shell variables may not be
unset. If any of BASH_ALIASES, BASH_ARGV0, BASH_CMDS, BASH_COMMAND, BASH_SUB-
SHELL, BASHPID, COMP_WORDBREAKS, DIRSTACK, EPOCHREALTIME, EPOCHSECONDS,
FUNCNAME, GROUPS, HISTCMD, LINENO, RANDOM, SECONDS, or SRANDOM are unset,
they lose their special properties, even if they are subsequently reset. The exit status is true unless
a name is readonly or may not be unset.

GNU Bash 5.3 2023 January 27 27

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

wait [-fn] [-p varname] [id . . .]
Wait for each specified child process id and return the termination status of the last id. Each id
may be a process ID pid or a job specification jobspec; if a jobspec is supplied, wait waits for all
processes in the job.

If no options or ids are supplied, wait waits for all running background jobs and the last-executed
process substitution, if its process id is the same as $!, and the return status is zero.

If the -n option is supplied, wait waits for any one of the given ids or, if no ids are supplied, any
job or process substitution, to complete and returns its exit status. If none of the supplied ids is a
child of the shell, or if no ids are supplied and the shell has no unwaited-for children, the exit sta-
tus is 127.

If the -p option is supplied, wait assigns the process or job identifier of the job for which the exit
status is returned to the variable varname named by the option argument. The variable, which can-
not be readonly, will be unset initially, before any assignment. This is useful only when used with
the -n option.

Supplying the -f option, when job control is enabled, forces wait to wait for each id to terminate
before returning its status, instead of returning when it changes status.

If none of the ids specify one of the shell’s active child processes, the return status is 127. If wait
is interrupted by a signal, any varname will remain unset, and the return status will be greater than
128, as described under SIGNALS in bash(1). Otherwise, the return status is the exit status of the
last id.

SHELL COMPATIBILITY MODE
Bash-4.0 introduced the concept of a shell compatibility level, specified as a set of options to the shopt
builtin (compat31, compat32, compat40, compat41, and so on). There is only one current compatibility
level — each option is mutually exclusive. The compatibility level is intended to allow users to select be-
havior from previous versions that is incompatible with newer versions while they migrate scripts to use
current features and behavior. It’s intended to be a temporary solution.

This section does not mention behavior that is standard for a particular version (e.g., setting compat32
means that quoting the right hand side of the regexp matching operator quotes special regexp characters in
the word, which is default behavior in bash-3.2 and subsequent versions).

If a user enables, say, compat32, it may affect the behavior of other compatibility levels up to and includ-
ing the current compatibility level. The idea is that each compatibility level controls behavior that changed
in that version of bash, but that behavior may have been present in earlier versions. For instance, the
change to use locale-based comparisons with the [[command came in bash-4.1, and earlier versions used
ASCII-based comparisons, so enabling compat32 will enable ASCII-based comparisons as well. That
granularity may not be sufficient for all uses, and as a result users should employ compatibility levels care-
fully. Read the documentation for a particular feature to find out the current behavior.

Bash-4.3 introduced a new shell variable: BASH_COMPAT. The value assigned to this variable (a decimal
version number like 4.2, or an integer corresponding to the compatNN option, like 42) determines the com-
patibility level.

Starting with bash-4.4, bash began deprecating older compatibility levels. Eventually, the options will be
removed in favor of BASH_COMPAT.

Bash-5.0 was the final version for which there was an individual shopt option for the previous version.
BASH_COMPAT is the only mechanism to control the compatibility level in versions newer than bash-5.0.

The following table describes the behavior changes controlled by each compatibility level setting. The
compatNN tag is used as shorthand for setting the compatibility level to NN using one of the following
mechanisms. For versions prior to bash-5.0, the compatibility level may be set using the corresponding
compatNN shopt option. For bash-4.3 and later versions, the BASH_COMPAT variable is preferred, and it
is required for bash-5.1 and later versions.

GNU Bash 5.3 2023 January 27 28

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

compat31
• Quoting the rhs of the [[command’s regexp matching operator (=) has no special effect.

compat32
• The < and > operators to the [[command do not consider the current locale when com-

paring strings; they use ASCII ordering.

compat40
• The < and > operators to the [[command do not consider the current locale when com-

paring strings; they use ASCII ordering. Bash versions prior to bash-4.1 use ASCII col-
lation and strcmp(3); bash-4.1 and later use the current locale’s collation sequence and
strcoll(3).

compat41
• In posix mode, time may be followed by options and still be recognized as a reserved

word (this is POSIX interpretation 267).
• In posix mode, the parser requires that an even number of single quotes occur in the word

portion of a double-quoted parameter expansion and treats them specially, so that charac-
ters within the single quotes are considered quoted (this is POSIX interpretation 221).

compat42
• The replacement string in double-quoted pattern substitution does not undergo quote re-

moval, as it does in versions after bash-4.2.
• In posix mode, single quotes are considered special when expanding the word portion of

a double-quoted parameter expansion and can be used to quote a closing brace or other
special character (this is part of POSIX interpretation 221); in later versions, single quotes
are not special within double-quoted word expansions.

compat43
• Word expansion errors are considered non-fatal errors that cause the current command to

fail, even in posix mode (the default behavior is to make them fatal errors that cause the
shell to exit).

• When executing a shell function, the loop state (while/until/etc.) is not reset, so break or
continue in that function will break or continue loops in the calling context. Bash-4.4
and later reset the loop state to prevent this.

compat44
• The shell sets up the values used by BASH_ARGV and BASH_ARGC so they can expand

to the shell’s positional parameters even if extended debugging mode is not enabled.
• A subshell inherits loops from its parent context, so break or continue will cause the

subshell to exit. Bash-5.0 and later reset the loop state to prevent the exit
• Variable assignments preceding builtins like export and readonly that set attributes con-

tinue to affect variables with the same name in the calling environment even if the shell is
not in posix mode.

compat50
• Bash-5.1 changed the way $RANDOM is generated to introduce slightly more random-

ness. If the shell compatibility level is set to 50 or lower, it reverts to the method from
bash-5.0 and previous versions, so seeding the random number generator by assigning a
value to RANDOM will produce the same sequence as in bash-5.0.

• If the command hash table is empty, bash versions prior to bash-5.1 printed an informa-
tional message to that effect, even when producing output that can be reused as input.
Bash-5.1 suppresses that message when the -l option is supplied.

compat51
• The unset builtin treats attempts to unset array subscripts @ and * differently depending

on whether the array is indexed or associative, and differently than in previous versions.

GNU Bash 5.3 2023 January 27 29

BASH_BUILTINS(1) General Commands Manual BASH_BUILTINS(1)

• Arithmetic commands (((. . .))) and the expressions in an arithmetic for statement can be
expanded more than once.

• Expressions used as arguments to arithmetic operators in the [[conditional command can
be expanded more than once.

• The expressions in substring parameter brace expansion can be expanded more than once.
• The expressions in the $((. . .)) word expansion can be expanded more than once.
• Arithmetic expressions used as indexed array subscripts can be expanded more than once.
• test -v, when given an argument of A[@], where A is an existing associative array, will

return true if the array has any set elements. Bash-5.2 will look for and report on a key
named @.

• The ${parameter[:]=value} word expansion will return value, before any variable-spe-
cific transformations have been performed (e.g., converting to lowercase). Bash-5.2 will
return the final value assigned to the variable.

• Parsing command substitutions will behave as if extended globbing (see the description
of the shopt builtin above) is enabled, so that parsing a command substitution containing
an extglob pattern (say, as part of a shell function) will not fail. This assumes the intent is
to enable extglob before the command is executed and word expansions are performed. It
will fail at word expansion time if extglob hasn’t been enabled by the time the command
is executed.

compat52
• The test builtin uses its historical algorithm to parse parenthesized subexpressions when

given five or more arguments.
• If the -p or -P option is supplied to the bind builtin, bind treats any arguments remain-

ing after option processing as bindable command names, and displays any key sequences
bound to those commands, instead of treating the arguments as key sequences to bind.

SEE ALSO
bash(1), sh(1)

GNU Bash 5.3 2023 January 27 30

	BASH_BUILTINS(1)
	NAME
	BASH BUILTIN COMMANDS
	SHELL COMPATIBILITY MODE
	SEE ALSO

