Bash Reference Manual

Reference Documentation for Bash
Edition 5.3, for Bash Version 5.3.
August 2025

Chet Ramey, Case Western Reserve University
Brian Fox, Free Software Foundation

This text is a brief description of the features that are present in the Bash shell (version
5.3, 7 August 2025).

This is Edition 5.3, last updated 7 August 2025, of The GNU Bash Reference Manual, for
Bash, Version 5.3.

Copyright (©) 1988-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Introduction..................... 1
1.1 Whatis Bash?..... ... 1
1.2 Whatisashell?o 1

2 Definitions 3

3 Basic Shell Features............................. 5
3.1 Shell Syntax. ... 5

3.1.1 Shell Operation...........ooiiiire .. 5
312 QUOLING . .ot 6
3.1.2.1 Escape Character..............oiiiiiiiiiiiiiiia... 6
3.1.2.2 Single QuUOtes........ooiiiii 6
3.1.2.3 Double QUOtes.ot 6
3.1.2.4 ANSI-C Quoting.........ouuiiiiiii i, 6
3.1.2.5 Locale-Specific Translation............................ 7

3.1.3 COmIMENtS . ..\ttt ettt e 9
3.2 Shell Commands. ... 9
3.2.1 Reserved Wordscooiiniii i 9
3.2.2 Simple Commandsc..vuirire i 9
3.2.3 Pipelines ... 10
3.2.4 Listsof Commands..............c.coiiiiiiiiiiiineen.... 11
3.2.5 Compound Commands.coviiiiiiiiiieenin... 11
3.2.5.1 Looping Constructs..........covviiiiiiiiiini... 12
3.2.5.2 Conditional Constructscovviiiieiiiie. .. 12
3.2.5.3 Grouping Commandsc.ccooiiiiiiiiinean... 18

3.2.6 COPTOCESSES .« vttt ettt et e et e 18
3.2.7 GNU Parallel..........oo e 19
3.3 Shell Functions......... ..o 19
3.4 Shell Parametersooiiiiii i 22
3.4.1 Positional Parameters................. 23
3.4.2 Special Parameters 23
3.5 Shell EXpansionscooiuiiiiiiiiiiiii i 24
3.5.1 Brace Expansion..............iiiiii i 25
3.5.2 Tilde Expansion 26
3.5.3 Shell Parameter Expansion 27
3.5.4 Command Substitution............. i 36
3.5.5 Arithmetic Expansion 37
3.5.6 Process Substitution............ot 37
3.5.7 Word Splitting ... 38
3.5.8 Filename Expansionooiiiiiiiiiiiiiiiii. 39
3.5.8.1 Pattern Matching................, 39

3.5.9 Quote Removal 41

3.6 Redirections..........oiiiii e 41
3.6.1 Redirecting Input........ ... i 42
3.6.2 Redirecting Output...... ..o 43
3.6.3 Appending Redirected Output 43
3.6.4 Redirecting Standard Output and Standard Error......... 43
3.6.5 Appending Standard Output and Standard Error 43
3.6.6 Here Documents............ccoiuiiiiiiiiiiiiiiiiinnnnnn... 44
3.6.7 Here Strings........c.ooiiiiii e 44
3.6.8 Duplicating File Descriptors ...t 44
3.6.9 Moving File Descriptors ... 45
3.6.10 Opening File Descriptors for Reading and Writing 45

3.7 Executing Commands ...t 45
3.7.1 Simple Command Expansion.............. 45
3.7.2 Command Search and Execution.......................... 46
3.7.3 Command Execution Environment........................ 46
3.7.4 Environment i 47
3.7.5 Exit Status. ... 48
3.7.6 Signalso 49

3.8 Shell Seripts. . ..ovun 50

Shell Builtin Commands....................... 52

4.1 Bourne Shell Builtins........ ... i 52

4.2 Bash Builtin Commands.cooiiiiiiiiii i, 61

4.3 Modifying Shell Behavior............ it 73
4.3.1 TheSet Builtin.......... ..., 74
4.3.2 The Shopt Builtin....... o i 78

4.4 Special Builtins. ... 85

Shell Variables.................................. 86
5.1 Bourne Shell Variables.............. ... 86
5.2 Bash Variables 87

Bash Features................................. 100

6.1 Invoking Bash......... ... i 100

6.2 Bash Startup Files i 102

6.3 Interactive Shells.......o i 104
6.3.1 What is an Interactive Shell? 104
6.3.2 Is this Shell Interactive?, 104
6.3.3 Interactive Shell Behavior................................ 104

6.4 Bash Conditional Expressionscooiiiiiiii... 105

6.5 Shell Arithmetic........ ... 107

6.6 AASES ..ottt 109

0.7 AT AYS ottt 110

6.8 The Directory Stack........ ..o 112
6.8.1 Directory Stack Builtins..............ol 112

6.9 Controlling the Prompt............. ..o i, 114

6.10 The Restricted Shell. 115

ii

6.11 Bash and POSIX e 116
6.11.1 What is POSIX? ... e 116
6.11.2 Bash POSIX Mode.........cooiiiiiiiiiiii i, 116

6.12 Shell Compatibility Mode, 121

Job Control, 125

7.1 Job Control Basics ... 125

7.2 Job Control Builtins.......... 126

7.3 Job Control Variables i 129

Command Line Editing....................... 130

8.1 Introduction to Line Editing........... il 130

8.2 Readline Interaction...........o i 130
8.2.1 Readline Bare Essentials.......................oooL. 131
8.2.2 Readline Movement Commands.......................... 131
8.2.3 Readline Killing Commandscoooo.... 132
8.2.4 Readline Arguments............ ..o 132
8.2.5 Searching for Commands in the History.................. 133

8.3 Readline Init File..... i 133
8.3.1 Readline Init File Syntax..................oooiiiiit. 133
8.3.2 Conditional Init Constructs...............coooiiiiiii... 143
8.3.3 Sample Init File...... 144

8.4 Bindable Readline Commands......................cooiiuin. 147
8.4.1 Commands For Moving. ..., 147
8.4.2 Commands For Manipulating The History 148
8.4.3 Commands For Changing Text........................... 150
8.4.4 Killing And Yanking...............ooiiiiiiL 151
8.4.5 Specifying Numeric Arguments 153
8.4.6 Letting Readline Type For You.......................... 153
8.4.7 Keyboard Macros.c.ouuiiiiiiiiiiiiiii i 155
8.4.8 Some Miscellaneous Commands.......................... 155

8.5 Readline vi Mode ...t 158

8.6 Programmable Completion oo, 158

8.7 Programmable Completion Builtins................... 161

8.8 A Programmable Completion Example........................ 165

Using History Interactively 168

9.1 Bash History Facilities..............oo it 168

9.2 Bash History Builtinso o 169

9.3 History Expansion...........ccooiiiiiiiiiiiiiiiiiiiiiin. 171
9.3.1 Event Designators...............ooiiiiiiiiiiiiii i 172
9.3.2 Word Designators ... 173

9.3.3 MOAIIErS . .o oottt 174

iii

10 Installing Bash............................... 175

10.1 Basic Installation........... .o i i 175
10.2 Compilers and Options. ..., 176
10.3 Compiling For Multiple Architectures........................ 176
10.4 Installation Names ..., 177
10.5 Specifying the System Type ...t 177
10.6 Sharing Defaults i 177
10.7 Operation Controls. ..., 178
10.8 Optional Features............ooiiiiiiiii . 178
Appendix A Reporting Bugs................... 184
Appendix B Major Differences From
The Bourne Shell 185
B.1 Implementation Differences From The SVR4.2 Shell 190

Appendix C GNU Free Documentation License .. 192

Appendix D Indexes............................ 200
D.1 Index of Shell Builtin Commands ...t .. 200
D.2 Index of Shell Reserved Words 201
D.3 Parameter and Variable Index 202
D.4 Function Index ... 204

D.5 Concept Indexo 206

1 Introduction

1.1 What is Bash?

Bash is the shell, or command language interpreter, for the GNU operating system. The
name is an acronym for the ‘Bourne-Again SHell’, a pun on Stephen Bourne, the author
of the direct ancestor of the current Unix shell sh, which appeared in the Seventh Edition
Bell Labs Research version of Unix.

Bash is largely compatible with sh and incorporates useful features from the Korn shell
ksh and the C shell csh. It is intended to be a conformant implementation of the IEEE
pPOSIX Shell and Tools portion of the IEEE POSIX specification (IEEE Standard 1003.1). It
offers functional improvements over sh for both interactive and programming use.

While the GNU operating system provides other shells, including a version of csh, Bash
is the default shell. Like other GNU software, Bash is quite portable. It currently runs on
nearly every version of Unix and a few other operating systems — independently-supported
ports exist for Windows and other platforms.

1.2 What is a shell?

At its base, a shell is simply a macro processor that executes commands. The term macro
processor means functionality where text and symbols are expanded to create larger expres-
sions.

A Unix shell is both a command interpreter and a programming language. As a com-
mand interpreter, the shell provides the user interface to the rich set of GNU utilities. The
programming language features allow these utilities to be combined. Users can create files
containing commands, and these become commands themselves. These new commands have
the same status as system commands in directories such as /bin, allowing users or groups
to establish custom environments to automate their common tasks.

Shells may be used interactively or non-interactively. In interactive mode, they accept
input typed from the keyboard. When executing non-interactively, shells execute commands
read from a file or a string.

A shell allows execution of GNU commands, both synchronously and asynchronously.
The shell waits for synchronous commands to complete before accepting more input; asyn-
chronous commands continue to execute in parallel with the shell while it reads and executes
additional commands. The redirection constructs permit fine-grained control of the input
and output of those commands. Moreover, the shell allows control over the contents of
commands’ environments.

Shells also provide a small set of built-in commands (builtins) implementing function-
ality impossible or inconvenient to obtain via separate utilities. For example, cd, break,
continue, and exec cannot be implemented outside of the shell because they directly ma-
nipulate the shell itself. The history, getopts, kill, or pwd builtins, among others, could
be implemented in separate utilities, but they are more convenient to use as builtin com-
mands. All of the shell builtins are described in subsequent sections.

While executing commands is essential, most of the power (and complexity) of shells
is due to their embedded programming languages. Like any high-level language, the shell
provides variables, flow control constructs, quoting, and functions.

Chapter 1: Introduction 2

Shells offer features geared specifically for interactive use rather than to augment the
programming language. These interactive features include job control, command line edit-
ing, command history and aliases. This manual describes how Bash provides all of these
features.

2 Definitions

These definitions are used throughout the remainder of this manual.

POSIX A family of open system standards based on Unix. Bash is primarily concerned
with the Shell and Utilities portion of the posix 1003.1 standard.

blank A space or tab character.

whitespace
A character belonging to the space character class in the current locale, or for
which isspace() returns true.

builtin A command that is implemented internally by the shell itself, rather than by
an executable program somewhere in the file system.

control operator
A token that performs a control function. It is anewline or one of the following:
(l |7’ (&&7’ ﬁ&?, t;7’ t; ;77 (;&7’ (; ;&7’ tI?, t|&77 ((7’ or 4)7.

exit status

The value returned by a command to its caller. The value is restricted to eight
bits, so the maximum value is 255.

field A unit of text that is the result of one of the shell expansions. After expansion,
when executing a command, the resulting fields are used as the command name
and arguments.

filename A string of characters used to identify a file.

job A set of processes comprising a pipeline, and any processes descended from it,
that are all in the same process group.

job control
A mechanism by which users can selectively stop (suspend) and restart (resume)
execution of processes.

metacharacter
A character that, when unquoted, separates words. A metacharacter is a space,
tab, newline, or one of the following characters: ‘|’, ‘&', <;’, ‘C,)7, ‘<’, or *>".
name A word consisting solely of letters, numbers, and underscores, and beginning

with a letter or underscore. Names are used as shell variable and function names.
Also referred to as an identifier.

operator A control operator or a redirection operator. See Section 3.6 [Redirec-
tions], page 41, for a list of redirection operators. Operators contain at least
one unquoted metacharacter.

process group
A collection of related processes each having the same process group ID.

process group 1D
A unique identifier that represents a process group during its lifetime.

Chapter 2: Definitions 4

reserved word
A word that has a special meaning to the shell. Most reserved words introduce
shell flow control constructs, such as for and while.

return status
A synonym for exit status.

signal A mechanism by which a process may be notified by the kernel of an event
occurring in the system.

special builtin
A shell builtin command that has been classified as special by the POSIX stan-
dard.

token A sequence of characters considered a single unit by the shell. It is either a
word or an operator.

word A sequence of characters treated as a unit by the shell. Words may not include
unquoted metacharacters.

3 Basic Shell Features

Bash is an acronym for ‘Bourne-Again SHell’. The Bourne shell is the traditional Unix
shell originally written by Stephen Bourne. All of the Bourne shell builtin commands
are available in Bash, and the rules for evaluation and quoting are taken from the POSIX
specification for the ‘standard’ Unix shell.

This chapter briefly summarizes the shell’s ‘building blocks’: commands, control struc-
tures, shell functions, shell parameters, shell expansions, redirections, which are a way to
direct input and output from and to named files, and how the shell executes commands.

3.1 Shell Syntax

When the shell reads input, it proceeds through a sequence of operations. If the input
indicates the beginning of a comment, the shell ignores the comment symbol (‘#’), and the
rest of that line.

Otherwise, roughly speaking, the shell reads its input and divides the input into words
and operators, employing the quoting rules to select which meanings to assign various words
and characters.

The shell then parses these tokens into commands and other constructs, removes the
special meaning of certain words or characters, expands others, redirects input and output
as needed, executes the specified command, waits for the command’s exit status, and makes
that exit status available for further inspection or processing.

3.1.1 Shell Operation

The following is a brief description of the shell’s operation when it reads and executes a
command. Basically, the shell does the following:

1. Reads its input from a file (see Section 3.8 [Shell Scripts|, page 50), from a string
supplied as an argument to the -c invocation option (see Section 6.1 [Invoking Bash],
page 100), or from the user’s terminal.

2. Breaks the input into words and operators, obeying the quoting rules described in
Section 3.1.2 [Quoting], page 6. These tokens are separated by metacharacters. This
step performs alias expansion (see Section 6.6 [Aliases|, page 109).

3. Parses the tokens into simple and compound commands (see Section 3.2 [Shell Com-
mands|, page 9).

4. Performs the various shell expansions (see Section 3.5 [Shell Expansions|, page 24),
breaking the expanded tokens into lists of filenames (see Section 3.5.8 [Filename Ex-
pansion], page 39) and commands and arguments.

5. Performs any necessary redirections (see Section 3.6 [Redirections], page 41) and re-
moves the redirection operators and their operands from the argument list.

6. Executes the command (see Section 3.7 [Executing Commands], page 45).

7. Optionally waits for the command to complete and collects its exit status (see
Section 3.7.5 [Exit Status], page 48).

Chapter 3: Basic Shell Features 6

3.1.2 Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to disable special treatment for special characters, to prevent reserved
words from being recognized as such, and to prevent parameter expansion.

Each of the shell metacharacters (see Chapter 2 [Definitions]|, page 3) has special meaning
to the shell and must be quoted if it is to represent itself.

When the command history expansion facilities are being used (see Section 9.3 [History
Interaction|, page 171), the history expansion character, usually ‘!’, must be quoted to
prevent history expansion. See Section 9.1 [Bash History Facilities|, page 168, for more
details concerning history expansion.

There are four quoting mechanisms: the escape character, single quotes, double quotes,
and dollar-single quotes.

3.1.2.1 Escape Character

A non-quoted backslash ‘\’ is the Bash escape character. It preserves the literal value of
the next character that follows, removing any special meaning it has, with the exception of
newline. If a \newline pair appears, and the backslash itself is not quoted, the \newline
is treated as a line continuation (that is, it is removed from the input stream and effectively
ignored).

3.1.2.2 Single Quotes

Enclosing characters in single quotes (‘’’) preserves the literal value of each character within
the quotes. A single quote may not occur between single quotes, even when preceded by a
backslash.

3.1.2.3 Double Quotes

Enclosing characters in double quotes (‘"”) preserves the literal value of all characters within
the quotes, with the exception of ‘$’, *“’, ‘\’, and, when history expansion is enabled, ‘!’.
When the shell is in POSIX mode (see Section 6.11 [Bash POSIX Mode], page 116), the ‘!’
has no special meaning within double quotes, even when history expansion is enabled. The
characters ‘$’ and ¢’ retain their special meaning within double quotes (see Section 3.5 [Shell
Expansions], page 24). The backslash retains its special meaning only when followed by one
of the following characters: ‘$’, *“’, ‘"’ *\’, or newline. Within double quotes, backslashes
that are followed by one of these characters are removed. Backslashes preceding characters
without a special meaning are left unmodified.

A double quote may be quoted within double quotes by preceding it with a backslash.
If enabled, history expansion will be performed unless an ‘!’ appearing in double quotes is
escaped using a backslash. The backslash preceding the ‘!’ is not removed.

The special parameters ‘*’ and ‘@ have special meaning when in double quotes (see
Section 3.5.3 [Shell Parameter Expansion|, page 27).

3.1.2.4 ANSI-C Quoting

Character sequences of the form $’string’ are treated as a special kind of single quotes.
The sequence expands to string, with backslash-escaped characters in string replaced as

Chapter 3: Basic Shell Features 7

specified by the ANSI C standard. Backslash escape sequences, if present, are decoded as
follows:

\a alert (bell)

\b backspace

\e

\E An escape character (not in ANSI C).

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\’ single quote

\" double quote

\7? question mark

\nnn The eight-bit character whose value is the octal value nnn (one to three octal
digits).

\xHH The eight-bit character whose value is the hexadecimal value HH (one or two

hex digits).

\uHHHH The Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHH (one to four hex digits).

\UHHHHHHHH
The Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHHHHHH (one to eight hex digits).

\cx A control-x character.

The expanded result is single-quoted, as if the dollar sign had not been present.

3.1.2.5 Locale-Specific Translation

Prefixing a double-quoted string with a dollar sign (‘$’), such as $"hello, world", causes
the string to be translated according to the current locale. The gettext infrastructure per-
forms the lookup and translation, using the LC_MESSAGES, TEXTDOMAINDIR, and TEXTDOMAIN
shell variables, as explained below. See the gettext documentation for additional details not
covered here. If the current locale is C or POSIX, if there are no translations available, or if the
string is not translated, the dollar sign is ignored, and the string is treated as double-quoted
as described above. Since this is a form of double quoting, the string remains double-quoted
by default, whether or not it is translated and replaced. If the noexpand_translation op-
tion is enabled using the shopt builtin (see Section 4.3.2 [The Shopt Builtin], page 78),
translated strings are single-quoted instead of double-quoted.

Chapter 3: Basic Shell Features 8

The rest of this section is a brief overview of how you use gettext to create transla-
tions for strings in a shell script named scriptname. There are more details in the gettext
documentation.

Once you’ve marked the strings in your script that you want to translate using $"...",
you create a gettext "template" file using the command

bash --dump-po-strings scriptname > domain.pot

The domain is your message domain. It’s just an arbitrary string that’s used to identify
the files gettext needs, like a package or script name. It needs to be unique among all the
message domains on systems where you install the translations, so gettext knows which
translations correspond to your script. You’ll use the template file to create translations for
each target language. The template file conventionally has the suffix ‘.pot’.

You copy this template file to a separate file for each target language you want to support
(called "PO" files, which use the suffix ‘.po’). PO files use various naming conventions,
but when you are working to translate a template file into a particular language, you first
copy the template file to a file whose name is the language you want to target, with the
‘.po’ suffix. For instance, the Spanish translations of your strings would be in a file named
‘es.po’, and to get started using a message domain named "example," you would run

cp example.pot es.po

Ultimately, PO files are often named domain.po and installed in directories that contain
multiple translation files for a particular language.

Whichever naming convention you choose, you will need to translate the strings in the
PO files into the appropriate languages. This has to be done manually.

When you have the translations and PO files complete, you'll use the gettext tools to
produce what are called "MO™" files, which are compiled versions of the PO files the gettext
tools use to look up translations efficiently. MO files are also called "message catalog"
files. You use the msgfmt program to do this. For instance, if you had a file with Spanish
translations, you could run

msgfmt -o es.mo es.po
to produce the corresponding MO file.

Once you have the MO files, you decide where to install them and use the TEXTDOMAINDIR
shell variable to tell the gettext tools where they are. Make sure to use the same message
domain to name the MO files as you did for the PO files when you install them.

Your users will use the LANG or LC_MESSAGES shell variables to select the desired language.

You set the TEXTDOMAIN variable to the script’s message domain. As above, you use the
message domain to name your translation files.

You, or possibly your users, set the TEXTDOMAINDIR variable to the name of a directory
where the message catalog files are stored. If you install the message files into the system’s
standard message catalog directory, you don’t need to worry about this variable.

The directory where the message catalog files are stored varies between systems. Some
use the message catalog selected by the LC_MESSAGES shell variable. Others create the name
of the message catalog from the value of the TEXTDOMAIN shell variable, possibly adding the
‘.mo’ suffix. If you use the TEXTDOMAIN variable, you may need to set the TEXTDOMAINDIR
variable to the location of the message catalog files, as above. It’s common to use both vari-
ables in this fashion: $TEXTDOMAINDIR/$LC_MESSAGES/LC_MESSAGES/$TEXTDOMAIN.mo.

Chapter 3: Basic Shell Features 9

If you used that last convention, and you wanted to store the message catalog files
with Spanish (es) and Esperanto (eo) translations into a local directory you use for custom
translation files, you could run

TEXTDOMAIN=example
TEXTDOMAINDIR=/usr/local/share/locale

cp es.mo ${TEXTDOMAINDIR}/es/LC_MESSAGES/${TEXTDOMAIN}.mo
cp eo.mo ${TEXTDOMAINDIR}/eo/LC_MESSAGES/${TEXTDOMAIN}.mo

When all of this is done, and the message catalog files containing the compiled transla-
tions are installed in the correct location, your users will be able to see translated strings in
any of the supported languages by setting the LANG or LC_MESSAGES environment variables
before running your script.

3.1.3 Comments

In a non-interactive shell, or an interactive shell in which the interactive_comments option
to the shopt builtin is enabled (see Section 4.3.2 [The Shopt Builtin], page 78), a word
beginning with ‘#’ introduces a comment. A word begins at the beginning of a line, after
unquoted whitespace, or after an operator. The comment causes that word and all remaining
characters on that line to be ignored. An interactive shell without the interactive_
comments option enabled does not allow comments. The interactive_comments option is
enabled by default in interactive shells. See Section 6.3 [Interactive Shells], page 104, for a
description of what makes a shell interactive.

3.2 Shell Commands

A simple shell command such as echo a b ¢ consists of the command itself followed by
arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in
a variety of ways: in a pipeline in which the output of one command becomes the input of
a second, in a loop or conditional construct, or in some other grouping.

3.2.1 Reserved Words
Reserved words are words that have special meaning to the shell. They are used to begin
and end the shell’s compound commands.

The following words are recognized as reserved when unquoted and the first word of a
command (see below for exceptions):

if then elif else fi time
for in until while do done
case esac coproc select function

{ X L 1] !

in is recognized as a reserved word if it is the third word of a case or select command.
in and do are recognized as reserved words if they are the third word in a for command.
3.2.2 Simple Commands

A simple command is the kind of command that’s executed most often. It’s just a sequence of
words separated by blanks, terminated by one of the shell’s control operators (see Chapter 2

Chapter 3: Basic Shell Features 10

[Definitions], page 3). The first word generally specifies a command to be executed, with
the rest of the words being that command’s arguments.

The return status (see Section 3.7.5 [Exit Status], page 48) of a simple command is its
exit status as provided by the posix 1003.1 waitpid function, or 128+n if the command
was terminated by signal n.

3.2.3 Pipelines

A pipeline is a sequence of one or more commands separated by one of the control operators
¢ | 9 or 3 | &7'
The format for a pipeline is
[time [-pl] [!] commandl [| or |& command2]

The output of each command in the pipeline is connected via a pipe to the input of the next
command. That is, each command reads the previous command’s output. This connection
is performed before any redirections specified by commandl.

If <1& is the pipeline operator, command1’s standard error, in addition to its standard
output, is connected to command2’s standard input through the pipe; it is shorthand for
2>&1 |. This implicit redirection of the standard error to the standard output is performed
after any redirections specified by command]l, consistent with that shorthand.

If the reserved word time precedes the pipeline, Bash prints timing statistics for the
pipeline once it finishes. The statistics currently consist of elapsed (wall-clock) time and
user and system time consumed by the command’s execution. The -p option changes the
output format to that specified by Posix. When the shell is in POSIX mode (see Section 6.11
[Bash POSIX Mode], page 116), it does not recognize time as a reserved word if the next
token begins with a ‘=’. The value of the TIMEFORMAT variable is a format string that specifies
how the timing information should be displayed. See Section 5.2 [Bash Variables|, page 87,
for a description of the available formats. Providing time as a reserved word permits the
timing of shell builtins, shell functions, and pipelines. An external time command cannot
time these easily.

When the shell is in POSIX mode (see Section 6.11 [Bash POSIX Mode], page 116), you
can use time by itself as a simple command. In this case, the shell displays the total user
and system time consumed by the shell and its children. The TIMEFORMAT variable specifies
the format of the time information.

If a pipeline is not executed asynchronously (see Section 3.2.4 [Lists|, page 11), the shell
waits for all commands in the pipeline to complete.

Each command in a multi-command pipeline, where pipes are created, is executed in its
own subshell, which is a separate process (see Section 3.7.3 [Command Execution Environ-
ment], page 46). If the lastpipe option is enabled using the shopt builtin (see Section 4.3.2
[The Shopt Builtin], page 78), and job control is not active, the last element of a pipeline
may be run by the shell process.

The exit status of a pipeline is the exit status of the last command in the pipeline, unless
the pipefail option is enabled (see Section 4.3.1 [The Set Builtin|, page 74). If pipefail
is enabled, the pipeline’s return status is the value of the last (rightmost) command to exit
with a non-zero status, or zero if all commands exit successfully. If the reserved word ‘!’
precedes the pipeline, the exit status is the logical negation of the exit status as described

Chapter 3: Basic Shell Features 11

above. If a pipeline is not executed asynchronously (see Section 3.2.4 [Lists], page 11), the
shell waits for all commands in the pipeline to terminate before returning a value. The
return status of an asynchronous pipeline is 0.

3.2.4 Lists of Commands

A 1list is a sequence of one or more pipelines separated by one of the operators ‘;’, ‘&,
‘&&’, or ‘| |’, and optionally terminated by one of ‘;’, ‘&’, or a newline.

Of these list operators, ‘&&’ and ‘| |” have equal precedence, followed by ‘;’ and ‘&’, which
have equal precedence.

A sequence of one or more newlines may appear in a 1ist to delimit commands, equiv-
alent to a semicolon.

If a command is terminated by the control operator ‘&’, the shell executes the command
asynchronously in a subshell. This is known as executing the command in the background,
and these are referred to as asynchronous commands. The shell does not wait for the
command to finish, and the return status is 0 (true). When job control is not active (see
Chapter 7 [Job Control], page 125), the standard input for asynchronous commands, in the
absence of any explicit redirections, is redirected from /dev/null.

Commands separated by a *;’ are executed sequentially; the shell waits for each command
to terminate in turn. The return status is the exit status of the last command executed.

AND and OR lists are sequences of one or more pipelines separated by the control oper-
ators ‘&&’ and ‘| |’, respectively. AND and OR lists are executed with left associativity.

An AND list has the form
commandl && command2
command?2 is executed if, and only if, commandl returns an exit status of zero (success).
An OR list has the form
commandl || command2
command? is executed if, and only if, commandl returns a non-zero exit status.

The return status of AND and OR lists is the exit status of the last command executed
in the list.

3.2.5 Compound Commands

Compound commands are the shell programming language constructs. Each construct be-
gins with a reserved word or control operator and is terminated by a corresponding reserved
word or operator. Any redirections (see Section 3.6 [Redirections], page 41) associated with
a compound command apply to all commands within that compound command unless ex-
plicitly overridden.

In most cases a list of commands in a compound command’s description may be separated
from the rest of the command by one or more newlines, and may be followed by a newline
in place of a semicolon.

Bash provides looping constructs, conditional commands, and mechanisms to group
commands and execute them as a unit.

Chapter 3: Basic Shell Features 12

3.2.5.1 Looping Constructs

Bash supports the following looping constructs.

)

Note that wherever a ‘;’ appears in the description of a command’s syntax, it may be
replaced with one or more newlines.

until The syntax of the until command is:
until test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
which is not zero. The return status is the exit status of the last command
executed in consequent-commands, or zero if none was executed.

while The syntax of the while command is:
while test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
of zero. The return status is the exit status of the last command executed in
consequent-commands, or zero if none was executed.

for The syntax of the for command is:
for name [[in words ...] ;] do commands; done

Expand words (see Section 3.5 [Shell Expansions], page 24), and then execute
commands once for each word in the resultant list, with name bound to the
current word. If ‘in words’ is not present, the for command executes the
commands once for each positional parameter that is set, as if ‘in "$@"’ had
been specified (see Section 3.4.2 [Special Parameters|, page 23).

The return status is the exit status of the last command that executes. If there
are no items in the expansion of words, no commands are executed, and the
return status is zero.

There is an alternate form of the for command which is similar to the C
language:
for ((exprl ; expr2 ; expr3)) [;] do commands ; done

First, evaluate the arithmetic expression exprl according to the rules described
below (see Section 6.5 [Shell Arithmetic], page 107). Then, repeatedly evaluate
the arithmetic expression expr2 until it evaluates to zero. Each time expr2
evaluates to a non-zero value, execute commands and evaluate the arithmetic
expression expr3. If any expression is omitted, it behaves as if it evaluates to
1. The return value is the exit status of the last command in commands that
is executed, or non-zero if any of the expressions is invalid.

Use the break and continue builtins (see Section 4.1 [Bourne Shell Builtins|, page 52)
to control loop execution.

3.2.5.2 Conditional Constructs

if The syntax of the if command is:
if test-commands; then
consequent-commands;
[elif more-test-commands; then

Chapter 3: Basic Shell Features 13

case

more-consequents;]

[else alternate-consequents;]

fi
The test-commands list is executed, and if its return status is zero, the
consequent-commands list is executed. If test-commands returns a non-zero
status, each elif list is executed in turn, and if its exit status is zero, the
corresponding more-consequents is executed and the command completes. If
‘else alternate-consequents’ is present, and the final command in the final
if or elif clause has a non-zero exit status, then alternate-consequents is
executed. The return status is the exit status of the last command executed,
or zero if no condition tested true.

The syntax of the case command is:

case word in
[[(Q pattern [| pattern]...) command-list ;;]...
esac

case will selectively execute the command-list corresponding to the first pattern
that matches word, proceeding from the first pattern to the last. The match
is performed according to the rules described below in Section 3.5.8.1 [Pattern
Matching], page 39. If the nocasematch shell option (see the description of
shopt in Section 4.3.2 [The Shopt Builtin], page 78) is enabled, the match is
performed without regard to the case of alphabetic characters. The ‘|’ is used
to separate multiple patterns in a pattern list, and the ‘)’ operator terminates
the pattern list. A pattern list and an associated command-Ilist is known as a
clause.

Each clause must be terminated with *;;’, “;&’, or ‘; ;&’. The word undergoes
tilde expansion, parameter expansion, command substitution, process substi-
tution, arithmetic expansion, and quote removal (see Section 3.5.3 [Shell Pa-
rameter Expansion]|, page 27) before the shell attempts to match the pattern.
Each pattern undergoes tilde expansion, parameter expansion, command sub-
stitution, arithmetic expansion, process substitution, and quote removal.

There may be an arbitrary number of case clauses, each terminated by a ‘;;’,
;& , or ¢; ;& . The first pattern that matches determines the command-list that
is executed. It’s a common idiom to use ‘*’ as the final pattern to define the
default case, since that pattern will always match.

Here is an example using case in a script that could be used to describe one
interesting feature of an animal:

echo -n "Enter the name of an animal: "
read ANIMAL
echo -n "The $ANIMAL has "
case $ANIMAL in
horse | dog | cat) echo -n "four";;
man | kangaroo) echo -n "two'";;
*) echo -n "an unknown number of";;
esac
echo " legs."

Chapter 3: Basic Shell Features 14

select
...
[C...1]

If the ‘;;’ operator is used, the case command completes after the first pat-
tern match. Using ‘;&’ in place of ‘;;’ causes execution to continue with the
command-list associated with the next clause, if any. Using ‘; ;& in place of ‘; ;’
causes the shell to test the patterns in the next clause, if any, and execute any
associated command-list if the match succeeds, continuing the case statement
execution as if the pattern list had not matched.

The return status is zero if no pattern matches. Otherwise, the return status
is the exit status of the last command-list executed.

The select construct allows the easy generation of menus. It has almost the
same syntax as the for command:

select name [in words ...]; do commands; done

First, expand the list of words following in, generating a list of items, and print
the set of expanded words on the standard error stream, each preceded by a
number. If the ‘in words’ is omitted, print the positional parameters, as if ‘in
"$@"’ had been specified. select then displays the PS3 prompt and reads a
line from the standard input. If the line consists of a number corresponding to
one of the displayed words, then select sets the value of name to that word. If
the line is empty, select displays the words and prompt again. If EOF is read,
select completes and returns 1. Any other value read causes name to be set
to null. The line read is saved in the variable REPLY.

The commands are executed after each selection until a break command is
executed, at which point the select command completes.

Here is an example that allows the user to pick a filename from the current
directory, and displays the name and index of the file selected.

select fname in *;

do

echo you picked $fname \($REPLY\)
break;

done

((expression))

The arithmetic expression is evaluated according to the rules described below
(see Section 6.5 [Shell Arithmetic], page 107). The expression undergoes the
same expansions as if it were within double quotes, but unescaped double quote
characters in expression are not treated specially and are removed. Since this
can potentially result in empty strings, this command treats those as expressions
that evaluate to 0. If the value of the expression is non-zero, the return status
is 0; otherwise the return status is 1.

[[expression 1]

Evaluate the conditional expression expression and return a status of zero (true)
or non-zero (false). Expressions are composed of the primaries described below

Chapter 3: Basic Shell Features 15

in Section 6.4 [Bash Conditional Expressions], page 105. The words between
the [[and 1] do not undergo word splitting and filename expansion. The shell
performs tilde expansion, parameter and variable expansion, arithmetic expan-
sion, command substitution, process substitution, and quote removal on those
words. Conditional operators such as ‘-f’ must be unquoted to be recognized
as primaries.

When used with [[, the ‘<’ and ‘>’ operators sort lexicographically using the
current locale.

When the ‘==" and ‘!=’ operators are used, the string to the right of the operator
is considered a pattern and matched according to the rules described below in
Section 3.5.8.1 [Pattern Matching], page 39, as if the extglob shell option were
enabled. The ‘=" operator is identical to ‘==". If the nocasematch shell option
(see the description of shopt in Section 4.3.2 [The Shopt Builtin], page 78)
is enabled, the match is performed without regard to the case of alphabetic
characters. The return value is 0 if the string matches (‘==") or does not match
(‘1=") the pattern, and 1 otherwise.

If you quote any part of the pattern, using any of the shell’s quoting mechanisms,
the quoted portion is matched literally. This means every character in the
quoted portion matches itself, instead of having any special pattern matching

meaning.
An additional binary operator, ‘="’ is available, with the same precedence as
‘== and ‘!=". When you use ‘="", the string to the right of the operator is

considered a POSIX extended regular expression pattern and matched accord-
ingly (using the POSIX regcomp and regexec interfaces usually described in
regez(3)). The return value is 0 if the string matches the pattern, and 1 if it
does not. If the regular expression is syntactically incorrect, the conditional
expression returns 2. If the nocasematch shell option (see the description of
shopt in Section 4.3.2 [The Shopt Builtin], page 78) is enabled, the match is
performed without regard to the case of alphabetic characters.

You can quote any part of the pattern to force the quoted portion to be matched
literally instead of as a regular expression (see above). If the pattern is stored
in a shell variable, quoting the variable expansion forces the entire pattern to
be matched literally.

The match succeeds if the pattern matches any part of the string. If you want
to force the pattern to match the entire string, anchor the pattern using the *~’
and ‘$’ regular expression operators.

For example, the following will match a line (stored in the shell variable 1ine)
if there is a sequence of characters anywhere in the value consisting of any
number, including zero, of characters in the space character class, immediately
followed by zero or one instances of ‘a’, then a ‘b’:

[[$1ine =~ [[:space:11*(2)7b 1]

That means values for line like ‘aab’, ‘ aaaaaab’, ‘xaby’, and ‘ ab’ will all
match, as will a line containing a ‘b’ anywhere in its value.

If you want to match a character that’s special to the regular expression gram-
mar (‘"$1[J O\.*+7"), it has to be quoted to remove its special meaning. This

Chapter 3: Basic Shell Features 16

means that in the pattern ‘xxx.txt’, the ‘.’ matches any character in the string
(its usual regular expression meaning), but in the pattern ‘"xxx.txt"’, it can
only match a literal .’ .

Likewise, if you want to include a character in your pattern that has a special
meaning to the regular expression grammar, you must make sure it’s not quoted.
If you want to anchor a pattern at the beginning or end of the string, for
instance, you cannot quote the ‘~’ or ‘$’ characters using any form of shell

quoting.
If you want to match ‘initial string’ at the start of a line, the following will
work:
[[$line =~ ~"initial string" 1]
but this will not:
[[$line =~ ""initial string" 1]

(a9

because in the second example the
special meaning.

is quoted and doesn’t have its usual

It is sometimes difficult to specify a regular expression properly without using
quotes, or to keep track of the quoting used by regular expressions while paying
attention to shell quoting and the shell’s quote removal. Storing the regular
expression in a shell variable is often a useful way to avoid problems with
quoting characters that are special to the shell. For example, the following is
equivalent to the pattern used above:

pattern=’[[:space:]]*(a)7b’
[[$line =~ $pattern 1]

Shell programmers should take special care with backslashes, since backslashes
are used by both the shell and regular expressions to remove the special meaning
from the following character. This means that after the shell’s word expansions
complete (see Section 3.5 [Shell Expansions], page 24), any backslashes remain-
ing in parts of the pattern that were originally not quoted can remove the
special meaning of pattern characters. If any part of the pattern is quoted, the
shell does its best to ensure that the regular expression treats those remaining
backslashes as literal, if they appeared in a quoted portion.

The following two sets of commands are not equivalent:

pattern=’\.’

[[. =" $pattern 1]
(L. ="\.11]

[[. =" "$pattern" 1]
(L. =""\.> 1]

The first two matches will succeed, but the second two will not, because in the
second two the backslash will be part of the pattern to be matched. In the first
two examples, the pattern passed to the regular expression parser is ‘\.’. The
backslash removes the special meaning from .’; so the literal ‘.’ matches. In

the second two examples, the pattern passed to the regular expression parser

Chapter 3: Basic Shell Features 17

has the backslash quoted (e.g., ‘\\\.”), which will not match the string, since it
does not contain a backslash. If the string in the first examples were anything
other than ‘.’, say ‘a’, the pattern would not match, because the quoted ‘.’ in
the pattern loses its special meaning of matching any single character.

Bracket expressions in regular expressions can be sources of errors as well, since
characters that are normally special in regular expressions lose their special
meanings between brackets. However, you can use bracket expressions to match
special pattern characters without quoting them, so they are sometimes useful
for this purpose.

Though it might seem like a strange way to write it, the following pattern will
match a ‘.’ in the string:

(r.="=0111]

The shell performs any word expansions before passing the pattern to the reg-
ular expression functions, so you can assume that the shell’s quoting takes
precedence. As noted above, the regular expression parser will interpret any
unquoted backslashes remaining in the pattern after shell expansion according
to its own rules. The intention is to avoid making shell programmers quote
things twice as much as possible, so shell quoting should be sufficient to quote
special pattern characters where that’s necessary.

The array variable BASH_REMATCH records which parts of the string matched
the pattern. The element of BASH_REMATCH with index 0 contains the portion
of the string matching the entire regular expression. Substrings matched by
parenthesized subexpressions within the regular expression are saved in the
remaining BASH_REMATCH indices. The element of BASH_REMATCH with index n
is the portion of the string matching the nth parenthesized subexpression.

Bash sets BASH_REMATCH in the global scope; declaring it as a local variable will
lead to unexpected results.

Expressions may be combined using the following operators, listed in decreasing
order of precedence:

(expression)
Returns the value of expression. This may be used to override the
normal precedence of operators.

| expression
True if expression is false.

expressionl && expression2
True if both expressionl and expression2 are true.

expressionl || expression2
True if either expressionl or expression?2 is true.

The && and | | operators do not evaluate expression?2 if the value of expressionl
is sufficient to determine the return value of the entire conditional expression.

Chapter 3: Basic Shell Features 18

3.2.5.3 Grouping Commands

Bash provides two ways to group a list of commands to be executed as a unit. When com-
mands are grouped, redirections may be applied to the entire command list. For example,
the output of all the commands in the list may be redirected to a single stream.

O
(list)
Placing a list of commands between parentheses forces the shell to create a
subshell (see Section 3.7.3 [Command Execution Environment]|, page 46), and
each of the commands in list is executed in that subshell environment. Since
the list is executed in a subshell, variable assignments do not remain in effect
after the subshell completes.

{3
{ list; }
Placing a list of commands between curly braces causes the list to be executed

in the current shell environment. No subshell is created. The semicolon (or
newline) following list is required.

In addition to the creation of a subshell, there is a subtle difference between these
two constructs due to historical reasons. The braces are reserved words, so they must
be separated from the list by blanks or other shell metacharacters. The parentheses are
operators, and are recognized as separate tokens by the shell even if they are not separated
from the list by whitespace.

The exit status of both of these constructs is the exit status of Iist.

3.2.6 Coprocesses

A coprocess is a shell command preceded by the coproc reserved word. A coprocess is
executed asynchronously in a subshell, as if the command had been terminated with the
‘&’ control operator, with a two-way pipe established between the executing shell and the
coprocess.
The syntax for a coprocess is:
coproc [NAME] command [redirections]

This creates a coprocess named NAME. command may be either a simple command (see
Section 3.2.2 [Simple Commands|, page 9) or a compound command (see Section 3.2.5
[Compound Commands], page 11). NAME is a shell variable name. If NAME is not
supplied, the default name is COPROC.

The recommended form to use for a coprocess is
coproc NAME { command; }

This form is preferred because simple commands result in the coprocess always being named
COPROC, and it is simpler to use and more complete than the other compound commands.

There are other forms of coprocesses:

coproc NAME compound-command
coproc compound-command
coproc simple-command

Chapter 3: Basic Shell Features 19

If command is a compound command, NAME is optional. The word following coproc
determines whether that word is interpreted as a variable name: it is interpreted as NAME
if it is not a reserved word that introduces a compound command. If command is a simple
command, NAME is not allowed; this is to avoid confusion between NAME and the first
word of the simple command.

When the coprocess is executed, the shell creates an array variable (see Section 6.7
[Arrays], page 110) named NAME in the context of the executing shell. The standard
output of command is connected via a pipe to a file descriptor in the executing shell, and
that file descriptor is assigned to NAMEI0O]. The standard input of command is connected
via a pipe to a file descriptor in the executing shell, and that file descriptor is assigned
to NAME[1]. This pipe is established before any redirections specified by the command
(see Section 3.6 [Redirections|, page 41). The file descriptors can be utilized as arguments
to shell commands and redirections using standard word expansions. Other than those
created to execute command and process substitutions, the file descriptors are not available
in subshells.

The process ID of the shell spawned to execute the coprocess is available as the value of
the variable NAME_PID. The wait builtin may be used to wait for the coprocess to terminate.

Since the coprocess is created as an asynchronous command, the coproc command always
returns success. The return status of a coprocess is the exit status of command.

3.2.7 GNU Parallel

There are ways to run commands in parallel that are not built into Bash. GNU Parallel is
a tool to do just that.

GNU Parallel, as its name suggests, can be used to build and run commands in parallel.
You may run the same command with different arguments, whether they are filenames,
usernames, hostnames, or lines read from files. GNU Parallel provides shorthand references
to many of the most common operations (input lines, various portions of the input line,
different ways to specify the input source, and so on). Parallel can replace xargs or feed
commands from its input sources to several different instances of Bash.

For a complete description, refer to the GNU Parallel documentation, which is available
at https://www.gnu.org/software/parallel/parallel_tutorial.html.

3.3 Shell Functions

Shell functions are a way to group commands for later execution using a single name for
the group. They are executed just like a "regular" simple command. When the name of a
shell function is used as a simple command name, the shell executes the list of commands
associated with that function name. Shell functions are executed in the current shell context;
there is no new process created to interpret them.

Functions are declared using this syntax:
fname () compound-command [redirections]
or
function fname [()] compound-command [redirections]

This defines a shell function named fname. The reserved word function is optional.
If the function reserved word is supplied, the parentheses are optional. The body of the

https://www.gnu.org/software/parallel/parallel_tutorial.html

Chapter 3: Basic Shell Features 20

function is the compound command compound-command (see Section 3.2.5 [Compound
Commands]|, page 11). That command is usually a list enclosed between { and }, but may
be any compound command listed above. If the function reserved word is used, but the
parentheses are not supplied, the braces are recommended. When the shell is in POSIX
mode (see Section 6.11 [Bash POSIX Mode], page 116), fname must be a valid shell name
and may not be the same as one of the special builtins (see Section 4.4 [Special Builtins],
page 85). When not in POSIX mode, a function name can be any unquoted shell word that
does not contain ‘$’.

Any redirections (see Section 3.6 [Redirections], page 41) associated with the shell func-
tion are performed when the function is executed. Function definitions are deleted using
the -f option to the unset builtin (see Section 4.1 [Bourne Shell Builtins|, page 52).

The exit status of a function definition is zero unless a syntax error occurs or a readonly
function with the same name already exists. When executed, the exit status of a function
is the exit status of the last command executed in the body.

Note that for historical reasons, in the most common usage the curly braces that surround
the body of the function must be separated from the body by blanks or newlines. This
is because the braces are reserved words and are only recognized as such when they are
separated from the command list by whitespace or another shell metacharacter. When
using the braces, the list must be terminated by a semicolon, a ‘&’, or a newline.

compound-command is executed whenever fname is specified as the name of a simple
command. Functions are executed in the context of the calling shell; there is no new process
created to interpret them (contrast this with the execution of a shell script).

When a function is executed, the arguments to the function become the positional pa-
rameters during its execution (see Section 3.4.1 [Positional Parameters|, page 23). The
special parameter ‘#’ that expands to the number of positional parameters is updated to
reflect the new set of positional parameters. Special parameter 0 is unchanged. The first
element of the FUNCNAME variable is set to the name of the function while the function is
executing.

All other aspects of the shell execution environment are identical between a function and
its caller with these exceptions: the DEBUG and RETURN traps are not inherited unless the
function has been given the trace attribute using the declare builtin or the —o functrace
option has been enabled with the set builtin, (in which case all functions inherit the DEBUG
and RETURN traps), and the ERR trap is not inherited unless the -o errtrace shell option
has been enabled. See Section 4.1 [Bourne Shell Builtins|, page 52, for the description of
the trap builtin.

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum
function nesting level. Function invocations that exceed the limit cause the entire command
to abort.

If the builtin command return is executed in a function, the function completes and
execution resumes with the next command after the function call. Any command associated
with the RETURN trap is executed before execution resumes. When a function completes, the
values of the positional parameters and the special parameter ‘#’ are restored to the values
they had prior to the function’s execution. If return is supplied a numeric argument, that
is the function’s return status; otherwise the function’s return status is the exit status of
the last command executed before the return.

Chapter 3: Basic Shell Features 21

Variables local to the function are declared with the local builtin (local variables).
Ordinarily, variables and their values are shared between a function and its caller. These
variables are visible only to the function and the commands it invokes. This is particularly
important when a shell function calls other functions.

In the following description, the current scope is a currently- executing function. Pre-
vious scopes consist of that function’s caller and so on, back to the "global" scope, where
the shell is not executing any shell function. A local variable at the current local scope is
a variable declared using the local or declare builtins in the function that is currently
executing.

Local variables "shadow" variables with the same name declared at previous scopes. For
instance, a local variable declared in a function hides variables with the same name declared
at previous scopes, including global variables: references and assignments refer to the local
variable, leaving the variables at previous scopes unmodified. When the function returns,
the global variable is once again visible.

The shell uses dynamic scoping to control a variable’s visibility within functions. With
dynamic scoping, visible variables and their values are a result of the sequence of function
calls that caused execution to reach the current function. The value of a variable that a
function sees depends on its value within its caller, if any, whether that caller is the global
scope or another shell function. This is also the value that a local variable declaration
shadows, and the value that is restored when the function returns.

For example, if a variable var is declared as local in function funci, and funci calls
another function func2, references to var made from within func2 resolve to the local
variable var from funcl, shadowing any global variable named var.

The following script demonstrates this behavior. When executed, the script displays
In func2, var = funcl local

func1()

{
local var=’funcl local’
func?2

func2()
{

echo "In func2, var = $var"

var=global
funci

The unset builtin also acts using the same dynamic scope: if a variable is local to the
current scope, unset unsets it; otherwise the unset will refer to the variable found in any
calling scope as described above. If a variable at the current local scope is unset, it remains
so (appearing as unset) until it is reset in that scope or until the function returns. Once
the function returns, any instance of the variable at a previous scope becomes visible. If
the unset acts on a variable at a previous scope, any instance of a variable with that name

Chapter 3: Basic Shell Features 22

that had been shadowed becomes visible (see below how the localvar_unset shell option
changes this behavior).

The -f option to the declare (typeset) builtin command (see Section 4.2 [Bash
Builtins], page 61) lists function names and definitions. The -F option to declare or
typeset lists the function names only (and optionally the source file and line number,
if the extdebug shell option is enabled). Functions may be exported so that child shell
processes (those created when executing a separate shell invocation) automatically have
them defined with the -f option to the export builtin (see Section 4.1 [Bourne Shell
Builtins], page 52). The -f option to the unset builtin (see Section 4.1 [Bourne Shell
Builtins], page 52) deletes a function definition.

Functions may be recursive. The FUNCNEST variable may be used to limit the depth of
the function call stack and restrict the number of function invocations. By default, Bash
places no limit on the number of recursive calls.

3.4 Shell Parameters

A parameter is an entity that stores values. It can be a name, a number, or one of the
special characters listed below. A variable is a parameter denoted by a name. A variable
has a value and zero or more attributes. Attributes are assigned using the declare
builtin command (see the description of the declare builtin in Section 4.2 [Bash Builtins],
page 61). The export and readonly builtins assign specific attributes.

A parameter is set if it has been assigned a value. The null string is a valid value. Once
a variable is set, it may be unset only by using the unset builtin command.

A variable is assigned to using a statement of the form
name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde
expansion, parameter and variable expansion, command substitution, arithmetic expansion,
and quote removal (see Section 3.5.3 [Shell Parameter Expansion], page 27). If the variable
has its integer attribute set, then value is evaluated as an arithmetic expression even if
the $((...)) expansion is not used (see Section 3.5.5 [Arithmetic Expansion], page 37).
Word splitting and filename expansion are not performed. Assignment statements may also
appear as arguments to the alias, declare, typeset, export, readonly, and local builtin
commands (declaration commands). When in POSIX mode (see Section 6.11 [Bash POSIX
Mode], page 116), these builtins may appear in a command after one or more instances of
the command builtin and retain these assignment statement properties. For example,

command export var=value

In the context where an assignment statement is assigning a value to a shell variable or
array index (see Section 6.7 [Arrays], page 110), the ‘+=" operator appends to or adds to
the variable’s previous value. This includes arguments to declaration commands such as
declare that accept assignment statements. When ‘+=’ is applied to a variable for which
the integer attribute has been set, the variable’s current value and value are each evaluated
as arithmetic expressions, and the sum of the results is assigned as the variable’s value. The
current value is usually an integer constant, but may be an expression. When ‘+=’ is applied
to an array variable using compound assignment (see Section 6.7 [Arrays|, page 110), the
variable’s value is not unset (as it is when using ‘=’), and new values are appended to the

Chapter 3: Basic Shell Features 23

array beginning at one greater than the array’s maximum index (for indexed arrays), or
added as additional key-value pairs in an associative array. When applied to a string-valued
variable, value is expanded and appended to the variable’s value.

A variable can be assigned the nameref attribute using the -n option to the declare or
local builtin commands (see Section 4.2 [Bash Builtins]|, page 61) to create a nameref, or a
reference to another variable. This allows variables to be manipulated indirectly. Whenever
the nameref variable is referenced, assigned to, unset, or has its attributes modified (other
than using or changing the nameref attribute itself), the operation is actually performed on
the variable specified by the nameref variable’s value. A nameref is commonly used within
shell functions to refer to a variable whose name is passed as an argument to the function.
For instance, if a variable name is passed to a shell function as its first argument, running

declare -n ref=$1

inside the function creates a local nameref variable ref whose value is the variable name
passed as the first argument. References and assignments to ref, and changes to its at-
tributes, are treated as references, assignments, and attribute modifications to the variable
whose name was passed as $1.

If the control variable in a for loop has the nameref attribute, the list of words can be
a list of shell variables, and a name reference is established for each word in the list, in
turn, when the loop is executed. Array variables cannot be given the nameref attribute.
However, nameref variables can reference array variables and subscripted array variables.
Namerefs can be unset using the -n option to the unset builtin (see Section 4.1 [Bourne
Shell Builtins], page 52). Otherwise, if unset is executed with the name of a nameref
variable as an argument, the variable referenced by the nameref variable is unset.

When the shell starts, it reads its environment and creates a shell variable from each
environment variable that has a valid name, as described below (see Section 3.7.4 [Environ-
ment|, page 47).

3.4.1 Positional Parameters

A positional parameter is a parameter denoted by one or more digits, other than the single
digit 0. Positional parameters are assigned from the shell’s arguments when it is invoked,
and may be reassigned using the set builtin command. Positional parameter N may be
referenced as ${N}, or as $N when N consists of a single digit. Positional parameters may
not be assigned to with assignment statements. The set and shift builtins are used to
set and unset them (see Chapter 4 [Shell Builtin Commands|, page 52). The positional
parameters are temporarily replaced when a shell function is executed (see Section 3.3
[Shell Functions], page 19).

When a positional parameter consisting of more than a single digit is expanded, it must
be enclosed in braces. Without braces, a digit following ‘$’ can only refer to one of the first
nine positional parameters ($1\-$9) or the special parameter $0 (see below).

3.4.2 Special Parameters

The shell treats several parameters specially. These parameters may only be referenced;
assignment to them is not allowed. Special parameters are denoted by one of the following
characters.

Chapter 3: Basic Shell Features 24

* ($*) Expands to the positional parameters, starting from one. When the ex-
pansion is not within double quotes, each positional parameter expands to a
separate word. In contexts where word expansions are performed, those words
are subject to further word splitting and filename expansion. When the expan-
sion occurs within double quotes, it expands to a single word with the value of
each parameter separated by the first character of the IFS variable. That is,
"$x" is equivalent to "$1c$2c...", where c is the first character of the value
of the IFS variable. If IFS is unset, the parameters are separated by spaces. If
IFS is null, the parameters are joined without intervening separators.

@ ($@Q) Expands to the positional parameters, starting from one. In contexts
where word splitting is performed, this expands each positional parameter to
a separate word; if not within double quotes, these words are subject to word
splitting. In contexts where word splitting is not performed, such as the value
portion of an assignment statement, this expands to a single word with each
positional parameter separated by a space. When the expansion occurs within
double quotes, and word splitting is performed, each parameter expands to a
separate word. That is, "$@" is equivalent to "$1" "$2" If the double-
quoted expansion occurs within a word, the expansion of the first parameter is
joined with the expansion of the beginning part of the original word, and the
expansion of the last parameter is joined with the expansion of the last part
of the original word. When there are no positional parameters, "$@" and $@
expand to nothing (i.e., they are removed).

($#) Expands to the number of positional parameters in decimal.
? ($7) Expands to the exit status of the most recently executed command.

- ($-, a hyphen.) Expands to the current option flags as specified upon invocation,
by the set builtin command, or those set by the shell itself (such as the -i
option).

$ ($%) Expands to the process ID of the shell. In a subshell, it expands to the
process ID of the invoking shell, not the subshell.

! ($!) Expands to the process ID of the job most recently placed into the back-
ground, whether executed as an asynchronous command or using the bg builtin
(see Section 7.2 [Job Control Builtins], page 126).

0 ($0) Expands to the name of the shell or shell script. This is set at shell
initialization. If Bash is invoked with a file of commands (see Section 3.8 [Shell
Scripts], page 50), $0 is set to the name of that file. If Bash is started with the
-c option (see Section 6.1 [Invoking Bash], page 100), then $0 is set to the first
argument after the string to be executed, if one is present. Otherwise, it is set
to the filename used to invoke Bash, as given by argument zero.

3.5 Shell Expansions

Expansion is performed on the command line after it has been split into tokens. Bash
performs these expansions:

e brace expansion

Chapter 3: Basic Shell Features 25

e tilde expansion

e parameter and variable expansion
e command substitution

e arithmetic expansion

e word splitting

e filename expansion

e quote removal

The order of expansions is: brace expansion; tilde expansion, parameter and variable ex-
pansion, arithmetic expansion, and command substitution (done in a left-to-right fashion);
word splitting; filename expansion; and quote removal.

On systems that can support it, there is an additional expansion available: process sub-
stitution. This is performed at the same time as tilde, parameter, variable, and arithmetic
expansion and command substitution.

Quote removal is always performed last. It removes quote characters present in the
original word, not ones resulting from one of the other expansions, unless they have been
quoted themselves. See Section 3.5.9 [Quote Removal], page 41, for more details.

Only brace expansion, word splitting, and filename expansion can increase the number
of words of the expansion; other expansions expand a single word to a single word. The only
exceptions to this are the expansions of "$@" and $* (see Section 3.4.2 [Special Parameters],
page 23), and "${name[@]}" and ${name[*]} (see Section 6.7 [Arrays|, page 110).

3.5.1 Brace Expansion

Brace expansion is a mechanism to generate arbitrary strings sharing a common prefix
and suffix, either of which can be empty. This mechanism is similar to filename expansion
(see Section 3.5.8 [Filename Expansion], page 39), but the filenames generated need not
exist. Patterns to be brace expanded are formed from an optional preamble, followed by
either a series of comma-separated strings or a sequence expression between a pair of braces,
followed by an optional postscript. The preamble is prefixed to each string contained within
the braces, and the postscript is then appended to each resulting string, expanding left to
right.

Brace expansions may be nested. The results of each expanded string are not sorted;
brace expansion preserves left to right order. For example,

bash$ echo af{d,c,b}te
ade ace abe

A sequence expression takes the form x..y[..incr], where x and y are either integers
or letters, and incr, an optional increment, is an integer. When integers are supplied, the
expression expands to each number between x and y, inclusive. If either x or y begins
with a zero, each generated term will contain the same number of digits, zero-padding
where necessary. When letters are supplied, the expression expands to each character
lexicographically between x and y, inclusive, using the C locale. Note that both x and y
must be of the same type (integer or letter). When the increment is supplied, it is used as
the difference between each term. The default increment is 1 or -1 as appropriate.

Chapter 3: Basic Shell Features 26

Brace expansion is performed before any other expansions, and any characters special
to other expansions are preserved in the result. It is strictly textual. Bash does not apply
any syntactic interpretation to the context of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces,
and at least one unquoted comma or a valid sequence expression. Any incorrectly formed
brace expansion is left unchanged.

A “{’ or *,” may be quoted with a backslash to prevent its being considered part of a brace
expression. To avoid conflicts with parameter expansion, the string ‘${’ is not considered
eligible for brace expansion, and inhibits brace expansion until the closing ‘}’.

This construct is typically used as shorthand when the common prefix of the strings to
be generated is longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or
chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with historical versions of sh. sh
does not treat opening or closing braces specially when they appear as part of a word,
and preserves them in the output. Bash removes braces from words as a consequence of
brace expansion. For example, a word entered to sh as ‘file{1,2} appears identically in
the output. Bash outputs that word as ‘filel file2’ after brace expansion. Start Bash
with the +B option or disable brace expansion with the +B option to the set command (see
Chapter 4 [Shell Builtin Commands], page 52) for strict sh compatibility.

3.5.2 Tilde Expansion

If a word begins with an unquoted tilde character (‘*’), all of the characters up to the first
unquoted slash (or all characters, if there is no unquoted slash) are considered a tilde-prefix.
If none of the characters in the tilde-prefix are quoted, the characters in the tilde-prefix
following the tilde are treated as a possible login name. If this login name is the null
string, the tilde is replaced with the value of the HOME shell variable. If HOME is unset, the
tilde expands to the home directory of the user executing the shell instead. Otherwise, the
tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is ‘+’, the value of the shell variable PWD replaces the tilde-prefix. If
the tilde-prefix is ‘~-’, the shell substitutes the value of the shell variable OLDPWD, if it is
set.

If the characters following the tilde in the tilde-prefix consist of a number N, optionally
prefixed by a ‘+’ or a ‘-’, the tilde-prefix is replaced with the corresponding element from the
directory stack, as it would be displayed by the dirs builtin invoked with the characters
following tilde in the tilde-prefix as an argument (see Section 6.8 [The Directory Stack],
page 112). If the tilde-prefix, sans the tilde, consists of a number without a leading ‘+’ or
‘=’ tilde expansion assumes ‘+’.

The results of tilde expansion are treated as if they were quoted, so the replacement is
not subject to word splitting and filename expansion.

If the login name is invalid, or the tilde expansion fails, the tilde-prefix is left unchanged.

Bash checks each variable assignment for unquoted tilde-prefixes immediately following
a ‘:’ or the first ‘=", and performs tilde expansion in these cases. Consequently, one may use

Chapter 3: Basic Shell Features 27

filenames with tildes in assignments to PATH, MAILPATH, and CDPATH, and the shell assigns
the expanded value.

The following table shows how Bash treats unquoted tilde-prefixes:
- The value of $HOME.
~/foo $HOME/foo

“fred/foo
The directory or file foo in the home directory of the user fred.

~“+/foo $PWD/foo

~-/foo ${0LDPWD-">"-}/foo0

N The string that would be displayed by ‘dirs +N'.
“+N The string that would be displayed by ‘dirs +N'.
“-N The string that would be displayed by ‘dirs -N'.

Bash also performs tilde expansion on words satisfying the conditions of variable as-
signments (see Section 3.4 [Shell Parameters], page 22) when they appear as arguments
to simple commands. Bash does not do this, except for the declaration commands listed
above, when in POSIX mode.

3.5.3 Shell Parameter Expansion

The ‘$’ character introduces parameter expansion, command substitution, or arithmetic
expansion. The parameter name or symbol to be expanded may be enclosed in braces, which
are optional but serve to protect the variable to be expanded from characters immediately
following it which could be interpreted as part of the name. For example, if the first
positional parameter has the value ‘a’, then ${11} expands to the value of the eleventh
positional parameter, while $11 expands to ‘al’.

When braces are used, the matching ending brace is the first ‘}’ not escaped by a
backslash or within a quoted string, and not within an embedded arithmetic expansion,
command substitution, or parameter expansion.

The basic form of parameter expansion is ${parameter}, which substitutes the value of
parameter. The parameter is a shell parameter as described above (see Section 3.4 [Shell
Parameters]|, page 22) or an array reference (see Section 6.7 [Arrays|, page 110). The braces
are required when parameter is a positional parameter with more than one digit, or when
parameter is followed by a character that is not to be interpreted as part of its name.

If the first character of parameter is an exclamation point (!), and parameter is not a
nameref, it introduces a level of indirection. Bash uses the value formed by expanding the
rest of parameter as the new parameter; this new parameter is then expanded and that value
is used in the rest of the expansion, rather than the expansion of the original parameter.
This is known as indirect expansion. The value is subject to tilde expansion, parameter
expansion, command substitution, and arithmetic expansion. If parameter is a nameref,
this expands to the name of the variable referenced by parameter instead of performing the
complete indirect expansion, for compatibility. The exceptions to this are the expansions
of ${!prefix*} and ${!name[Q]} described below. The exclamation point must immediately
follow the left brace in order to introduce indirection.

Chapter 3: Basic Shell Features

28

In each of the cases below, word is subject to tilde expansion, parameter expansion,

command substitution, and arithmetic expansion.

When not performing substring expansion, using the forms described below (e.g., ‘:="),
Bash tests for a parameter that is unset or null. Omitting the colon results in a test only
for a parameter that is unset. Put another way, if the colon is included, the operator tests
for both parameter’s existence and that its value is not null; if the colon is omitted, the

operator tests only for existence.

${parameter: —word}

If parameter is unset or null, the expansion of word is substituted. Otherwise,

the value of parameter is substituted.

$ v=123
$ echo ${v-unset}
123

$ echo ${v:-unset-or-null}

123

$ unset v

$ echo ${v-unset}
unset

$ v=

$ echo ${v-unset}

$ echo ${v:-unset-or-null}

unset-or-null

${parameter:=word}
If parameter is unset or null, the expansion of word is assigned to parameter,
and the result of the expansion is the final value of parameter.
parameters and special parameters may not be assigned in this way.

$ unset var

$: ${var=DEFAULT}
$ echo $var
DEFAULT

$ var=

$: ${var=DEFAULT}
$ echo $var

$ var=

$: ${var:=DEFAULT}
$ echo $var

DEFAULT

$ unset var

$: ${var:=DEFAULT}
$ echo $var
DEFAULT

Positional

Chapter 3: Basic Shell Features 29

${parameter: ?word}

If parameter is null or unset, the shell writes the expansion of word (or a
message to that effect if word is not present) to the standard error and, if it is
not interactive, exits with a non-zero status. An interactive shell does not exit,
but does not execute the command associated with the expansion. Otherwise,
the value of parameter is substituted.

$ var=

$: ${var:?var is unset or null}

bash: var: var is unset or null

$ echo ${var?var is unset}

$ unset var

$: ${var?var is unset}

bash: var: var is unset

$: ${var:?var is unset or null}
bash: var: var is unset or null

$ var=123
$ echo ${var:?var is unset or null}
123

${parameter:+word}
If parameter is null or unset, nothing is substituted, otherwise the expansion
of word is substituted. The value of parameter is not used.

$ var=123

$ echo ${var:+var is set and not null}
var is set and not null

$ echo ${var+var is set}

var is set

$ var=

$ echo ${var:+var is set and not null}

$ echo ${var+var is set}
var is set

$ unset var

$ echo ${var+var is set}

$ echo ${var:+var is set and not null}

$

${parameter: offset}

${parameter:offset:length}
This is referred to as Substring Expansion. It expands to up to length charac-
ters of the value of parameter starting at the character specified by offset. If
parameter is ‘@’ or ‘*’, an indexed array subscripted by ‘@ or ‘*’, or an associa-
tive array name, the results differ as described below. If :length is omitted (the
first form above), this expands to the substring of the value of parameter start-
ing at the character specified by offset and extending to the end of the value.

Chapter 3: Basic Shell Features 30

If offset is omitted, it is treated as 0. If length is omitted, but the colon after
offset is present, it is treated as 0. length and offset are arithmetic expressions
(see Section 6.5 [Shell Arithmetic], page 107).

If offset evaluates to a number less than zero, the value is used as an offset
in characters from the end of the value of parameter. If length evaluates to a
number less than zero, it is interpreted as an offset in characters from the end of
the value of parameter rather than a number of characters, and the expansion
is the characters between offset and that result.

Note that a negative offset must be separated from the colon by at least one
space to avoid being confused with the ‘:-’ expansion.

Here are some examples illustrating substring expansion on parameters and
subscripted arrays:

$ string=01234567890abcdefgh

$ echo ${string:7}

7890abcdefgh

$ echo ${string:7:0}

$ echo ${string:7:2}

78

$ echo ${string:7:-2}
7890abcdef

$ echo ${string: -7}
bcdefgh

$ echo ${string: -7:0}

$ echo ${string: -7:2}

bc

$ echo ${string: -7:-2}
bcdef

$ set -- 01234567890abcdefgh
$ echo ${1:7}

7890abcdefgh

$ echo ${1:7:0%}

$ echo ${1:7:2}

78

$ echo ${1:7:-2}
7890abcdef

$ echo ${1: -7}
bcdefgh

$ echo ${1: -7:0%}

$ echo ${1: -7:2}
bc

$ echo ${1: -7:-2}
bcdef

Chapter 3: Basic Shell Features 31

$ array[0]=01234567890abcdefgh
$ echo ${array[0]:7}
7890abcdefgh

$ echo ${array[0]:7:0}

$ echo ${array[0]:7:2}

78

$ echo ${array[0]:7:-2%}
7890abcdef

$ echo ${array[0]: -7}
bcdefgh

$ echo ${array[0]: -7:0}

$ echo ${array[0]: -7:2}
bc

$ echo ${array[0]: -7:-2}
bcdef

If parameter is ‘@’ or ‘*’, the result is length positional parameters beginning
at offset. A negative offset is taken relative to one greater than the greatest
positional parameter, so an offset of -1 evaluates to the last positional parameter
(or 0 if there are no positional parameters). It is an expansion error if length
evaluates to a number less than zero.

The following examples illustrate substring expansion using positional param-
eters:

$set -1234567890abcdefgh
$ echo ${@:7}

789 0abcdefgh

$ echo ${@:7:0%}

$ echo ${0@:7:2}

7 8

$ echo ${@:7:-2}

bash: -2: substring expression < 0O
$ echo ${@: -7:2}

b c

$ echo ${@:0}

./bash 123456789 0abcdefgh
$ echo ${0@:0:2}

./bash 1

$ echo ${@: -7:0%}

If parameter is an indexed array name subscripted by ‘@ or ‘x’, the result is

the length members of the array beginning with ${parameter[offset]}. A
negative offset is taken relative to one greater than the maximum index of the
specified array. It is an expansion error if length evaluates to a number less
than zero.

Chapter 3: Basic Shell Features 32

These examples show how you can use substring expansion with indexed arrays:

$ array=(0 1 23456789 0abcdefgh)
$ echo ${arrayl[@]:7}

789 0abcdefgh

$ echo ${array[@]:7:2}

78

$ echo ${arrayl@]: -7:2}

bc

$

echo ${array[@]: -7:-2}

bash: -2: substring expression < 0

$ echo ${arrayl[@]:0}
0123456789 0abcdefgh
$ echo ${arrayl[@]:0:2}

01

$ echo ${arrayl[e@]: -7:0}

Substring expansion applied to an associative array produces undefined results.

Substring indexing is zero-based unless the positional parameters are used, in
which case the indexing starts at 1 by default. If offset is 0, and the positional
parameters are used, $0 is prefixed to the list.

${!prefix*}

${!prefix@}
Expands to the names of variables whose names begin with prefix, separated by
the first character of the IFS special variable. When ‘@’ is used and the expan-
sion appears within double quotes, each variable name expands to a separate
word.

${!name[@]}

${'name[*]}
If name is an array variable, expands to the list of array indices (keys) assigned
in name. If name is not an array, expands to 0 if name is set and null otherwise.
When ‘@ is used and the expansion appears within double quotes, each key
expands to a separate word.

${#tparameter’}

Substitutes the length in characters of the value of parameter. If parameter
is ‘¢’ or ‘@’, the value substituted is the number of positional parameters. If
parameter is an array name subscripted by ‘*’ or ‘@’, the value substituted is
the number of elements in the array. If parameter is an indexed array name
subscripted by a negative number, that number is interpreted as relative to one
greater than the maximum index of parameter, so negative indices count back
from the end of the array, and an index of -1 references the last element.

${parameter#tword}

${parameter##word}
The word is expanded to produce a pattern and matched against the expanded
value of parameter according to the rules described below (see Section 3.5.8.1
[Pattern Matching], page 39). If the pattern matches the beginning of the

Chapter 3: Basic Shell Features 33

expanded value of parameter, then the result of the expansion is the expanded
value of parameter with the shortest matching pattern (the ‘#’ case) or the
longest matching pattern (the ‘##’ case) deleted. If parameter is ‘@ or ‘*’; the
pattern removal operation is applied to each positional parameter in turn, and
the expansion is the resultant list. If parameter is an array variable subscripted
with ‘@ or ‘*¥’, the pattern removal operation is applied to each member of the
array in turn, and the expansion is the resultant list.

${parameteriword}

${parametery,word}
The word is expanded to produce a pattern and matched against the expanded
value of parameter according to the rules described below (see Section 3.5.8.1
[Pattern Matching], page 39). If the pattern matches a trailing portion of the
expanded value of parameter, then the result of the expansion is the value
of parameter with the shortest matching pattern (the ‘%’ case) or the longest
matching pattern (the ‘%% case) deleted. If parameter is ‘@ or ‘*’, the pattern
removal operation is applied to each positional parameter in turn, and the
expansion is the resultant list. If parameter is an array variable subscripted
with ‘@ or ‘*’, the pattern removal operation is applied to each member of the
array in turn, and the expansion is the resultant list.

${parameter/pattern/string}

${parameter//pattern/stringt

${parameter/#pattern/string’

${parameter/’pattern/string}
The pattern is expanded to produce a pattern and matched against the ex-
panded value of parameter as described below (see Section 3.5.8.1 [Pattern
Matching], page 39). The longest match of pattern in the expanded value is
replaced with string. string undergoes tilde expansion, parameter and variable
expansion, arithmetic expansion, command and process substitution, and quote
removal.

In the first form above, only the first match is replaced. If there are two
slashes separating parameter and pattern (the second form above), all matches
of pattern are replaced with string. If pattern is preceded by ‘#’ (the third form
above), it must match at the beginning of the expanded value of parameter. If
pattern is preceded by ‘%’ (the fourth form above), it must match at the end of
the expanded value of parameter.

If the expansion of string is null, matches of pattern are deleted and the ‘/’
following pattern may be omitted.

If the patsub_replacement shell option is enabled using shopt (see
Section 4.3.2 [The Shopt Builtin], page 78), any unquoted instances of ‘&’ in
string are replaced with the matching portion of pattern. This is intended to
duplicate a common sed idiom.

Quoting any part of string inhibits replacement in the expansion of the quoted
portion, including replacement strings stored in shell variables. Backslash es-
capes ‘&’ in string; the backslash is removed in order to permit a literal ‘&’ in
the replacement string. Users should take care if string is double-quoted to

Chapter 3: Basic Shell Features 34

avoid unwanted interactions between the backslash and double-quoting, since
backslash has special meaning within double quotes. Pattern substitution per-
forms the check for unquoted ‘&’ after expanding string, so users should ensure
to properly quote any occurrences of ‘&’ they want to be taken literally in the
replacement and ensure any instances of ‘&’ they want to be replaced are un-
quoted.

For instance,

var=abcdef

rep="& ’

echo ${var/abc/& }
echo "${var/abc/& }"
echo ${var/abc/$rep}
echo "${var/abc/$rep}"

will display four lines of "abc def", while

var=abcdef

rep="& ’

echo ${var/abc/\& }
echo "${var/abc/\& }"
echo ${var/abc/"& "}
echo ${var/abc/"$rep"}

will display four lines of "& def". Like the pattern removal operators, double
quotes surrounding the replacement string quote the expanded characters, while
double quotes enclosing the entire parameter substitution do not, since the
expansion is performed in a context that doesn’t take any enclosing double
quotes into account.

Since backslash can escape ‘&’, it can also escape a backslash in the replacement
string. This means that ‘\\’ will insert a literal backslash into the replacement,
so these two echo commands

var=abcdef
rep="\\&xyz’

echo ${var/abc/\\&xyz}
echo ${var/abc/$rep}

will both output ‘\abcxyzdef’.
It should rarely be necessary to enclose only string in double quotes.

If the nocasematch shell option (see the description of shopt in Section 4.3.2
[The Shopt Builtin|, page 78) is enabled, the match is performed without regard
to the case of alphabetic characters.

If parameter is ‘@’ or ‘*’, the substitution operation is applied to each positional
parameter in turn, and the expansion is the resultant list. If parameter is an
array variable subscripted with ‘@ or ‘*’, the substitution operation is applied
to each member of the array in turn, and the expansion is the resultant list.

Chapter 3: Basic Shell Features 35

${parameter-pattern}

${parameter”"pattern}

${parameter,pattern}

${parameter, ,pattern’t
This expansion modifies the case of alphabetic characters in parameter.
First, the pattern is expanded to produce a pattern as described below in
Section 3.5.8.1 [Pattern Matching], page 39.

Bash then examines characters in the expanded value of parameter against
pattern as described below. If a character matches the pattern, its case is
converted. The pattern should not attempt to match more than one character.

Using ‘~’ converts lowercase letters matching pattern to uppercase; ‘,” converts
matching uppercase letters to lowercase. The ‘*’ and ‘,’ variants examine the
first character in the expanded value and convert its case if it matches pattern;
the “°~’ and ¢, ,’ variants examine all characters in the expanded value and
convert each one that matches pattern. If pattern is omitted, it is treated like
a ‘?’, which matches every character.

If parameter is ‘@’ or ‘*’, the case modification operation is applied to each posi-
tional parameter in turn, and the expansion is the resultant list. If parameter is
an array variable subscripted with ‘@ or ‘*’, the case modification operation is
applied to each member of the array in turn, and the expansion is the resultant
list.

${parameter@operator}
The expansion is either a transformation of the value of parameter or informa-
tion about parameter itself, depending on the value of operator. Each operator
is a single letter:

U The expansion is a string that is the value of parameter with low-
ercase alphabetic characters converted to uppercase.

u The expansion is a string that is the value of parameter with the
first character converted to uppercase, if it is alphabetic.

L The expansion is a string that is the value of parameter with up-
percase alphabetic characters converted to lowercase.

Q The expansion is a string that is the value of parameter quoted in
a format that can be reused as input.

E The expansion is a string that is the value of parameter with back-
slash escape sequences expanded as with the $°. ..’ quoting mech-
anism.

P The expansion is a string that is the result of expanding the value of

parameter as if it were a prompt string (see Section 6.9 [Controlling
the Prompt|, page 114).

A The expansion is a string in the form of an assignment statement
or declare command that, if evaluated, recreates parameter with
its attributes and value.

Chapter 3: Basic Shell Features 36

K Produces a possibly-quoted version of the value of parameter, ex-
cept that it prints the values of indexed and associative arrays
as a sequence of quoted key-value pairs (see Section 6.7 [Arrays|,
page 110). The keys and values are quoted in a format that can be
reused as input.

a The expansion is a string consisting of flag values representing pa-
rameter’s attributes.

k Like the ‘K’ transformation, but expands the keys and values of in-
dexed and associative arrays to separate words after word splitting.

If parameter is ‘@’ or ‘*’, the operation is applied to each positional parameter
in turn, and the expansion is the resultant list. If parameter is an array variable
subscripted with ‘@ or ‘*’, the operation is applied to each member of the array
in turn, and the expansion is the resultant list.

The result of the expansion is subject to word splitting and filename expansion
as described below.

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself. The
standard form of command substitution occurs when a command is enclosed as follows:

$ (command)
or (deprecated)
‘ command® .

Bash performs command substitution by executing command in a subshell environment and
replacing the command substitution with the standard output of the command, with any
trailing newlines deleted. Embedded newlines are not deleted, but they may be removed
during word splitting. The command substitution $(cat file) can be replaced by the
equivalent but faster $(< file).

With the old-style backquote form of substitution, backslash retains its literal meaning
except when followed by ‘$’, <“’, or ‘\’. The first backquote not preceded by a backslash
terminates the command substitution. When using the $(command) form, all characters
between the parentheses make up the command; none are treated specially.

There is an alternate form of command substitution:
${c command; }

which executes command in the current execution environment and captures its output,
again with trailing newlines removed.

The character ¢ following the open brace must be a space, tab, newline, or ‘|’, and
the close brace must be in a position where a reserved word may appear (i.e., preceded
by a command terminator such as semicolon). Bash allows the close brace to be joined to
the remaining characters in the word without being followed by a shell metacharacter as a
reserved word would usually require.

Any side effects of command take effect immediately in the current execution environ-
ment and persist in the current environment after the command completes (e.g., the exit
builtin exits the shell).

Chapter 3: Basic Shell Features 37

This type of command substitution superficially resembles executing an unnamed shell
function: local variables are created as when a shell function is executing, and the return
builtin forces command to complete; however, the rest of the execution environment, in-
cluding the positional parameters, is shared with the caller.

If the first character following the open brace is a ‘|’, the construct expands to the value
of the REPLY shell variable after command executes, without removing any trailing newlines,
and the standard output of command remains the same as in the calling shell. Bash creates
REPLY as an initially-unset local variable when command executes, and restores REPLY to
the value it had before the command substitution after command completes, as with any
local variable.

For example, this construct expands to ‘12345’ and leaves the shell variable X unchanged
in the current execution environment:

${ local X=12345 ; echo $X; }

(not declaring X as local would modify its value in the current environment, as with normal
shell function execution), while this construct does not require any output to expand to
‘12345’:

${| REPLY=12345; }
and restores REPLY to the value it had before the command substitution.

Command substitutions may be nested. To nest when using the backquoted form, escape
the inner backquotes with backslashes.

If the substitution appears within double quotes, Bash does not perform word splitting
and filename expansion on the results.

3.5.5 Arithmetic Expansion

Arithmetic expansion evaluates an arithmetic expression and substitutes the result. The
format for arithmetic expansion is:

$((expression))

The expression undergoes the same expansions as if it were within double quotes, but
unescaped double quote characters in expression are not treated specially and are removed.
All tokens in the expression undergo parameter and variable expansion, command substitu-
tion, and quote removal. The result is treated as the arithmetic expression to be evaluated.
Since the way Bash handles double quotes can potentially result in empty strings, arith-
metic expansion treats those as expressions that evaluate to 0. Arithmetic expansions may
be nested.

The evaluation is performed according to the rules listed below (see Section 6.5 [Shell
Arithmetic], page 107). If the expression is invalid, Bash prints a message indicating failure
to the standard error, does not perform the substitution, and does not execute the command
associated with the expansion.

3.5.6 Process Substitution

Process substitution allows a process’s input or output to be referred to using a filename.
It takes the form of

<(list)

Chapter 3: Basic Shell Features 38

or
>(1list)

The process list is run asynchronously, and its input or output appears as a filename. This
filename is passed as an argument to the current command as the result of the expansion.

If the >(1ist) form is used, writing to the file provides input for list. If the <(1list)
form is used, reading the file obtains the output of list. Note that no space may appear
between the < or > and the left parenthesis, otherwise the construct would be interpreted
as a redirection.

Process substitution is supported on systems that support named pipes (FIFOs) or the
/dev/fd method of naming open files.

When available, process substitution is performed simultaneously with parameter and
variable expansion, command substitution, and arithmetic expansion.

3.5.7 Word Splitting

The shell scans the results of parameter expansion, command substitution, and arithmetic
expansion that did not occur within double quotes for word splitting. Words that were not
expanded are not split.

The shell treats each character of $IFS as a delimiter, and splits the results of the other
expansions into fields using these characters as field terminators.

An IFS whitespace character is whitespace as defined above (see Chapter 2 [Definitions],
page 3) that appears in the value of IFS. Space, tab, and newline are always considered
IFS whitespace, even if they don’t appear in the locale’s space category.

If IFS is unset, word splitting behaves as if its value were <space><tab><newline>, and
treats these characters as IFS whitespace. If the value of IFS is null, no word splitting
occurs, but implicit null arguments (see below) are still removed.

Word splitting begins by removing sequences of IFS whitespace characters from the
beginning and end of the results of the previous expansions, then splits the remaining
words.

If the value of IFS consists solely of IFS whitespace, any sequence of IFS whitespace
characters delimits a field, so a field consists of characters that are not unquoted IFS
whitespace, and null fields result only from quoting.

If IFS contains a non-whitespace character, then any character in the value of IFS that
is not IFS whitespace, along with any adjacent IFS whitespace characters, delimits a field.
This means that adjacent non-IFS-whitespace delimiters produce a null field. A sequence
of IF'S whitespace characters also delimits a field.

Explicit null arguments ("" or ’?) are retained and passed to commands as empty strings.
Unquoted implicit null arguments, resulting from the expansion of parameters that have no
values, are removed. Expanding a parameter with no value within double quotes produces
a null field, which is retained and passed to a command as an empty string.

When a quoted null argument appears as part of a word whose expansion is non-null,
word splitting removes the null argument portion, leaving the non-null expansion. That is,
the word -d’’ becomes -d after word splitting and null argument removal.

Chapter 3: Basic Shell Features 39

3.5.8 Filename Expansion

After word splitting, unless the -f option has been set (see Section 4.3.1 [The Set Builtin],
page 74), Bash scans each word for the characters ‘*’, ‘?’, and ‘[’. If one of these characters
appears, and is not quoted, then the word is regarded as a pattern, and replaced with
a sorted list of filenames matching the pattern (see Section 3.5.8.1 [Pattern Matching],
page 39), subject to the value of the GLOBSORT shell variable (see Section 5.2 [Bash Variables],
page 87).

If no matching filenames are found, and the shell option nullglob is disabled, the word
is left unchanged. If the nullglob option is set, and no matches are found, the word is
removed. If the failglob shell option is set, and no matches are found, Bash prints an error
message and does not execute the command. If the shell option nocaseglob is enabled, the
match is performed without regard to the case of alphabetic characters.

When a pattern is used for filename expansion, the character ‘.’ at the start of a filename
or immediately following a slash must be matched explicitly, unless the shell option dotglob

is set. In order to match the filenames . and .., the pattern must begin with ‘.’ (for
example, ‘.?77), even if dotglob is set. If the globskipdots shell option is enabled, the
filenames . and .. never match, even if the pattern begins with a ‘.’. When not matching

filenames, the ‘.’ character is not treated specially.

When matching a filename, the slash character must always be matched explicitly by a
slash in the pattern, but in other matching contexts it can be matched by a special pattern
character as described below (see Section 3.5.8.1 [Pattern Matching], page 39).

See the description of shopt in Section 4.3.2 [The Shopt Builtin], page 78, for a descrip-
tion of the nocaseglob, nullglob, globskipdots, failglob, and dotglob options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching
a pattern. If GLOBIGNORE is set, each matching file name that also matches one of the
patterns in GLOBIGNORE is removed from the list of matches. If the nocaseglob option is
set, the matching against the patterns in GLOBIGNORE is performed without regard to case.
The filenames . and .. are always ignored when GLOBIGNORE is set and not null. However,
setting GLOBIGNORE to a non-null value has the effect of enabling the dotglob shell option,
so all other filenames beginning with a ‘.’ match. To get the old behavior of ignoring
filenames beginning with a ‘.’, make ‘.*’ one of the patterns in GLOBIGNORE. The dotglob
option is disabled when GLOBIGNORE is unset. The GLOBIGNORE pattern matching honors
the setting of the extglob shell option.

The value of the GLOBSORT shell variable controls how the results of pathname expansion
are sorted, as described below (see Section 5.2 [Bash Variables], page 87).

3.5.8.1 Pattern Matching

Any character that appears in a pattern, other than the special pattern characters described
below, matches itself. The NUL character may not occur in a pattern. A backslash escapes
the following character; the escaping backslash is discarded when matching. The special
pattern characters must be quoted if they are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string. When the globstar shell option
is enabled, and ‘*’ is used in a filename expansion context, two adjacent ‘*’s used

Chapter 3: Basic Shell Features 40

as a single pattern match all files and zero or more directories and subdirectories.
If followed by a ‘/’, two adjacent ‘*’s match only directories and subdirectories.

? Matches any single character.

[...] Matches any one of the characters enclosed between the brackets. This is known
as a bracket expression and matches a single character. A pair of characters
separated by a hyphen denotes a range expression; any character that falls
between those two characters, inclusive, using the current locale’s collating
sequence and character set, matches. If the first character following the ‘[’ is a
‘17 or a ‘°’ then any character not within the range matches. To match a ‘—’,
include it as the first or last character in the set. To match a ‘]’, include it as
the first character in the set.

The sorting order of characters in range expressions, and the characters included
in the range, are determined by the current locale and the values of the LC_
COLLATE and LC_ALL shell variables, if set.

For example, in the default C locale, ‘[a-dx-z]’ is equivalent to ‘[abcdxyz]’.
Many locales sort characters in dictionary order, and in these locales
‘[a-dx-z]’ is typically not equivalent to ‘[abcdxyz]’; it might be equivalent
to ‘[aBbCcDdxYyZz]’, for example. To obtain the traditional interpretation of
ranges in bracket expressions, you can force the use of the C locale by setting
the LC_COLLATE or LC_ALL environment variable to the value ‘C’, or enable the
globasciiranges shell option.

Within a bracket expression, character classes can be specified using the syn-
tax [:class:], where class is one of the following classes defined in the POSIX
standard:

alnum alpha ascii blank cntrl digit graph lower
print punct space upper word xdigit

A character class matches any character belonging to that class. The word
character class matches letters, digits, and the character ‘_’

For instance, the following pattern will match any character belonging to the
space character class in the current locale, then any upper case letter or ‘!’, a
dot, and finally any lower case letter or a hyphen.

[[:space:]1] [[:upper:]1!].[-[:1lower:]]
Within a bracket expression, an equivalence class can be specified using the

syntax [=c=], which matches all characters with the same collation weight (as
defined by the current locale) as the character c.

Within a bracket expression, the syntax [.symbol.] matches the collating sym-
bol symbol.

If the extglob shell option is enabled using the shopt builtin, the shell recognizes several
extended pattern matching operators. In the following description, a pattern-list is a list of
one or more patterns separated by a ‘|’. When matching filenames, the dotglob shell option
determines the set of filenames that are tested, as described above. Composite patterns may
be formed using one or more of the following sub-patterns:

?7(pattern-1ist)
Matches zero or one occurrence of the given patterns.

Chapter 3: Basic Shell Features 41

*(pattern-list)
Matches zero or more occurrences of the given patterns.

+(pattern-1list)
Matches one or more occurrences of the given patterns.

@(pattern-list)
Matches one of the given patterns.

| (pattern-1list)
Matches anything except one of the given patterns.

The extglob option changes the behavior of the parser, since the parentheses are nor-
mally treated as operators with syntactic meaning. To ensure that extended matching
patterns are parsed correctly, make sure that extglob is enabled before parsing constructs
containing the patterns, including shell functions and command substitutions.

When matching filenames, the dotglob shell option determines the set of filenames that
are tested: when dotglob is enabled, the set of filenames includes all files beginning with
.7, but the filenames . and .. must be matched by a pattern or sub-pattern that begins
with a dot; when it is disabled, the set does not include any filenames beginning with .’
unless the pattern or sub-pattern begins with a ‘.’. If the globskipdots shell option is
enabled, the filenames . and .. never appear in the set. As above, ‘.’ only has a special
meaning when matching filenames.

Complicated extended pattern matching against long strings is slow, especially when
the patterns contain alternations and the strings contain multiple matches. Using separate
matches against shorter strings, or using arrays of strings instead of a single long string,
may be faster.

3.5.9 Quote Removal

After the preceding expansions, all unquoted occurrences of the characters ‘\’, *’, and ‘"’
that did not result from one of the above expansions are removed.

3.6 Redirections

Before a command is executed, its input and output may be redirected using a special no-
tation interpreted by the shell. Redirection allows commands’ file handles to be duplicated,
opened, closed, made to refer to different files, and can change the files the command reads
from and writes to. When used with the exec builtin, redirections modify file handles in
the current shell execution environment. The following redirection operators may precede
or appear anywhere within a simple command or may follow a command. Redirections are
processed in the order they appear, from left to right.

Each redirection that may be preceded by a file descriptor number may instead be
preceded by a word of the form {varname}. In this case, for each redirection operator except
>&- and <&-, the shell allocates a file descriptor greater than or equal to 10 and assigns
it to {varname}. If {varname} precedes >&- or <&-, the value of varname defines the file
descriptor to close. If {varname} is supplied, the redirection persists beyond the scope of
the command, which allows the shell programmer to manage the file descriptor’s lifetime
manually without using the exec builtin. The varredir_close shell option manages this
behavior (see Section 4.3.2 [The Shopt Builtin|, page 78).

Chapter 3: Basic Shell Features 42

In the following descriptions, if the file descriptor number is omitted, and the first char-
acter of the redirection operator is ‘<’; the redirection refers to the standard input (file
descriptor 0). If the first character of the redirection operator is ‘>’, the redirection refers
to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless other-
wise noted, is subjected to brace expansion, tilde expansion, parameter and variable expan-
sion, command substitution, arithmetic expansion, quote removal, filename expansion, and
word splitting. If it expands to more than one word, Bash reports an error.

The order of redirections is significant. For example, the command

1s > dirlist 2>&1
directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

1s 2>&1 > dirlist
directs only the standard output to file dirlist, because the standard error was made a copy
of the standard output before the standard output was redirected to dirlist.

Bash handles several filenames specially when they are used in redirections, as described
in the following table. If the operating system on which Bash is running provides these spe-
cial files, Bash uses them; otherwise it emulates them internally with the behavior described
below.

/dev/fd/fd
If fd is a valid integer, duplicate file descriptor fd.

/dev/stdin
File descriptor 0 is duplicated.

/dev/stdout
File descriptor 1 is duplicated.

/dev/stderr
File descriptor 2 is duplicated.

/dev/tcp/host/port
If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open the corresponding TCP socket.

/dev/udp/host/port
If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open the corresponding UDP socket.
A failure to open or create a file causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care, as they may
conflict with file descriptors the shell uses internally.

3.6.1 Redirecting Input

Redirecting input opens the file whose name results from the expansion of word for reading
on file descriptor n, or the standard input (file descriptor 0) if n is not specified.
The general format for redirecting input is:

[n]<word

Chapter 3: Basic Shell Features 43

3.6.2 Redirecting Output

Redirecting output opens the file whose name results from the expansion of word for writing
on file descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file
does not exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:
[n]>[|]word

If the redirection operator is ‘>’, and the noclobber option to the set builtin command
has been enabled, the redirection fails if the file whose name results from the expansion
of word exists and is a regular file. If the redirection operator is ‘>|’, or the redirection
operator is ‘>” and the noclobber option to the set builtin is not enabled, Bash attempts
the redirection even if the file named by word exists.

3.6.3 Appending Redirected Output

Redirecting output in this fashion opens the file whose name results from the expansion of
word for appending on file descriptor n, or the standard output (file descriptor 1) if n is not
specified. If the file does not exist it is created.

The general format for appending output is:

[n] >>word

3.6.4 Redirecting Standard Output and Standard Error

This construct redirects both the standard output (file descriptor 1) and the standard error
output (file descriptor 2) to the file whose name is the expansion of word.

There are two formats for redirecting standard output and standard error:
&>word
and
>&word
Of the two forms, the first is preferred. This is semantically equivalent to
>word 2>&1

When using the second form, word may not expand to a number or ‘=’. If it does,
other redirection operators apply (see Duplicating File Descriptors below) for compatibility
reasons.

3.6.5 Appending Standard Output and Standard Error

This construct appends both the standard output (file descriptor 1) and the standard error
output (file descriptor 2) to the file whose name is the expansion of word.

The format for appending standard output and standard error is:
&>>word
This is semantically equivalent to
>>word 2>&1

(see Duplicating File Descriptors below).

Chapter 3: Basic Shell Features 44

3.6.6 Here Documents

This type of redirection instructs the shell to read input from the current source until it
reads a line containing only delimiter (with no trailing blanks). All of the lines read up
to that point then become the standard input (or file descriptor n if n is specified) for a
command.

The format of here-documents is:

[n]<<[—]word
here-document
delimiter

The shell does not perform parameter and variable expansion, command substitution,
arithmetic expansion, or filename expansion on word.

If any part of word is quoted, the delimiter is the result of quote removal on word, and
the lines in the here-document are not expanded. If word is unquoted, delimiter is word
itself, and the here-document text is treated similarly to a double-quoted string: all lines
of the here-document are subjected to parameter expansion, command substitution, and
arithmetic expansion, the character sequence \newline is treated literally, and ‘\’ must
be used to quote the characters ‘\’, ‘$’, and ‘‘’; however, double quote characters have no
special meaning.

If the redirection operator is ‘<<-’, the shell strips leading tab characters are stripped
from input lines and the line containing delimiter. This allows here-documents within shell
scripts to be indented in a natural fashion.

If the delimiter is not quoted, the \<newline> sequence is treated as a line continuation:
the two lines are joined and the backslash-newline is removed. This happens while reading
the here-document, before the check for the ending delimiter, so joined lines can form the
end delimiter.

3.6.7 Here Strings
A variant of here documents, the format is:
[n]<<< word

The word undergoes tilde expansion, parameter and variable expansion, command sub-
stitution, arithmetic expansion, and quote removal. Filename expansion and word splitting
are not performed. The result is supplied as a single string, with a newline appended, to
the command on its standard input (or file descriptor n if n is specified).

3.6.8 Duplicating File Descriptors
The redirection operator
[n] <&word

is used to duplicate input file descriptors. If word expands to one or more digits, file

descriptor n is made to be a copy of that file descriptor. It is a redirection error if the

digits in word do not specify a file descriptor open for input. If word evaluates to ‘-’, file

descriptor n is closed. If n is not specified, this uses the standard input (file descriptor 0).
The operator

[n] >&word

Chapter 3: Basic Shell Features 45

is used similarly to duplicate output file descriptors. If n is not specified, this uses the
standard output (file descriptor 1). It is a redirection error if the digits in word do not
specify a file descriptor open for output. If word evaluates to ‘-’, file descriptor n is closed.
As a special case, if n is omitted, and word does not expand to one or more digits or ‘-’,
this redirects the standard output and standard error as described previously.

3.6.9 Moving File Descriptors

The redirection operator
[n]l<&digit-
moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0)
if n is not specified. digit is closed after being duplicated to n.
Similarly, the redirection operator
[n]>&digit-
moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1)
if n is not specified.

3.6.10 Opening File Descriptors for Reading and Writing

The redirection operator
[n]l<>word

opens the file whose name is the expansion of word for both reading and writing on file
descriptor n, or on file descriptor 0 if n is not specified. If the file does not exist, it is
created.

3.7 Executing Commands

3.7.1 Simple Command Expansion

When the shell executes a simple command, it performs the following expansions, assign-
ments, and redirections, from left to right, in the following order.

1. The words that the parser has marked as variable assignments (those preceding the
command name) and redirections are saved for later processing.

2. The words that are not variable assignments or redirections are expanded (see
Section 3.5 [Shell Expansions|, page 24). If any words remain after expansion, the
first word is taken to be the name of the command and the remaining words are the
arguments.

3. Redirections are performed as described above (see Section 3.6 [Redirections|, page 41).

4. The text after the ‘=" in each variable assignment undergoes tilde expansion, parameter
expansion, command substitution, arithmetic expansion, and quote removal before
being assigned to the variable.

If no command name results, the variable assignments affect the current shell environ-
ment. In the case of such a command (one that consists only of assignment statements
and redirections), assignment statements are performed before redirections. Otherwise, the
variables are added to the environment of the executed command and do not affect the cur-
rent shell environment. If any of the assignments attempts to assign a value to a readonly
variable, an error occurs, and the command exits with a non-zero status.

Chapter 3: Basic Shell Features 46

If no command name results, redirections are performed, but do not affect the current
shell environment. A redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below.
Otherwise, the command exits. If one of the expansions contained a command substitu-
tion, the exit status of the command is the exit status of the last command substitution
performed. If there were no command substitutions, the command exits with a zero status.

3.7.2 Command Search and Execution

After a command has been split into words, if it results in a simple command and an
optional list of arguments, the shell performs the following actions.

1. If the command name contains no slashes, the shell attempts to locate it. If there exists
a shell function by that name, that function is invoked as described in Section 3.3 [Shell
Functions], page 19.

2. If the name does not match a function, the shell searches for it in the list of shell
builtins. If a match is found, that builtin is invoked.

3. If the name is neither a shell function nor a builtin, and contains no slashes, Bash
searches each element of $PATH for a directory containing an executable file by that
name. Bash uses a hash table to remember the full pathnames of executable files to
avoid multiple PATH searches (see the description of hash in Section 4.1 [Bourne Shell
Builtins], page 52). Bash performs a full search of the directories in $PATH only if the
command is not found in the hash table. If the search is unsuccessful, the shell searches
for a defined shell function named command_not_found_handle. If that function exists,
it is invoked in a separate execution environment with the original command and the
original command’s arguments as its arguments, and the function’s exit status becomes
the exit status of that subshell. If that function is not defined, the shell prints an error
message and returns an exit status of 127.

4. If the search is successful, or if the command name contains one or more slashes, the
shell executes the named program in a separate execution environment. Argument 0
is set to the name given, and the remaining arguments to the command are set to the
arguments supplied, if any.

5. If this execution fails because the file is not in executable format, and the file is not a
directory, it is assumed to be a shell script, a file containing shell commands, and the
shell executes it as described in Section 3.8 [Shell Scripts], page 50.

6. If the command was not begun asynchronously, the shell waits for the command to
complete and collects its exit status.

3.7.3 Command Execution Environment
The shell has an execution environment, which consists of the following:

e Open files inherited by the shell at invocation, as modified by redirections supplied to
the exec builtin.

e The current working directory as set by cd, pushd, or popd, or inherited by the shell
at invocation.

e The file creation mode mask as set by umask or inherited from the shell’s parent.

e Current traps set by trap.

Chapter 3: Basic Shell Features 47

e Shell parameters that are set by variable assignment or with set or inherited from the
shell’s parent in the environment.

e Shell functions defined during execution or inherited from the shell’s parent in the
environment.

e Options enabled at invocation (either by default or with command-line arguments) or
by set.

e Options enabled by shopt (see Section 4.3.2 [The Shopt Builtin], page 78).
e Shell aliases defined with alias (see Section 6.6 [Aliases], page 109).

e Various process IDs, including those of background jobs (see Section 3.2.4 [Lists],
page 11), the value of $$, and the value of $PPID.

When a simple command other than a builtin or shell function is to be executed, it is
invoked in a separate execution environment that consists of the following. Unless otherwise
noted, the values are inherited from the shell.

e The shell’s open files, plus any modifications and additions specified by redirections to
the command.

e The current working directory.
e The file creation mode mask.

e Shell variables and functions marked for export, along with variables exported for the
command, passed in the environment (see Section 3.7.4 [Environment|, page 47).

e Traps caught by the shell are reset to the values inherited from the shell’s parent, and
traps ignored by the shell are ignored.

A command invoked in this separate environment cannot affect the shell’s execution
environment.

A subshell is a copy of the shell process.

Command substitution, commands grouped with parentheses, and asynchronous com-
mands are invoked in a subshell environment that is a duplicate of the shell environment,
except that traps caught by the shell are reset to the values that the shell inherited from
its parent at invocation. Builtin commands that are invoked as part of a pipeline, ex-
cept possibly in the last element depending on the value of the lastpipe shell option (see
Section 4.3.2 [The Shopt Builtin], page 78), are also executed in a subshell environment.
Changes made to the subshell environment cannot affect the shell’s execution environment.

When the shell is in POSIX mode, subshells spawned to execute command substitutions
inherit the value of the -e option from the parent shell. When not in POSIX mode, Bash
clears the —e option in such subshells See the description of the inherit_errexit shell
option (see Section 4.2 [Bash Builtins], page 61) for how to control this behavior when not
in POSIX mode.

If a command is followed by a ‘&’ and job control is not active, the default standard input
for the command is the empty file /dev/null. Otherwise, the invoked command inherits
the file descriptors of the calling shell as modified by redirections.

3.7.4 Environment

When a program is invoked it is given an array of strings called the environment. This is a
list of name-value pairs, of the form name=value.

Chapter 3: Basic Shell Features 48

Bash provides several ways to manipulate the environment. On invocation, the shell
scans its own environment and creates a parameter for each name found, automatically
marking it for export to child processes. Executed commands inherit the environment. The
export, ‘declare -x’, and unset commands modify the environment by adding and deleting
parameters and functions. If the value of a parameter in the environment is modified,
the new value automatically becomes part of the environment, replacing the old. The
environment inherited by any executed command consists of the shell’s initial environment,
whose values may be modified in the shell, less any pairs removed by the unset and ‘export
-n’ commands, plus any additions via the export and ‘declare -x’ commands.

If any parameter assignment statements, as described in Section 3.4 [Shell Parameters],
page 22, appear before a simple command, the variable assignments are part of that com-
mand’s environment for as long as it executes. These assignment statements affect only the
environment seen by that command. If these assignments precede a call to a shell function,
the variables are local to the function and exported to that function’s children.

If the -k option is set (see Section 4.3.1 [The Set Builtin], page 74), then all parameter
assignments are placed in the environment for a command, not just those that precede the
command name.

When Bash invokes an external command, the variable ‘$_’ is set to the full pathname
of the command and passed to that command in its environment.

3.7.5 Exit Status

The exit status of an executed command is the value returned by the waitpid system call or
equivalent function. Exit statuses fall between 0 and 255, though, as explained below, the
shell may use values above 125 specially. Exit statuses from shell builtins and compound
commands are also limited to this range. Under certain circumstances, the shell will use
special values to indicate specific failure modes.

For the shell’s purposes, a command which exits with a zero exit status has succeeded.
So while an exit status of zero indicates success, a non-zero exit status indicates failure.
This seemingly counter-intuitive scheme is used so there is one well-defined way to indicate
success and a variety of ways to indicate various failure modes.

When a command terminates on a fatal signal whose number is N, Bash uses the value
128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of
127. If a command is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status
is greater than zero.

The exit status is used by the Bash conditional commands (see Section 3.2.5.2 [Con-
ditional Constructs], page 12) and some of the list constructs (see Section 3.2.4 [Lists],
page 11).

All of the Bash builtins return an exit status of zero if they succeed and a non-zero
status on failure, so they may be used by the conditional and list constructs. All builtins
return an exit status of 2 to indicate incorrect usage, generally invalid options or missing
arguments.

The exit status of the last command is available in the special parameter $7 (see
Section 3.4.2 [Special Parameters], page 23).

Chapter 3: Basic Shell Features 49

Bash itself returns the exit status of the last command executed, unless a syntax error
occurs, in which case it exits with a non-zero value. See also the exit builtin command
(see Section 4.1 [Bourne Shell Builtins], page 52).

3.7.6 Signals

When Bash is interactive, in the absence of any traps, it ignores SIGTERM (so that ‘kill 0’
does not kill an interactive shell), and catches and handles SIGINT (so that the wait builtin
is interruptible). When Bash receives a SIGINT, it breaks out of any executing loops. In
all cases, Bash ignores SIGQUIT. If job control is in effect (see Chapter 7 [Job Control],
page 125), Bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

The trap builtin modifies the shell’s signal handling, as described below (see Section 4.1
[Bourne Shell Builtins], page 52).

Non-builtin commands Bash executes have signal handlers set to the values inherited
by the shell from its parent, unless trap sets them to be ignored, in which case the child
process will ignore them as well. When job control is not in effect, asynchronous commands
ignore SIGINT and SIGQUIT in addition to these inherited handlers. Commands run as a
result of command substitution ignore the keyboard-generated job control signals SIGTTIN,
SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell
resends the SIGHUP to all jobs, running or stopped. The shell sends SIGCONT to stopped
jobs to ensure that they receive the SIGHUP (See Chapter 7 [Job Control], page 125, for
more information about running and stopped jobs). To prevent the shell from sending the
SIGHUP signal to a particular job, remove it from the jobs table with the disown builtin
(see Section 7.2 [Job Control Builtins], page 126) or mark it not to receive SIGHUP using
disown -h.

If the huponexit shell option has been set using shopt (see Section 4.3.2 [The Shopt
Builtin], page 78), Bash sends a SIGHUP to all jobs when an interactive login shell exits.

If Bash is waiting for a command to complete and receives a signal for which a trap has
been set, it will not execute the trap until the command completes. If Bash is waiting for
an asynchronous command via the wait builtin, and it receives a signal for which a trap
has been set, the wait builtin will return immediately with an exit status greater than 128,
immediately after which the shell executes the trap.

When job control is not enabled, and Bash is waiting for a foreground command to
complete, the shell receives keyboard-generated signals such as SIGINT (usually generated
by ‘~C’) that users commonly intend to send to that command. This happens because the
shell and the command are in the same process group as the terminal, and ‘~C’ sends SIGINT
to all processes in that process group. Since Bash does not enable job control by default
when the shell is not interactive, this scenario is most common in non-interactive shells.

When job control is enabled, and Bash is waiting for a foreground command to complete,
the shell does not receive keyboard-generated signals, because it is not in the same process
group as the terminal. This scenario is most common in interactive shells, where Bash
attempts to enable job control by default. See Chapter 7 [Job Control], page 125, for a
more in-depth discussion of process groups.

Chapter 3: Basic Shell Features 50

When job control is not enabled, and Bash receives SIGINT while waiting for a foreground
command, it waits until that foreground command terminates and then decides what to do
about the SIGINT:

1. If the command terminates due to the SIGINT, Bash concludes that the user meant
to send the SIGINT to the shell as well, and acts on the SIGINT (e.g., by running a
SIGINT trap, exiting a non-interactive shell, or returning to the top level to read a new
command).

2. If the command does not terminate due to SIGINT, the program handled the SIGINT
itself and did not treat it as a fatal signal. In that case, Bash does not treat SIGINT
as a fatal signal, either, instead assuming that the SIGINT was used as part of the
program’s normal operation (e.g., emacs uses it to abort editing commands) or delib-
erately discarded. However, Bash will run any trap set on SIGINT, as it does with
any other trapped signal it receives while it is waiting for the foreground command to
complete, for compatibility.

When job control is enabled, Bash does not receive keyboard-generated signals such as
SIGINT while it is waiting for a foreground command. An interactive shell does not pay
attention to the SIGINT, even if the foreground command terminates as a result, other
than noting its exit status. If the shell is not interactive, and the foreground command
terminates due to the SIGINT, Bash pretends it received the SIGINT itself (scenario 1 above),
for compatibility.

3.8 Shell Scripts

A shell script is a text file containing shell commands. When such a file is used as the first
non-option argument when invoking Bash, and neither the -c nor -s option is supplied (see
Section 6.1 [Invoking Bash], page 100), Bash reads and executes commands from the file,
then exits. This mode of operation creates a non-interactive shell. If the filename does not
contain any slashes, the shell first searches for the file in the current directory, and looks in
the directories in $PATH if not found there.

Bash tries to determine whether the file is a text file or a binary, and will not execute
files it determines to be binaries.

When Bash runs a shell script, it sets the special parameter 0 to the name of the file,
rather than the name of the shell, and the positional parameters are set to the remain-
ing arguments, if any are given. If no additional arguments are supplied, the positional
parameters are unset.

A shell script may be made executable by using the chmod command to turn on the
execute bit. When Bash finds such a file while searching the $PATH for a command, it
creates a new instance of itself to execute it. In other words, executing

filename arguments
is equivalent to executing

bash filename arguments
if filename is an executable shell script. This subshell reinitializes itself, so that the effect
is as if a new shell had been invoked to interpret the script, with the exception that the

locations of commands remembered by the parent (see the description of hash in Section 4.1
[Bourne Shell Builtins], page 52) are retained by the child.

Chapter 3: Basic Shell Features 51

The GNU operating system, and most versions of Unix, make this a part of the operating
system’s command execution mechanism. If the first line of a script begins with the two
characters ‘#!’, the remainder of the line specifies an interpreter for the program and,
depending on the operating system, one or more optional arguments for that interpreter.
Thus, you can specify Bash, awk, Perl, or some other interpreter and write the rest of the
script file in that language.

The arguments to the interpreter consist of one or more optional arguments following
the interpreter name on the first line of the script file, followed by the name of the script
file, followed by the rest of the arguments supplied to the script. The details of how the
interpreter line is split into an interpreter name and a set of arguments vary across systems.
Bash will perform this action on operating systems that do not handle it themselves. Note
that some older versions of Unix limit the interpreter name and a single argument to a
maximum of 32 characters, so it’s not portable to assume that using more than one argument
will work.

Bash scripts often begin with #! /bin/bash (assuming that Bash has been installed in
/bin), since this ensures that Bash will be used to interpret the script, even if it is executed
under another shell. It’s a common idiom to use env to find bash even if it’s been installed
in another directory: #!/usr/bin/env bash will find the first occurrence of bash in $PATH.

52

4 Shell Builtin Commands

Builtin commands are contained within the shell itself. When the name of a builtin com-
mand is used as the first word of a simple command (see Section 3.2.2 [Simple Commands],
page 9), the shell executes the command directly, without invoking another program. Builtin
commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

This section briefly describes the builtins which Bash inherits from the Bourne Shell, as
well as the builtin commands which are unique to or have been extended in Bash.

Several builtin commands are described in other chapters: builtin commands which
provide the Bash interface to the job control facilities (see Section 7.2 [Job Control Builtins],
page 126), the directory stack (see Section 6.8.1 [Directory Stack Builtins|, page 112), the
command history (see Section 9.2 [Bash History Builtins], page 169), and the programmable
completion facilities (see Section 8.7 [Programmable Completion Builtins|, page 161).

Many of the builtins have been extended by POSIX or Bash.

Unless otherwise noted, each builtin command documented as accepting options preceded
by ‘=’ accepts ‘==’ to signify the end of the options. The :, true, false, and test/[
builtins do not accept options and do not treat ‘--’ specially. The exit, logout, return,
break, continue, let, and shift builtins accept and process arguments beginning with
‘=" without requiring ‘-=-’. Other builtins that accept arguments but are not specified as
accepting options interpret arguments beginning with ‘-’ as invalid options and require ‘==’
to prevent this interpretation.

4.1 Bourne Shell Builtins

The following shell builtin commands are inherited from the Bourne Shell. These commands
are implemented as specified by the POSIX standard.

: (a colon)
[arguments]

Do nothing beyond expanding arguments and performing redirections. The
return status is zero.

. (a period)
[-p path] filename [arguments]

The . command reads and execute commands from the filename argument in
the current shell context.

If filename does not contain a slash, . searches for it. If -p is supplied, . treats
path as a colon-separated list of directories in which to find filename; otherwise,
. uses the directories in PATH to find filename. filename does not need to be
executable. When Bash is not in POSIX mode, it searches the current directory
if filename is not found in $PATH, but does not search the current directory if
-p is supplied. If the sourcepath option (see Section 4.3.2 [The Shopt Builtin],
page 78) is turned off, . does not search PATH.

If any arguments are supplied, they become the positional parameters when
filename is executed. Otherwise the positional parameters are unchanged.

Chapter 4: Shell Builtin Commands 53

break

cd

If the -T option is enabled, . inherits any trap on DEBUG; if it is not, any DEBUG
trap string is saved and restored around the call to ., and . unsets the DEBUG
trap while it executes. If -T is not set, and the sourced file changes the DEBUG
trap, the new value persists after . completes. The return status is the exit
status of the last command executed from filename, or zero if no commands
are executed. If filename is not found, or cannot be read, the return status is
non-zero. This builtin is equivalent to source.

break [n]

Exit from a for, while, until, or select loop. If n is supplied, break exits
the nth enclosing loop. n must be greater than or equal to 1. The return status
is zero unless n is not greater than or equal to 1.

cd [-L] [-@] [directory]
cd -P [-e] [-@] [directory]

Change the current working directory to directory. If directory is not supplied,
the value of the HOME shell variable is used as directory. If directory is the
empty string, cd treats it as an error. If the shell variable CDPATH exists, and
directory does not begin with a slash, cd uses it as a search path: cd searches
each directory name in CDPATH for directory, with alternative directory names
in CDPATH separated by a colon (‘:’). A null directory name in CDPATH means
the same thing as the current directory.

The -P option means not to follow symbolic links: symbolic links are resolved
while cd is traversing directory and before processing an instance of .. in
directory.

By default, or when the -L option is supplied, symbolic links in directory are
resolved after cd processes an instance of .. in directory.

If .. appears in directory, cd processes it by removing the immediately preced-
ing pathname component, back to a slash or the beginning of directory, and
verifying that the portion of directory it has processed to that point is still a
valid directory name after removing the pathname component. If it is not a
valid directory name, cd returns a non-zero status.

If the -e option is supplied with -P and cd cannot successfully determine the
current working directory after a successful directory change, it returns a non-
zero status.

On systems that support it, the -@ option presents the extended attributes
associated with a file as a directory.

¢

If directory is ‘=’, it is converted to $O0LDPWD before attempting the directory

change.

If cd uses a non-empty directory name from CDPATH, or if ‘-’ is the first argu-
ment, and the directory change is successful, cd writes the absolute pathname
of the new working directory to the standard output.

Chapter 4: Shell Builtin Commands 54

continue

eval

exec

exit

export

If the directory change is successful, cd sets the value of the PWD environment
variable to the new directory name, and sets the OLDPWD environment variable
to the value of the current working directory before the change.

The return status is zero if the directory is successfully changed, non-zero oth-
erwise.

continue [n]

continue resumes the next iteration of an enclosing for, while, until, or
select loop. If n is supplied, Bash resumes the execution of the nth enclosing
loop. n must be greater than or equal to 1. The return status is zero unless n
is not greater than or equal to 1.

eval [arguments]

The arguments are concatenated together into a single command, separated by
spaces. Bash then reads and executes this command and returns its exit status
as the exit status of eval. If there are no arguments or only empty arguments,
the return status is zero.

exec [-cl] [-a name] [command [arguments]]

If command is supplied, it replaces the shell without creating a new process.
command cannot be a shell builtin or function. The arguments become the
arguments to command If the -1 option is supplied, the shell places a dash
at the beginning of the zeroth argument passed to command. This is what
the login program does. The -c option causes command to be executed with
an empty environment. If -a is supplied, the shell passes name as the zeroth
argument to command.

If command cannot be executed for some reason, a non-interactive shell exits,
unless the execfail shell option is enabled. In that case, it returns a non-
zero status. An interactive shell returns a non-zero status if the file cannot be
executed. A subshell exits unconditionally if exec fails.

If command is not specified, redirections may be used to affect the current

shell environment. If there are no redirection errors, the return status is zero;
otherwise the return status is non-zero.

exit [n]
Exit the shell, returning a status of n to the shell’s parent. If n is omitted, the

exit status is that of the last command executed. Any trap on EXIT is executed
before the shell terminates.

export [-fn] [-p] [name[=value]]
Mark each name to be passed to subsequently executed commands in the en-
vironment. If the -f option is supplied, the names refer to shell functions;
otherwise the names refer to shell variables.

Chapter 4: Shell Builtin Commands 55

false

getopts

The -n option means to unexport each name: no longer mark it for export. If
no names are supplied, or if only the -p option is given, export displays a list
of names of all exported variables on the standard output. Using -p and -f
together displays exported functions. The -p option displays output in a form
that may be reused as input.

export allows the value of a variable to be set at the same time it is exported
or unexported by following the variable name with =value. This sets the value
of the variable is to value while modifying the export attribute.

The return status is zero unless an invalid option is supplied, one of the names
is not a valid shell variable name, or -f is supplied with a name that is not a
shell function.

false

Does nothing; returns a non-zero status.

getopts optstring name [arg ...]

getopts is used by shell scripts or functions to parse positional parameters and
obtain options and their arguments. optstring contains the option characters
to be recognized; if a character is followed by a colon, the option is expected
to have an argument, which should be separated from it by whitespace. The
colon (‘:’) and question mark (‘?’) may not be used as option characters.
Each time it is invoked, getopts places the next option in the shell variable
name, initializing name if it does not exist, and the index of the next argument
to be processed into the variable OPTIND. OPTIND is initialized to 1 each time
the shell or a shell script is invoked. When an option requires an argument,
getopts places that argument into the variable OPTARG.

The shell does not reset OPTIND automatically; it must be manually reset be-
tween multiple calls to getopts within the same shell invocation to use a new
set of parameters.

When it reaches the end of options, getopts exits with a return value greater
than zero. OPTIND is set to the index of the first non-option argument, and
name is set to ‘7.

getopts normally parses the positional parameters, but if more arguments are
supplied as arg values, getopts parses those instead.

getopts can report errors in two ways. If the first character of optstring is
a colon, getopts uses silent error reporting. In normal operation, getopts
prints diagnostic messages when it encounters invalid options or missing option
arguments. If the variable OPTERR is set to 0, getopts does not display any
error messages, even if the first character of optstring is not a colon.

If getopts detects an invalid option, it places ‘?’ into name and, if not silent,
prints an error message and unsets OPTARG. If getopts is silent, it assigns the
option character found to OPTARG and does not print a diagnostic message.

If a required argument is not found, and getopts is not silent, it sets the value of
name to a question mark (‘?’), unsets OPTARG, and prints a diagnostic message.

Chapter 4: Shell Builtin Commands 56

hash

pwd

readonly

If getopts is silent, it sets the value of name to a colon (‘:’), and sets OPTARG
to the option character found.

getopts returns true if an option, specified or unspecified, is found. It returns
false when it encounters the end of options or if an error occurs.

hash [-r] [-p filename] [-dt] [name]

Each time hash is invoked, it remembers the full filenames of the commands
specified as name arguments, so they need not be searched for on subsequent
invocations. The commands are found by searching through the directories
listed in $PATH. Any previously-remembered filename associated with name is
discarded. The -p option inhibits the path search, and hash uses filename as
the location of name.

The -r option causes the shell to forget all remembered locations. Assigning
to the PATH variable also clears all hashed filenames. The -d option causes the
shell to forget the remembered location of each name.

If the -t option is supplied, hash prints the full pathname corresponding to
each name. If multiple name arguments are supplied with —-t, hash prints each
name before the corresponding hashed full path. The -1 option displays output
in a format that may be reused as input.

If no arguments are given, or if only -1 is supplied, hash prints information
about remembered commands. The -t, -d, and -p options (the options that
act on the name arguments) are mutually exclusive. Only one will be active. If
more than one is supplied, -t has higher priority than -p, and both have higher
priority than -d.

The return status is zero unless a name is not found or an invalid option is
supplied.

pwd [-LP]

Print the absolute pathname of the current working directory. If the -P option
is supplied, or the -o physical option to the set builtin (see Section 4.3.1
[The Set Builtin|, page 74) is enabled, the pathname printed will not contain
symbolic links. If the -L option is supplied, the pathname printed may contain
symbolic links. The return status is zero unless an error is encountered while
determining the name of the current directory or an invalid option is supplied.

readonly [-aAf] [-p] [name[=value]]

Mark each name as readonly. The values of these names may not be changed by
subsequent assignment or unset. If the —f option is supplied, each name refers
to a shell function. The -a option means each name refers to an indexed array
variable; the —A option means each name refers to an associative array variable.
If both options are supplied, -A takes precedence. If no name arguments are
supplied, or if the -p option is supplied, print a list of all readonly names.
The other options may be used to restrict the output to a subset of the set of

Chapter 4: Shell Builtin Commands 57

return

shift

test

readonly names. The -p option displays output in a format that may be reused
as input.

readonly allows the value of a variable to be set at the same time the readonly
attribute is changed by following the variable name with =value. This sets the
value of the variable is to value while modifying the readonly attribute.

The return status is zero unless an invalid option is supplied, one of the name
arguments is not a valid shell variable or function name, or the -f option is
supplied with a name that is not a shell function.

return [n]

Stop executing a shell function or sourced file and return the value n to its caller.
If n is not supplied, the return value is the exit status of the last command
executed. If return is executed by a trap handler, the last command used to
determine the status is the last command executed before the trap handler. If
return is executed during a DEBUG trap, the last command used to determine
the status is the last command executed by the trap handler before return was
invoked.

When return is used to terminate execution of a script being executed with the
. (source) builtin, it returns either n or the exit status of the last command
executed within the script as the exit status of the script. If n is supplied, the
return value is its least significant 8 bits.

Any command associated with the RETURN trap is executed before execution
resumes after the function or script.

The return status is non-zero if return is supplied a non-numeric argument
or is used outside a function and not during the execution of a script by . or
source.

shift [n]
Shift the positional parameters to the left by n: the positional parameters from
n+l ... $# are renamed to $1 . .. $#-n. Parameters represented by the numbers

$# down to $#-n+1 are unset. n must be a non-negative number less than or
equal to $#. If n is not supplied, it is assumed to be 1. If n is zero or greater
than $#, the positional parameters are not changed. The return status is zero
unless n is greater than $# or less than zero, non-zero otherwise.

test expr

Evaluate a conditional expression expr and return a status of 0 (true) or 1
(false). Each operator and operand must be a separate argument. Expressions
are composed of the primaries described below in Section 6.4 [Bash Conditional
Expressions|, page 105. test does not accept any options, nor does it accept
and ignore an argument of —- as signifying the end of options. When using the
[form, the last argument to the command must be a]J.

Chapter 4: Shell Builtin Commands 58

Expressions may be combined using the following operators, listed in decreasing
order of precedence. The evaluation depends on the number of arguments; see
below. test uses operator precedence when there are five or more arguments.

! expr True if expr is false.

(expr) Returns the value of expr. This may be used to override normal
operator precedence.

exprl -a expr2
True if both exprl and expr2 are true.

exprl -o expr2
True if either exprl or expr2 is true.

The test and [builtins evaluate conditional expressions using a set of rules
based on the number of arguments.

0 arguments
The expression is false.

1 argument
The expression is true if, and only if, the argument is not null.

2 arguments
If the first argument is ‘!’, the expression is true if and only if the
second argument is null. If the first argument is one of the unary
conditional operators (see Section 6.4 [Bash Conditional Expres-
sions], page 105), the expression is true if the unary test is true. If
the first argument is not a valid unary operator, the expression is
false.

3 arguments
The following conditions are applied in the order listed.

1. If the second argument is one of the binary conditional opera-
tors (see Section 6.4 [Bash Conditional Expressions], page 105),
the result of the expression is the result of the binary test using
the first and third arguments as operands. The ‘-a’ and ‘-o’
operators are considered binary operators when there are three
arguments.

2. If the first argument is ‘!’, the value is the negation of the
two-argument test using the second and third arguments.
3. If the first argument is exactly ‘(" and the third argument is

exactly ‘)7, the result is the one-argument test of the second
argument.

4. Otherwise, the expression is false.
4 arguments
The following conditions are applied in the order listed.

1. If the first argument is ‘!’, the result is the negation of the
three-argument expression composed of the remaining argu-
ments.

Chapter 4: Shell Builtin Commands 59

times

trap

2. If the first argument is exactly ‘(" and the fourth argument is
exactly ‘)7, the result is the two-argument test of the second
and third arguments.

3. Otherwise, the expression is parsed and evaluated according to
precedence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence
using the rules listed above.

If the shell is in POSIX mode, or if the expression is part of the [[command, the
‘<’ and >’ operators sort using the current locale. If the shell is not in POSIX
mode, the test and ‘[’ commands sort lexicographically using ASCII ordering.

The historical operator-precedence parsing with 4 or more arguments can lead
to ambiguities when it encounters strings that look like primaries. The POSIX
standard has deprecated the -a and -o primaries and enclosing expressions
within parentheses. Scripts should no longer use them. It’s much more reliable
to restrict test invocations to a single primary, and to replace uses of —a and -o
with the shell’s && and || list operators. For example, use

test -n stringl && test -n string2
instead of

test —n stringl -a -n string2

times

Print out the user and system times used by the shell and its children. The
return status is zero.

trap [-1pP] [action] [sigspec ...]
The action is a command that is read and executed when the shell receives any
of the signals sigspec. If action is absent (and there is a single sigspec) or equal
to ‘=7, each specified sigspec’s disposition is reset to the value it had when the
shell was started. If action is the null string, then the signal specified by each
sigspec is ignored by the shell and commands it invokes.

If no arguments are supplied, trap prints the actions associated with each
trapped signal as a set of trap commands that can be reused as shell input to
restore the current signal dispositions.

If action is not present and -p has been supplied, trap displays the trap com-
mands associated with each sigspec, or, if no sigspecs are supplied, for all
trapped signals, as a set of trap commands that can be reused as shell input
to restore the current signal dispositions. The -P option behaves similarly, but
displays only the actions associated with each sigspec argument. -P requires
at least one sigspec argument. The -P or -p options may be used in a subshell
environment (e.g., command substitution) and, as long as they are used before
trap is used to change a signal’s handling, will display the state of its parent’s
traps.

Chapter 4: Shell Builtin Commands 60

true

umask

The -1 option prints a list of signal names and their corresponding numbers.
Each sigspec is either a signal name or a signal number. Signal names are case
insensitive and the SIG prefix is optional. If -1 is supplied with no sigspec
arguments, it prints a list of valid signal names.

If a sigspec is 0 or EXIT, action is executed when the shell exits. If a sigspec is
DEBUG, action is executed before every simple command, for command, case
command, select command, ((arithmetic command, [[conditional command,
arithmetic for command, and before the first command executes in a shell
function. Refer to the description of the extdebug shell option (see Section 4.3.2
[The Shopt Builtin], page 78) for details of its effect on the DEBUG trap. If a
sigspec is RETURN, action is executed each time a shell function or a script
executed with the . or source builtins finishes executing.

If a sigspec is ERR, action is executed whenever a pipeline (which may consist of
a single simple command), a list, or a compound command returns a non-zero
exit status, subject to the following conditions. The ERR trap is not executed if
the failed command is part of the command list immediately following an until
or while reserved word, part of the test following the if or elif reserved words,
part of a command executed in a && or || list except the command following
the final && or ||, any command in a pipeline but the last, (subject to the
state of the pipefail shell option), or if the command’s return status is being
inverted using !. These are the same conditions obeyed by the errexit (-e)
option.

When the shell is not interactive, signals ignored upon entry to a non-interactive
shell cannot be trapped or reset. Interactive shells permit trapping signals
ignored on entry. Trapped signals that are not being ignored are reset to their
original values in a subshell or subshell environment when one is created.

The return status is zero unless a sigspec does not specify a valid signal; non-
zero otherwise.

true
Does nothing, returns a 0 status.

umask [-p] [-S] [model

Set the shell process’s file creation mask to mode. If mode begins with a digit,
it is interpreted as an octal number; if not, it is interpreted as a symbolic mode
mask similar to that accepted by the chmod command. If mode is omitted,
umask prints the current value of the mask. If the -8 option is supplied without
a mode argument, umask prints the mask in a symbolic format; the default
output is an octal number. If the —-p option is supplied, and mode is omitted,
the output is in a form that may be reused as input. The return status is zero
if the mode is successfully changed or if no mode argument is supplied, and
non-zero otherwise.

Note that when the mode is interpreted as an octal number, each number of
the umask is subtracted from 7. Thus, a umask of 022 results in permissions
of 755.

Chapter 4: Shell Builtin Commands 61

unset

unset [-fnv] [namel

Remove each variable or function name. If the -v option is given, each name
refers to a shell variable and that variable is removed. If the -f option is given,
the names refer to shell functions, and the function definition is removed. If
the -n option is supplied, and name is a variable with the nameref attribute,
name will be unset rather than the variable it references. -n has no effect if
the —f option is supplied. If no options are supplied, each name refers to a
variable; if there is no variable by that name, a function with that name, if any,
is unset. Readonly variables and functions may not be unset. When variables
or functions are removed, they are also removed from the environment passed
to subsequent commands. Some shell variables may not be unset. Some shell
variables lose their special behavior if they are unset; such behavior is noted in
the description of the individual variables. The return status is zero unless a
name is readonly or may not be unset.

4.2 Bash Builtin Commands

This section describes builtin commands which are unique to or have been extended in
Bash. Some of these commands are specified in the POSIX standard.

alias

bind

alias [-p] [name[=value] ...]

Without arguments or with the —p option, alias prints the list of aliases on the
standard output in a form that allows them to be reused as input. If arguments
are supplied, define an alias for each name whose value is given. If no value
is given, print the name and value of the alias name. A trailing space in value
causes the next word to be checked for alias substitution when the alias is
expanded during command parsing. alias returns true unless a name is given
(without a corresponding =value) for which no alias has been defined. Aliases
are described in Section 6.6 [Aliases]|, page 109.

bind [-m keymap] [-1svSVX]

bind [-m keymap] [-q function] [-u function] [-r keyseq]
bind [-m keymap] -f filename

bind [-m keymap] -x keyseq[:]shell-command

bind [-m keymap] keyseq:function-name

bind [-m keymap] keyseq:readline-command

bind [-m keymap] -pl|-P [readline-command]
bind readline-command-line

Display current Readline (see Chapter 8 [Command Line Editing], page 130)
key and function bindings, bind a key sequence to a Readline function or macro
or to a shell command, or set a Readline variable. Each non-option argument is
a key binding or command as it would appear in a Readline initialization file (see
Section 8.3 [Readline Init File], page 133), but each binding or command must
be passed as a separate argument; e.g., ‘"\C-x\C-r":re-read-init-file’.

Chapter 4:

Shell Builtin Commands 62

In the following descriptions, options that display output in a form available to
be re-read format their output as commands that would appear in a Readline
initialization file or that would be supplied as individual arguments to a bind
command.

Options, if supplied, have the following meanings:

-m keymap Use keymap as the keymap to be affected by the subsequent
bindings. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command (vi-move is also a
synonym); emacs is equivalent to emacs-standard.

-1 List the names of all Readline functions.

-p Display Readline function names and bindings in such a way that
they can be used as an argument to a subsequent bind command
or in a Readline initialization file. If arguments remain after op-
tion processing, bind treats them as readline command names and
restricts output to those names.

-P List current Readline function names and bindings. If arguments
remain after option processing, bind treats them as readline com-
mand names and restricts output to those names.

-s Display Readline key sequences bound to macros and the strings
they output in such a way that they can be used as an argument
to a subsequent bind command or in a Readline initialization file.

-S Display Readline key sequences bound to macros and the strings
they output.

-v Display Readline variable names and values in such a way that they
can be used as an argument to a subsequent bind command or in
a Readline initialization file.

-V List current Readline variable names and values.

-f filename
Read key bindings from filename.

—-q function
Display key sequences that invoke the named Readline function.

-u function
Unbind all key sequences bound to the named Readline function.

-r keyseq Remove any current binding for keyseq.

-x keyseq:shell-command
Cause shell-command to be executed whenever keyseq is entered.
The separator between keyseq and shell-command is either white-
space or a colon optionally followed by whitespace. If the separator
is whitespace, shell-command must be enclosed in double quotes

Chapter 4: Shell Builtin Commands 63

builtin

caller

command

and Readline expands any of its special backslash-escapes in shell-
command before saving it. If the separator is a colon, any en-
closing double quotes are optional, and Readline does not expand
the command string before saving it. Since the entire key bind-
ing expression must be a single argument, it should be enclosed in
single quotes. When shell-command is executed, the shell sets the
READLINE_LINE variable to the contents of the Readline line buffer
and the READLINE_POINT and READLINE_MARK variables to the cur-
rent location of the insertion point and the saved insertion point
(the mark), respectively. The shell assigns any numeric argument
the user supplied to the READLINE_ARGUMENT variable. If there was
no argument, that variable is not set. If the executed command
changes the value of any of READLINE_LINE, READLINE_POINT, or
READLINE_MARK, those new values will be reflected in the editing
state.

-X List all key sequences bound to shell commands and the associated
commands in a format that can be reused as an argument to a
subsequent bind command.

The return status is zero unless an invalid option is supplied or an error occurs.

builtin [shell-builtin [args]]

Execute the specified shell builtin shell-builtin, passing it args, and return its
exit status. This is useful when defining a shell function with the same name
as a shell builtin, retaining the functionality of the builtin within the function.
The return status is non-zero if shell-builtin is not a shell builtin command.

caller [expr]

Returns the context of any active subroutine call (a shell function or a script
executed with the . or source builtins).

Without expr, caller displays the line number and source filename of the
current subroutine call. If a non-negative integer is supplied as expr, caller
displays the line number, subroutine name, and source file corresponding to
that position in the current execution call stack. This extra information may
be used, for example, to print a stack trace. The current frame is frame 0.

The return value is 0 unless the shell is not executing a subroutine call or expr
does not correspond to a valid position in the call stack.

command [-pVv] command [arguments ...]

The command builtin runs command with arguments ignoring any shell func-
tion named command. Only shell builtin commands or commands found by
searching the PATH are executed. If there is a shell function named 1s, running
‘command 1s’ within the function will execute the external command 1s instead
of calling the function recursively. The -p option means to use a default value

Chapter 4: Shell Builtin Commands 64

declare

for PATH that is guaranteed to find all of the standard utilities. The return
status in this case is 127 if command cannot be found or an error occurred, and
the exit status of command otherwise.

If either the -V or -v option is supplied, command prints a description of
command. The -v option displays a single word indicating the command or
file name used to invoke command; the -V option produces a more verbose
description. In this case, the return status is zero if command is found, and
non-zero if not.

declare [-aAfFgillnrtux] [-p] [namel[=value] ...]

Declare variables and give them attributes. If no names are given, then display
the values of variables or shell functions instead.

The -p option will display the attributes and values of each name. When -p
is used with name arguments, additional options, other than -f and -F, are
ignored.

When -p is supplied without name arguments, declare will display the at-
tributes and values of all variables having the attributes specified by the addi-
tional options. If no other options are supplied with -p, declare will display
the attributes and values of all shell variables. The -f option restricts the
display to shell functions.

The -F option inhibits the display of function definitions; only the function
name and attributes are printed. If the extdebug shell option is enabled using
shopt (see Section 4.3.2 [The Shopt Builtin], page 78), the source file name and
line number where each name is defined are displayed as well. -F implies -£.

The -g option forces variables to be created or modified at the global scope, even
when declare is executed in a shell function. It is ignored in when declare is
not executed in a shell function.

The -I option causes local variables to inherit the attributes (except the
nameref attribute) and value of any existing variable with the same name
at a surrounding scope. If there is no existing variable, the local variable is
initially unset.

The following options can be used to restrict output to variables with the spec-
ified attributes or to give variables attributes:

-a Each name is an indexed array variable (see Section 6.7 [Arrays],
page 110).

-A Each name is an associative array variable (see Section 6.7 [Arrays],
page 110).

-f Each name refers to a shell function.

-i The variable is to be treated as an integer; arithmetic evaluation

(see Section 6.5 [Shell Arithmetic], page 107) is performed when
the variable is assigned a value.

-1 When the variable is assigned a value, all upper-case characters are
converted to lower-case. The upper-case attribute is disabled.

Chapter 4: Shell Builtin Commands 65

echo

-n Give each name the nameref attribute, making it a name reference
to another variable. That other variable is defined by the value of
name. All references, assignments, and attribute modifications to
name, except for those using or changing the -n attribute itself, are
performed on the variable referenced by name’s value. The nameref
attribute cannot be applied to array variables.

-r Make names readonly. These names cannot then be assigned values
by subsequent assignment statements or unset.

-t Give each name the trace attribute. Traced functions inherit the
DEBUG and RETURN traps from the calling shell. The trace attribute
has no special meaning for variables.

-u When the variable is assigned a value, all lower-case characters are
converted to upper-case. The lower-case attribute is disabled.

-X Mark each name for export to subsequent commands via the envi-
ronment.

Using ‘+’ instead of ‘=’ turns off the specified attribute instead, with the excep-
tions that ‘+a’ and ‘+A’ may not be used to destroy array variables and ‘+r’ will
not remove the readonly attribute.

When used in a function, declare makes each name local, as with the local
command, unless the —g option is supplied. If a variable name is followed by
=value, the value of the variable is set to value.

When using -a or -A and the compound assignment syntax to create array
variables, additional attributes do not take effect until subsequent assignments.

The return status is zero unless an invalid option is encountered, an attempt
is made to define a function using ‘-f foo=bar’, an attempt is made to assign
a value to a readonly variable, an attempt is made to assign a value to an
array variable without using the compound assignment syntax (see Section 6.7
[Arrays], page 110), one of the names is not a valid shell variable name, an
attempt is made to turn off readonly status for a readonly variable, an attempt
is made to turn off array status for an array variable, or an attempt is made to
display a non-existent function with -£.

echo [-neE] [arg ...]

Output the args, separated by spaces, terminated with a newline. The return
status is 0 unless a write error occurs. If -n is specified, the trailing newline is
not printed.

If the -e option is given, echo interprets the following backslash-escaped char-
acters. The -E option disables interpretation of these escape characters, even on
systems where they are interpreted by default. The xpg_echo shell option de-
termines whether or not echo interprets any options and expands these escape
characters. echo does not interpret —— to mean the end of options.

echo interprets the following escape sequences:
\a alert (bell)

Chapter 4: Shell Builtin Commands 66

enable

\b backspace

\c suppress further output
\e

\E escape

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\Onnn The eight-bit character whose value is the octal value nnn (zero to

three octal digits).

\xHH The eight-bit character whose value is the hexadecimal value HH
(one or two hex digits).

\uHHHH The Unicode (ISO/IEC 10646) character whose value is the hex-
adecimal value HHHH (one to four hex digits).

\UHHHHHHHH
The Unicode (ISO/IEC 10646) character whose value is the hex-
adecimal value HHHHHHHH (one to eight hex digits).

echo writes any unrecognized backslash-escaped characters unchanged.

enable [-al [-dnps] [-f filename] [name ...]

Enable and disable builtin shell commands. Disabling a builtin allows an exe-
cutable file which has the same name as a shell builtin to be executed without
specifying a full pathname, even though the shell normally searches for builtins
before files.

If -n is supplied, the names are disabled. Otherwise names are enabled. For
example, to use the test binary found using $PATH instead of the shell builtin
version, type ‘enable -n test’.

If the —p option is supplied, or no name arguments are supplied, print a list of
shell builtins. With no other arguments, the list consists of all enabled shell
builtins. The -n option means to print only disabled builtins. The -a option
means to list each builtin with an indication of whether or not it is enabled.
The -s option means to restrict enable to the POSIX special builtins.

The -f option means to load the new builtin command name from shared
object filename, on systems that support dynamic loading. If filename does not
contain a slash. Bash will use the value of the BASH_LOADABLES_PATH variable
as a colon-separated list of directories in which to search for filename. The
default for BASH_LOADABLES_PATH is system-dependent, and may include "."
to force a search of the current directory. The -d option will delete a builtin

Chapter 4: Shell Builtin Commands 67

help

let

local

loaded with -f. If -s is used with -f, the new builtin becomes a POSIX special
builtin (see Section 4.4 [Special Builtins], page 85).

If no options are supplied and a name is not a shell builtin, enable will attempt
to load name from a shared object named name, as if the command were ‘enable
-f name name’.

The return status is zero unless a name is not a shell builtin or there is an error
loading a new builtin from a shared object.

help [-dms] [pattern]

Display helpful information about builtin commands. If pattern is specified,
help gives detailed help on all commands matching pattern as described below;
otherwise it displays a list of all builtins and shell compound commands.

Options, if supplied, have the following meanings:

-d Display a short description of each pattern
-m Display the description of each pattern in a manpage-like format
-s Display only a short usage synopsis for each pattern

If pattern contains pattern matching characters (see Section 3.5.8.1 [Pattern
Matching], page 39) it’s treated as a shell pattern and help prints the descrip-
tion of each help topic matching pattern.

If not, and pattern exactly matches the name of a help topic, help prints
the description associated with that topic. Otherwise, help performs prefix
matching and prints the descriptions of all matching help topics.

The return status is zero unless no command matches pattern.

let expression [expression ...]

The let builtin allows arithmetic to be performed on shell variables. Each
expression is evaluated as an arithmetic expression according to the rules given
below in Section 6.5 [Shell Arithmetic], page 107. If the last expression evaluates
to 0, let returns 1; otherwise let returns 0.

local [option] namel[=value]

For each argument, create a local variable named name, and assign it value.
The option can be any of the options accepted by declare. local can only
be used within a function; it makes the variable name have a visible scope
restricted to that function and its children. It is an error to use local when
not within a function.

(o

If name is ‘=’, it makes the set of shell options local to the function in which
local is invoked: any shell options changed using the set builtin inside the
function after the call to local are restored to their original values when the
function returns. The restore is performed as if a series of set commands were
executed to restore the values that were in place before the function.

Chapter 4: Shell Builtin Commands 68

logout

mapfile

printf

With no operands, local writes a list of local variables to the standard output.

The return status is zero unless local is used outside a function, an invalid
name is supplied, or name is a readonly variable.

logout [n]

Exit a login shell, returning a status of n to the shell’s parent.

mapfile [-d delim] [-n count] [-0 origin] [-s count]
[-t] [-u fd] [-C callback] [-c quantum] [array]

Read lines from the standard input, or from file descriptor fd if the —u option
is supplied, into the indexed array variable array. The variable MAPFILE is the
default array. Options, if supplied, have the following meanings:

-d Use the first character of delim to terminate each input line, rather
than newline. If delim is the empty string, mapfile will terminate
a line when it reads a NUL character.

-n Copy at most count lines. If count is 0, copy all lines.

-0 Begin assigning to array at index origin. The default index is 0.
-s Discard the first count lines read.

-t Remove a trailing delim (default newline) from each line read.

-u Read lines from file descriptor fd instead of the standard input.
-C Evaluate callback each time quantum lines are read. The -c option

specifies quantum.
-C Specify the number of lines read between each call to callback.

If -C is specified without -c, the default quantum is 5000. When callback is
evaluated, it is supplied the index of the next array element to be assigned and
the line to be assigned to that element as additional arguments. callback is
evaluated after the line is read but before the array element is assigned.

If not supplied with an explicit origin, mapfile will clear array before assigning
to it.

mapfile returns zero unless an invalid option or option argument is supplied,
array is invalid or unassignable, or if array is not an indexed array.

printf [-v var] format [arguments]

Write the formatted arguments to the standard output under the control of
the format. The -v option assigns the output to the variable var rather than
printing it to the standard output.

The format is a character string which contains three types of objects: plain
characters, which are simply copied to standard output, character escape se-
quences, which are converted and copied to the standard output, and format

Chapter 4: Shell Builtin Commands 69

read

specifications, each of which causes printing of the next successive argument. In
addition to the standard printf (3) format characters cCsSndiouxXeEfFgGaA,
printf interprets the following additional format specifiers:

%b Causes printf to expand backslash escape sequences in the cor-
responding argument in the same way as echo -e (see Section 4.2
[Bash Builtins]|, page 61).

»q Causes printf to output the corresponding argument in a format
that can be reused as shell input. %q and %QP use the ANSI-C
quoting style (see Section 3.1.2.4 [ANSI-C Quoting], page 6) if any
characters in the argument string require it, and backslash quoting
otherwise. If the format string uses the printf alternate form,
these two formats quote the argument string using single quotes.

yAR| like %q, but applies any supplied precision to the argument before
quoting it.
%(datefmt)T

Causes printf to output the date-time string resulting from using
datefmt as a format string for strftime(3). The corresponding ar-
gument is an integer representing the number of seconds since the
epoch. This format specifier recognizes Two special argument val-
ues: -1 represents the current time, and -2 represents the time the
shell was invoked. If no argument is specified, conversion behaves
as if -1 had been supplied. This is an exception to the usual printf
behavior.

The %b, %q, and %T format specifiers all use the field width and precision
arguments from the format specification and write that many bytes from (or
use that wide a field for) the expanded argument, which usually contains more
characters than the original.

The %n format specifier accepts a corresponding argument that is treated as a
shell variable name.

The %s and %c format specifiers accept an 1 (long) modifier, which forces them
to convert the argument string to a wide-character string and apply any supplied
field width and precision in terms of characters, not bytes. The %S and %C
format specifiers are equivalent to %ls and %lc, respectively.

Arguments to non-string format specifiers are treated as C language constants,
except that a leading plus or minus sign is allowed, and if the leading character
is a single or double quote, the value is the numeric value of the following
character, using the current locale.

The format is reused as necessary to consume all of the arguments. If the for-
mat requires more arguments than are supplied, the extra format specifications
behave as if a zero value or null string, as appropriate, had been supplied. The
return value is zero on success, non-zero if an invalid option is supplied or a
write or assignment error occurs.

read [-Eers] [-a aname] [-d delim] [-i text] [-n nchars]

Chapter 4:

Shell Builtin Commands 70

[-N nchars] [-p prompt] [-t timeout] [-u fd] [name ...]

Read one line from the standard input, or from the file descriptor fd supplied
as an argument to the -u option, split it into words as described above in
Section 3.5.7 [Word Splitting], page 38, and assign the first word to the first
name, the second word to the second name, and so on. If there are more words
than names, the remaining words and their intervening delimiters are assigned
to the last name. If there are fewer words read from the input stream than
names, the remaining names are assigned empty values. The characters in the
value of the IFS variable are used to split the line into words using the same rules
the shell uses for expansion (described above in Section 3.5.7 [Word Splitting],
page 38). The backslash character ‘\’ removes any special meaning for the next
character read and is used for line continuation.

Options, if supplied, have the following meanings:

-a aname The words are assigned to sequential indices of the array variable
aname, starting at 0. All elements are removed from aname before
the assignment. Other name arguments are ignored.

-d delim The first character of delim terminates the input line, rather than
newline. If delim is the empty string, read will terminate a line
when it reads a NUL character.

-e If the standard input is coming from a terminal, read uses Read-
line (see Chapter 8 [Command Line Editing], page 130) to obtain
the line. Readline uses the current (or default, if line editing was
not previously active) editing settings, but uses Readline’s default
filename completion.

-E If the standard input is coming from a terminal, read uses Readline
(see Chapter 8 [Command Line Editing], page 130) to obtain the
line. Readline uses the current (or default, if line editing was not
previously active) editing settings, but uses Bash’s default comple-
tion, including programmable completion.

-i text If Readline is being used to read the line, read places text into the
editing buffer before editing begins.

-n nchars read returns after reading nchars characters rather than waiting for
a complete line of input, unless it encounters EOF or read times
out, but honors a delimiter if it reads fewer than nchars characters
before the delimiter.

-N nchars read returns after reading exactly nchars characters rather than
waiting for a complete line of input, unless it encounters EOF or
read times out. Delimiter characters in the input are not treated
specially and do not cause read to return until it has read nchars
characters. The result is not split on the characters in IFS; the
intent is that the variable is assigned exactly the characters read
(with the exception of backslash; see the -r option below).

-p prompt Display prompt, without a trailing newline, before attempting to
read any input, but only if input is coming from a terminal.

Chapter 4: Shell Builtin Commands 71

readarray

source

type

-r If this option is given, backslash does not act as an escape character.
The backslash is considered to be part of the line. In particular, a
backslash-newline pair may not then be used as a line continuation.

-s Silent mode. If input is coming from a terminal, characters are not
echoed.

-t timeout

Cause read to time out and return failure if it does not read a com-
plete line of input (or a specified number of characters) within time-
out seconds. timeout may be a decimal number with a fractional
portion following the decimal point. This option is only effective if
read is reading input from a terminal, pipe, or other special file; it
has no effect when reading from regular files. If read times out, it
saves any partial input read into the specified variable name, and
returns a status greater than 128. If timeout is 0, read returns
immediately, without trying to read any data. In this case, the exit
status is 0 if input is available on the specified file descriptor, or
the read will return EOF, non-zero otherwise.

-u fd Read input from file descriptor fd instead of the standard input.
Other than the case where delim is the empty string, read ignores any NUL
characters in the input.

If no names are supplied, read assigns the line read, without the ending delim-
iter but otherwise unmodified, to the variable REPLY.

The exit status is zero, unless end-of-file is encountered, read times out (in
which case the status is greater than 128), a variable assignment error (such as
assigning to a readonly variable) occurs, or an invalid file descriptor is supplied
as the argument to —u.

readarray [-d delim] [-n count] [-0 origin] [-s count]
[-t] [-u fd] [-C callback] [-c quantum] [array]

Read lines from the standard input into the indexed array variable array, or
from file descriptor fd if the —u option is supplied.

A synonym for mapfile.

source [-p path] filename [arguments]

A synonym for . (see Section 4.1 [Bourne Shell Builtins|, page 52).

type [-afptP] [name ...]
Indicate how each name would be interpreted if used as a command name.
If the -t option is used, type prints a single word which is one of ‘alias’,
‘keyword’, ‘function’, ‘builtin’, or ‘file’, if name is an alias, shell reserved
word, shell function, shell builtin, or executable file, respectively. If the name
is not found, type prints nothing and returns a failure status.

Chapter 4:

typeset

ulimit

Shell Builtin Commands 72

If the -p option is used, type either returns the name of the executable file that
would be found by searching $PATH for name, or nothing if -t would not return
‘file’.

The -P option forces a path search for each name, even if -t would not return
‘file’.

If a name is present in the table of hashed commands, options -p and -P print
the hashed value, which is not necessarily the file that appears first in $PATH.

If the -a option is used, type returns all of the places that contain a command
named name. This includes aliases, reserved words, functions, and builtins, but
the path search options (-p and -P) can be supplied to restrict the output to
executable files. If -a is supplied with -p, type does not look in the table of
hashed commands, and only performs a PATH search for name.

If the -f option is used, type does not attempt to find shell functions, as with
the command builtin.

The return status is zero if all of the names are found, non-zero if any are not
found.

typeset [-afFgrxilnrtux] [-p] [namel[=value] ...]

The typeset command is supplied for compatibility with the Korn shell. It is
a synonym for the declare builtin command.

ulimit [-HS] -a

ulimit [-HS] [-bcdefiklmnpqrstuvxPRT] [limit]
ulimit provides control over the resources available to the shell and to pro-
cesses it starts, on systems that allow such control. If an option is given, it is
interpreted as follows:

-S Change and report the soft limit associated with a resource.

-H Change and report the hard limit associated with a resource.
-a Report all current limits; no limits are set.

-b The maximum socket buffer size.

-C The maximum size of core files created.

-d The maximum size of a process’s data segment.

-e The maximum scheduling priority ("nice").

-f The maximum size of files written by the shell and its children.
-i The maximum number of pending signals.

-k The maximum number of kqueues that may be allocated.

-1 The maximum size that may be locked into memory.

-m The maximum resident set size (many systems do not honor this

limit).

Chapter 4:

unalias

Shell Builtin Commands 73

-n The maximum number of open file descriptors (most systems do
not allow this value to be set).

-p The pipe buffer size.

-q The maximum number of bytes in POSIX message queues.

-r The maximum real-time scheduling priority.

-s The maximum stack size.

-t The maximum amount of cpu time in seconds.

-u The maximum number of processes available to a single user.

-v The maximum amount of virtual memory available to the shell,

and, on some systems, to its children.

-X The maximum number of file locks.

-P The maximum number of pseudoterminals.

-R The maximum time a real-time process can run before blocking, in
microseconds.

-T The maximum number of threads.

If Iimit is supplied, and the —-a option is not used, limit is the new value of the
specified resource. The special limit values hard, soft, and unlimited stand
for the current hard limit, the current soft limit, and no limit, respectively. A
hard limit cannot be increased by a non-root user once it is set; a soft limit may
be increased up to the value of the hard limit. Otherwise, ulimit prints the
current value of the soft limit for the specified resource, unless the -H option is
supplied. When more than one resource is specified, the limit name and unit,
if appropriate, are printed before the value. When setting new limits, if neither
-H nor -8 is supplied, ulimit sets both the hard and soft limits. If no option
is supplied, then -f is assumed.

Values are in 1024-byte increments, except for —t, which is in seconds; -R, which
is in microseconds; —-p, which is in units of 512-byte blocks; -P, -T, -b, -k, -n
and -u, which are unscaled values; and, when in POSIX mode (see Section 6.11
[Bash POSIX Mode], page 116), -c and -f, which are in 512-byte increments.

The return status is zero unless an invalid option or argument is supplied, or
an error occurs while setting a new limit.

unalias [-a] [name ...]

Remove each name from the list of aliases. If —a is supplied, remove all aliases.
The return value is true unless a supplied name is not a defined alias. Aliases
are described in Section 6.6 [Aliases|, page 109.

4.3 Modifying Shell Behavior

Chapter 4: Shell Builtin Commands 74

4.3.1 The Set Builtin

This builtin is so complicated that it deserves its own section. set allows you to change
the values of shell options and set the positional parameters, or to display the names and
values of shell variables.

set

set [-abefhkmnptuvxBCEHPT] [-o option-name] [--] [-] [argument ..
set [+abefhkmnptuvxBCEHPT] [+o option-name] [--] [-] [argument ..

set -o
set +o

If no options or arguments are supplied, set displays the names and values of all
shell variables and functions, sorted according to the current locale, in a format
that may be reused as input for setting or resetting the currently-set variables.
Read-only variables cannot be reset. In POSIX mode, only shell variables are
listed.

When options are supplied, they set or unset shell attributes. Any arguments
remaining after option processing replace the positional parameters.

Options, if specified, have the following meanings:

-a Each variable or function that is created or modified is given the
export attribute and marked for export to the environment of sub-
sequent commands.

-b Cause the status of terminated background jobs to be reported
immediately, rather than before printing the next primary prompt
or, under some circumstances, when a foreground command exits.
This is effective only when job control is enabled.

-e Exit immediately if a pipeline (see Section 3.2.3 [Pipelines],
page 10), which may consist of a single simple command (see
Section 3.2.2 [Simple Commands], page 9), a list (see Section 3.2.4
[Lists], page 11), or a compound command (see Section 3.2.5
[Compound Commands], page 11) returns a non-zero status.
The shell does not exit if the command that fails is part of the
command list immediately following a while or until reserved
word, part of the test in an if statement, part of any command
executed in a && or || list except the command following the final
&& or ||, any command in a pipeline but the last (subject to the
state of the pipefail shell option), or if the command’s return
status is being inverted with !. If a compound command other
than a subshell returns a non-zero status because a command
failed while -e was being ignored, the shell does not exit. A trap
on ERR, if set, is executed before the shell exits.

This option applies to the shell environment and each subshell en-
vironment separately (see Section 3.7.3 [Command Execution En-
vironment], page 46), and may cause subshells to exit before exe-
cuting all the commands in the subshell.

-]
-]

Chapter 4: Shell Builtin Commands 75

—-m

-n

If a compound command or shell function executes in a context
where -e is being ignored, none of the commands executed within
the compound command or function body will be affected by the
-e setting, even if —e is set and a command returns a failure status.
If a compound command or shell function sets —e while executing
in a context where —e is ignored, that setting will not have any
effect until the compound command or the command containing
the function call completes.

Disable filename expansion (globbing).

Locate and remember (hash) commands as they are looked up for
execution. This option is enabled by default.

All arguments in the form of assignment statements are placed in
the environment for a command, not just those that precede the
command name.

Job control is enabled (see Chapter 7 [Job Control], page 125). All
processes run in a separate process group. When a background job
completes, the shell prints a line containing its exit status.

Read commands but do not execute them. This may be used to
check a script for syntax errors. This option is ignored by interac-
tive shells.

-0 option-name

Set the option corresponding to option-name. If -o is supplied
with no option-name, set prints the current shell options settings.
If +o is supplied with no option-name, set prints a series of set
commands to recreate the current option settings on the standard
output. Valid option names are:

allexport
Same as -a.

braceexpand
Same as -B.

emacs Use an emacs-style line editing interface (see Chapter 8
[Command Line Editing], page 130). This also affects
the editing interface used for read -e.

errexit Same as —e.
errtrace Same as -E.

functrace
Same as -T.

hashall Same as -h.

histexpand
Same as -H.

Chapter 4: Shell Builtin Commands

P

history

ignoreeof

keyword
monitor

noclobber

noexec
noglob
nolog
notify
nounset
onecmd
physical
pipefail

posix

privileged

verbose

vi

xtrace

76

Enable command history, as described in Section 9.1
[Bash History Facilities|, page 168. This option is on
by default in interactive shells.

An interactive shell will not exit upon reading EOF.
Same as -k.

Same as -m.

Same as -C.
Same as -n.
Same as -f.
Currently ignored.
Same as -b.
Same as -u.
Same as -t.
Same as -P.

If set, the return value of a pipeline is the value of
the last (rightmost) command to exit with a non-zero
status, or zero if all commands in the pipeline exit suc-
cessfully. This option is disabled by default.

Enable POSIX mode; change the behavior of Bash where
the default operation differs from the POSIX standard
to match the standard (see Section 6.11 [Bash POSIX
Mode]|, page 116). This is intended to make Bash be-
have as a strict superset of that standard.

Same as -p.
Same as -v.

Use a vi-style line editing interface. This also affects
the editing interface used for read -e.

Same as -x.

Turn on privileged mode. In this mode, the $BASH_ENV and $ENV
files are not processed, shell functions are not inherited from the en-
vironment, and the SHELLOPTS, BASHOPTS, CDPATH and GLOBIGNORE
variables, if they appear in the environment, are ignored. If the shell
is started with the effective user (group) id not equal to the real
user (group) id, and the -p option is not supplied, these actions
are taken and the effective user id is set to the real user id. If the
-p option is supplied at startup, the effective user id is not reset.

Chapter 4:

Shell Builtin Commands 77

-r

-u

Turning this option off causes the effective user and group ids to
be set to the real user and group ids.

Enable restricted shell mode (see Section 6.10 [The Restricted
Shell], page 115). This option cannot be unset once it has been
set.

Exit after reading and executing one command.

Treat unset variables and parameters other than the special param-
eters ‘@ or ‘x’, or array variables subscripted with ‘@’ or ‘*’, as an
error when performing parameter expansion. An error message will
be written to the standard error, and a non-interactive shell will
exit.

Print shell input lines to standard error as they are read.

Print a trace of simple commands, for commands, case commands,
select commands, and arithmetic for commands and their ar-
guments or associated word lists to the standard error after they
are expanded and before they are executed. The shell prints the
expanded value of the PS4 variable before the command and its
expanded arguments.

The shell will perform brace expansion (see Section 3.5.1 [Brace
Expansion], page 25). This option is on by default.

Prevent output redirection using >’; ‘>&’, and ‘<>’ from overwriting
existing files. Using the redirection operator ‘>|’ instead of >’ will
override this and force the creation of an output file.

If set, any trap on ERR is inherited by shell functions, command
substitutions, and commands executed in a subshell environment.
The ERR trap is normally not inherited in such cases.

Enable ‘1’ style history substitution (see Section 9.3 [History In-
teraction], page 171). This option is on by default for interactive
shells.

If set, Bash does not resolve symbolic links when executing com-
mands such as cd which change the current directory. It uses
the physical directory structure instead. By default, Bash follows
the logical chain of directories when performing commands which
change the current directory.
For example, if /usr/sys is a symbolic link to /usr/local/sys
then:

$ cd /usr/sys; echo $PWD

/usr/sys

$ cd ..; pwd

/usr
If set -P is on, then:

$ cd /usr/sys; echo $PWD

Chapter 4: Shell Builtin Commands 78

/usr/local/sys
$ cd ..; pwd
/usr/local

-T If set, any traps on DEBUG and RETURN are inherited by shell func-
tions, command substitutions, and commands executed in a sub-
shell environment. The DEBUG and RETURN traps are normally not
inherited in such cases.

-- If no arguments follow this option, unset the positional parameters.
Otherwise, the positional parameters are set to the arguments, even
if some of them begin with a ‘- .

- Signal the end of options, and assign all remaining arguments to
the positional parameters. The -x and -v options are turned off.
If there are no arguments, the positional parameters remain un-
changed.

Using ‘+’ rather than ‘=’ causes these options to be turned off. The options can
also be used upon invocation of the shell. The current set of options may be
found in $-.

The remaining N arguments are positional parameters and are assigned, in
order, to $1, $2, ... $N. The special parameter # is set to N.

The return status is always zero unless an invalid option is supplied.

4.3.2 The Shopt Builtin
This builtin allows you to change additional optional shell behavior.

shopt
shopt [-pgsul [-o] [optname ...]

Toggle the values of settings controlling optional shell behavior. The settings
can be either those listed below, or, if the —o option is used, those available with
the -o option to the set builtin command (see Section 4.3.1 [The Set Builtin],
page 74).

With no options, or with the —-p option, display a list of all settable options,
with an indication of whether or not each is set; if any optnames are supplied,
the output is restricted to those options. The -p option displays output in a
form that may be reused as input.

Other options have the following meanings:

-s Enable (set) each optname.
-u Disable (unset) each optname.
-q Suppresses normal output; the return status indicates whether the

optname is set or unset. If multiple optname arguments are sup-
plied with -q, the return status is zero if all optnames are enabled;
non-zero otherwise.

-0 Restricts the values of optname to be those defined for the —o option
to the set builtin (see Section 4.3.1 [The Set Builtin], page 74).

Chapter 4: Shell Builtin Commands 79

If either —s or —u is used with no optname arguments, shopt shows only those
options which are set or unset, respectively.

Unless otherwise noted, the shopt options are disabled (off) by default.

The return status when listing options is zero if all optnames are enabled, non-
zero otherwise. When setting or unsetting options, the return status is zero
unless an optname is not a valid shell option.

The list of shopt options is:

array_expand_once
If set, the shell suppresses multiple evaluation of associative and
indexed array subscripts during arithmetic expression evaluation,
while executing builtins that can perform variable assignments, and
while executing builtins that perform array dereferencing.

assoc_expand_once
Deprecated; a synonym for array_expand_once.

autocd If set, a command name that is the name of a directory is executed
as if it were the argument to the cd command. This option is only
used by interactive shells.

bash_source_fullpath
If set, filenames added to the BASH_SOURCE array variable are con-
verted to full pathnames (see Section 5.2 [Bash Variables], page 87).

cdable_vars
If this is set, an argument to the cd builtin command that is not
a directory is assumed to be the name of a variable whose value is
the directory to change to.

cdspell If set, the cd command attempts to correct minor errors in the
spelling of a directory component. Minor errors include transposed
characters, a missing character, and one extra character. If cd
corrects the directory name, it prints the corrected filename, and
the command proceeds. This option is only used by interactive
shells.

checkhash
If this is set, Bash checks that a command found in the hash table
exists before trying to execute it. If a hashed command no longer
exists, Bash performs a normal path search.

checkjobs
If set, Bash lists the status of any stopped and running jobs before
exiting an interactive shell. If any jobs are running, Bash defers
the exit until a second exit is attempted without an intervening
command (see Chapter 7 [Job Control|, page 125). The shell always
postpones exiting if any jobs are stopped.

checkwinsize
If set, Bash checks the window size after each external (non-builtin)
command and, if necessary, updates the values of LINES and

Chapter 4: Shell Builtin Commands 80

cmdhist

compat31
compat32
compat40
compat4l
compat4?2
compat43
compat44

COLUMNS, using the file descriptor associated with stderr if it is a
terminal. This option is enabled by default.

If set, Bash attempts to save all lines of a multiple-line command
in the same history entry. This allows easy re-editing of multi-line
commands. This option is enabled by default, but only has an
effect if command history is enabled (see Section 9.1 [Bash History
Facilities], page 168).

These control aspects of the shell’s compatibility mode (see
Section 6.12 [Shell Compatibility Mode|, page 121).

complete_fullquote

direxpand

dirspell

dotglob

execfail

If set, Bash quotes all shell metacharacters in filenames and direc-
tory names when performing completion. If not set, Bash removes
metacharacters such as the dollar sign from the set of characters
that will be quoted in completed filenames when these metachar-
acters appear in shell variable references in words to be completed.
This means that dollar signs in variable names that expand to di-
rectories will not be quoted; however, any dollar signs appearing in
filenames will not be quoted, either. This is active only when Bash
is using backslashes to quote completed filenames. This variable
is set by default, which is the default Bash behavior in versions
through 4.2.

If set, Bash replaces directory names with the results of word ex-
pansion when performing filename completion. This changes the
contents of the Readline editing buffer. If not set, Bash attempts
to preserve what the user typed.

If set, Bash attempts spelling correction on directory names during
word completion if the directory name initially supplied does not
exist.

If set, Bash includes filenames beginning with a ‘.’ in the results
of filename expansion. The filenames . and .. must always be
matched explicitly, even if dotglob is set.

If this is set, a non-interactive shell will not exit if it cannot execute
the file specified as an argument to the exec builtin. An interactive
shell does not exit if exec fails.

Chapter 4: Shell Builtin Commands 81

expand_aliases

extdebug

extglob

extquote

failglob

If set, aliases are expanded as described below under Aliases,
Section 6.6 [Aliases|, page 109. This option is enabled by default
for interactive shells.

If set at shell invocation, or in a shell startup file, arrange to ex-
ecute the debugger profile before the shell starts, identical to the
--debugger option. If set after invocation, behavior intended for
use by debuggers is enabled:

1. The -F option to the declare builtin (see Section 4.2 [Bash
Builtins], page 61) displays the source file name and line num-
ber corresponding to each function name supplied as an argu-
ment.

2. If the command run by the DEBUG trap returns a non-zero value,
the next command is skipped and not executed.

3. If the command run by the DEBUG trap returns a value of 2,
and the shell is executing in a subroutine (a shell function or
a shell script executed by the . or source builtins), the shell
simulates a call to return.

4. BASH_ARGC and BASH_ARGV are updated as described in their
descriptions (see Section 5.2 [Bash Variables|, page 87).

5. Function tracing is enabled: command substitution, shell
functions, and subshells invoked with (command) inherit the
DEBUG and RETURN traps.

6. Error tracing is enabled: command substitution, shell func-
tions, and subshells invoked with (command) inherit the ERR
trap.

If set, enable the extended pattern matching features described
above (see Section 3.5.8.1 [Pattern Matching], page 39).

If set, $’string’ and $"string" quoting is performed within
${parameter} expansions enclosed in double quotes. This option
is enabled by default.

If set, patterns which fail to match filenames during filename ex-
pansion result in an expansion error.

force_fignore

If set, the suffixes specified by the FIGNORE shell variable cause
words to be ignored when performing word completion even if the
ignored words are the only possible completions. See Section 5.2
[Bash Variables|, page 87, for a description of FIGNORE. This option
is enabled by default.

globasciiranges

If set, range expressions used in pattern matching bracket expres-
sions (see Section 3.5.8.1 [Pattern Matching], page 39) behave as
if in the traditional C locale when performing comparisons. That

Chapter 4: Shell Builtin Commands 82

is, pattern matching does not take the current locale’s collating se-
quence into account, so ‘b’ will not collate between ‘A’ and ‘B’, and
upper-case and lower-case ASCII characters will collate together.

globskipdots
If set, filename expansion will never match the filenames . and . .,
even if the pattern begins with a ‘.’. This option is enabled b
default.

globstar If set, the pattern ‘**’ used in a filename expansion context will
match all files and zero or more directories and subdirectories. If
the pattern is followed by a ‘/’, only directories and subdirectories
match.

gnu_errfmt
If set, shell error messages are written in the standard GNU error
message format.

histappend
If set, the history list is appended to the file named by the value of
the HISTFILE variable when the shell exits, rather than overwriting
the file.

histreedit
If set, and Readline is being used, the user is given the opportunity
to re-edit a failed history substitution.

histverify
If set, and Readline is being used, the results of history substitu-
tion are not immediately passed to the shell parser. Instead, the
resulting line is loaded into the Readline editing buffer, allowing
further modification.

hostcomplete
If set, and Readline is being used, Bash will attempt to perform
hostname completion when a word containing a ‘@’ is being com-
pleted (see Section 8.4.6 [Commands For Completion], page 153).
This option is enabled by default.

huponexit
If set, Bash will send SIGHUP to all jobs when an interactive login
shell exits (see Section 3.7.6 [Signals|, page 49).

inherit_errexit
If set, command substitution inherits the value of the errexit op-
tion, instead of unsetting it in the subshell environment. This op-
tion is enabled when POSIX mode is enabled.

interactive_comments
In an interactive shell, a word beginning with ‘#’ causes that word
and all remaining characters on that line to be ignored, as in a
non-interactive shell. This option is enabled by default.

Chapter 4: Shell Builtin Commands 83

lastpipe Ifset, and job control is not active, the shell runs the last command
of a pipeline not executed in the background in the current shell
environment.

lithist Ifenabled, and the cmdhist option is enabled, multi-line commands
are saved to the history with embedded newlines rather than using
semicolon separators where possible.

localvar_inherit
If set, local variables inherit the value and attributes of a variable
of the same name that exists at a previous scope before any new
value is assigned. The nameref attribute is not inherited.

localvar_unset
If set, calling unset on local variables in previous function scopes
marks them so subsequent lookups find them unset until that func-
tion returns. This is identical to the behavior of unsetting local
variables at the current function scope.

login_shell
The shell sets this option if it is started as a login shell (see
Section 6.1 [Invoking Bash], page 100). The value may not be
changed.

mailwarn If set, and a file that Bash is checking for mail has been accessed
since the last time it was checked, Bash displays the message "The
mail in mailfile has been read".

no_empty_cmd_completion
If set, and Readline is being used, Bash does not search the PATH
for possible completions when completion is attempted on an empty
line.

nocaseglob
If set, Bash matches filenames in a case-insensitive fashion when
performing filename expansion.

nocasematch
If set, Bash matches patterns in a case-insensitive fashion when
performing matching while executing case or [[conditional com-
mands (see Section 3.2.5.2 [Conditional Constructs], page 12), when
performing pattern substitution word expansions, or when filtering
possible completions as part of programmable completion.

noexpand_translation
If set, Bash encloses the translated results of $". .. " quoting in sin-
gle quotes instead of double quotes. If the string is not translated,
this has no effect.

nullglob If set, filename expansion patterns which match no files (see
Section 3.5.8 [Filename Expansion], page 39) expand to nothing
and are removed, rather than expanding to themselves.

Chapter 4: Shell Builtin Commands 84

patsub_replacement
If set, Bash expands occurrences of ‘&’ in the replacement string
of pattern substitution to the text matched by the pattern, as
described above (see Section 3.5.3 [Shell Parameter Expansion],
page 27). This option is enabled by default.

progcomp If set, enable the programmable completion facilities (see
Section 8.6 [Programmable Completion], page 158). This option is
enabled by default.

progcomp_alias
If set, and programmable completion is enabled, Bash treats a com-
mand name that doesn’t have any completions as a possible alias
and attempts alias expansion. If it has an alias, Bash attempts
programmable completion using the command word resulting from
the expanded alias.

promptvars
If set, prompt strings undergo parameter expansion, command
substitution, arithmetic expansion, and quote removal after being
expanded as described below (see Section 6.9 [Controlling the
Prompt], page 114). This option is enabled by default.

restricted_shell
The shell sets this option if it is started in restricted mode (see
Section 6.10 [The Restricted Shell], page 115). The value may not
be changed. This is not reset when the startup files are executed,
allowing the startup files to discover whether or not a shell is re-
stricted.

shift_verbose
If this is set, the shift builtin prints an error message when the
shift count exceeds the number of positional parameters.

sourcepath
If set, the . (source) builtin uses the value of PATH to find the
directory containing the file supplied as an argument when the -p
option is not supplied. This option is enabled by default.

varredir_close
If set, the shell automatically closes file descriptors assigned using
the {varname} redirection syntax (see Section 3.6 [Redirections],
page 41) instead of leaving them open when the command com-
pletes.

xpg_echo If set, the echo builtin expands backslash-escape sequences by de-
fault. If the posix shell option (see Section 4.3.1 [The Set Builtin],
page 74) is also enabled, echo does not interpret any options.

Chapter 4: Shell Builtin Commands 85

4.4 Special Builtins

For historical reasons, the POSIX standard has classified several builtin commands as spe-
cital. When Bash is executing in POSIX mode, the special builtins differ from other builtin
commands in three respects:

1. Special builtins are found before shell functions during command lookup.

2. If a special builtin returns an error status, a non-interactive shell exits.

3. Assignment statements preceding the command stay in effect in the shell environment
after the command completes.

When Bash is not executing in POSIX mode, these builtins behave no differently than
the rest of the Bash builtin commands. The Bash POsSIX mode is described in Section 6.11
[Bash POSIX Mode], page 116.

These are the POSIX special builtins:

break : . source continue eval exec exit export readonly return set
shift times trap unset

86

5 Shell Variables

This chapter describes the shell variables that Bash uses. Bash automatically assigns default
values to a number of variables.

5.1 Bourne Shell Variables

Bash uses certain shell variables in the same way as the Bourne shell. In some cases, Bash
assigns a default value to the variable.

CDPATH

HOME

IFS

MAIL

MAILPATH

OPTARG

OPTIND

PATH

PS1

PS2

A colon-separated list of directories used as a search path for the cd builtin
command.

The current user’s home directory; the default for the cd builtin command. The
value of this variable is also used by tilde expansion (see Section 3.5.2 [Tilde
Expansion], page 26).

A list of characters that separate fields; used when the shell splits words as part
of expansion and by the read builtin to split lines into words. See Section 3.5.7
[Word Splitting], page 38, for a description of word splitting.

If the value is set to a filename or directory name and the MAILPATH variable
is not set, Bash informs the user of the arrival of mail in the specified file or
Maildir-format directory.

A colon-separated list of filenames which the shell periodically checks for new
mail. Each list entry can specify the message that is printed when new mail
arrives in the mail file by separating the filename from the message with a ‘?’.
When used in the text of the message, $_ expands to the name of the current
mail file.

The value of the last option argument processed by the getopts builtin.
The index of the next argument to be processed by the getopts builtin.

A colon-separated list of directories in which the shell looks for commands.
A zero-length (null) directory name in the value of PATH indicates the
current directory. A null directory name may appear as two adjacent colons,
or as an initial or trailing colon. The default path is system-dependent,
and is set by the administrator who installs bash. A common value is
" /usr/local/bin: /usr/local /sbin: /usr/bin: /usr/sbin: /bin: /sbin".

The primary prompt string. The default value is ‘\s-\v\$ ’. See Section 6.9
[Controlling the Prompt], page 114, for the complete list of escape sequences
that are expanded before PS1 is displayed.

The secondary prompt string. The default value is ‘> ’. PS2 is expanded in the
same way as PS1 before being displayed.

Chapter 5: Shell Variables 87

5.2 Bash Variables

These variables are set or used by Bash, but other shells do not normally treat them

specially.

A few variables used by Bash are described in different chapters: variables for controlling
the job control facilities (see Section 7.3 [Job Control Variables|, page 129).

BASH

BASHOPTS

BASHPID

($-, an underscore.) This has a number of meanings depending on context. At
shell startup, $_ set to the pathname used to invoke the shell or shell script
being executed as passed in the environment or argument list. Subsequently,
it expands to the last argument to the previous simple command executed in
the foreground, after expansion. It is also set to the full pathname used to
invoke each command executed and placed in the environment exported to
that command. When checking mail, $_ expands to the name of the mail file.

The full pathname used to execute the current instance of Bash.

A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the -s option to the shopt builtin command (see Section 4.3.2
[The Shopt Builtin], page 78). The options appearing in BASHOPTS are those
reported as ‘on’ by ‘shopt’. If this variable is in the environment when Bash
starts up, the shell enables each option in the list before reading any startup
files. If this variable is exported, child shells will enable each option in the list.
This variable is readonly.

Expands to the process ID of the current Bash process. This differs from $$
under certain circumstances, such as subshells that do not require Bash to be
re-initialized. Assignments to BASHPID have no effect. If BASHPID is unset, it
loses its special properties, even if it is subsequently reset.

BASH_ALTASES

BASH_ARGC

An associative array variable whose members correspond to the internal list
of aliases as maintained by the alias builtin. (see Section 4.1 [Bourne Shell
Builtins], page 52). Elements added to this array appear in the alias list; how-
ever, unsetting array elements currently does not cause aliases to be removed
from the alias list. If BASH_ALIASES is unset, it loses its special properties, even
if it is subsequently reset.

An array variable whose values are the number of parameters in each frame
of the current Bash execution call stack. The number of parameters to the
current subroutine (shell function or script executed with . or source) is at
the top of the stack. When a subroutine is executed, the number of parameters
passed is pushed onto BASH_ARGC. The shell sets BASH_ARGC only when in
extended debugging mode (see Section 4.3.2 [The Shopt Builtin|, page 78, for
a description of the extdebug option to the shopt builtin). Setting extdebug
after the shell has started to execute a subroutine, or referencing this variable
when extdebug is not set, may result in inconsistent values. Assignments to
BASH_ARGC have no effect, and it may not be unset.

Chapter 5: Shell Variables 88

BASH_ARGV

BASH_ARGVO

BASH_CMDS

An array variable containing all of the parameters in the current Bash execution
call stack. The final parameter of the last subroutine call is at the top of the
stack; the first parameter of the initial call is at the bottom. When a subroutine
is executed, the shell pushes the supplied parameters onto BASH_ARGV. The shell
sets BASH_ARGV only when in extended debugging mode (see Section 4.3.2 [The
Shopt Builtin], page 78, for a description of the extdebug option to the shopt
builtin). Setting extdebug after the shell has started to execute a script, or
referencing this variable when extdebug is not set, may result in inconsistent
values. Assignments to BASH_ARGV have no effect, and it may not be unset.

When referenced, this variable expands to the name of the shell or shell script
(identical to $0; See Section 3.4.2 [Special Parameters], page 23, for the de-
scription of special parameter 0). Assigning a value to BASH_ARGVO sets $0 to
the same value. If BASH_ARGVO is unset, it loses its special properties, even if it
is subsequently reset.

An associative array variable whose members correspond to the internal hash
table of commands as maintained by the hash builtin (see Section 4.1 [Bourne
Shell Builtins|, page 52). Adding elements to this array makes them appear in
the hash table; however, unsetting array elements currently does not remove
command names from the hash table. If BASH_CMDS is unset, it loses its special
properties, even if it is subsequently reset.

BASH_COMMAND

Expands to the command currently being executed or about to be executed,
unless the shell is executing a command as the result of a trap, in which case
it is the command executing at the time of the trap. If BASH_COMMAND is unset,
it loses its special properties, even if it is subsequently reset.

BASH_COMPAT

BASH_ENV

The value is used to set the shell’s compatibility level. See Section 6.12 [Shell
Compatibility Mode|, page 121, for a description of the various compatibility
levels and their effects. The value may be a decimal number (e.g., 4.2) or an
integer (e.g., 42) corresponding to the desired compatibility level. If BASH_
COMPAT is unset or set to the empty string, the compatibility level is set to the
default for the current version. If BASH_COMPAT is set to a value that is not one
of the valid compatibility levels, the shell prints an error message and sets the
compatibility level to the default for the current version. A subset of the valid
values correspond to the compatibility levels described below (see Section 6.12
[Shell Compatibility Mode], page 121). For example, 4.2 and 42 are valid values
that correspond to the compat42 shopt option and set the compatibility level
to 42. The current version is also a valid value.

If this variable is set when Bash is invoked to execute a shell script, its value
is expanded and used as the name of a startup file to read before executing
the script. Bash does not use PATH to search for the resultant filename. See
Section 6.2 [Bash Startup Files|, page 102.

Chapter 5: Shell Variables 89

BASH_EXECUTION_STRING
The command argument to the —c invocation option.

BASH_LINENO
An array variable whose members are the line numbers in source files where
each corresponding member of FUNCNAME was invoked. ${BASH_LINENO([$i]}
is the line number in the source file (${BASH_SOURCE[$i+1]}) where
${FUNCNAME [$i]} was called (or ${BASH_LINENO[$i-1]} if referenced within
another shell function). Use LINENO to obtain the current line number.
Assignments to BASH_LINENO have no effect, and it may not be unset.

BASH_LOADABLES_PATH
A colon-separated list of directories in which the enable command looks for
dynamically loadable builtins.

BASH_MONOSECONDS
Each time this variable is referenced, it expands to the value returned by the
system’s monotonic clock, if one is available. If there is no monotonic clock,
this is equivalent to EPOCHSECONDS. If BASH_MONOSECONDS is unset, it loses its
special properties, even if it is subsequently reset.

BASH_REMATCH
An array variable whose members are assigned by the ‘="’ binary operator
to the [[conditional command (see Section 3.2.5.2 [Conditional Constructs],
page 12). The element with index 0 is the portion of the string matching the
entire regular expression. The element with index n is the portion of the string
matching the nth parenthesized subexpression.

¢

BASH_SOURCE
An array variable whose members are the source filenames where the corre-
sponding shell function names in the FUNCNAME array variable are defined. The
shell function ${FUNCNAME [$i]} is defined in the file ${BASH_SOURCE [$i]} and
called from ${BASH_SOURCE[$i+1]} Assignments to BASH_SOURCE have no ef-
fect, and it may not be unset.

BASH_SUBSHELL
Incremented by one within each subshell or subshell environment when the shell
begins executing in that environment. The initial value is 0. If BASH_SUBSHELL
is unset, it loses its special properties, even if it is subsequently reset.

BASH_TRAPSIG
Set to the signal number corresponding to the trap action being executed dur-
ing its execution. See the description of trap (see Section 4.1 [Bourne Shell
Builtins], page 52) for information about signal numbers and trap execution.

BASH_VERSINFO
A readonly array variable (see Section 6.7 [Arrays], page 110) whose members
hold version information for this instance of Bash. The values assigned to the
array members are as follows:

BASH_VERSINFO[0]
The major version number (the release).

Chapter 5: Shell Variables 90

BASH_VERSINFO[1]
The minor version number (the version).

BASH_VERSINFO[2]
The patch level.

BASH_VERSINFO[3]
The build version.

BASH_VERSINFO[4]
The release status (e.g., beta).

BASH_VERSINFO[5]
The value of MACHTYPE.

BASH_VERSION
Expands to a string describing the version of this instance of Bash (e.g.,
5.2.37(3)-release).

BASH_XTRACEFD

If set to an integer corresponding to a valid file descriptor, Bash writes the trace
output generated when ‘set -x’ is enabled to that file descriptor, instead of the
standard error. This allows tracing output to be separated from diagnostic
and error messages. The file descriptor is closed when BASH_XTRACEFD is unset
or assigned a new value. Unsetting BASH_XTRACEFD or assigning it the empty
string causes the trace output to be sent to the standard error. Note that setting
BASH_XTRACEFD to 2 (the standard error file descriptor) and then unsetting it
will result in the standard error being closed.

CHILD_MAX
Set the number of exited child status values for the shell to remember. Bash
will not allow this value to be decreased below a POSIX-mandated minimum,
and there is a maximum value (currently 8192) that this may not exceed. The
minimum value is system-dependent.

COLUMNS Used by the select command to determine the terminal width when printing
selection lists. Automatically set if the checkwinsize option is enabled (see
Section 4.3.2 [The Shopt Builtin], page 78), or in an interactive shell upon
receipt of a SIGWINCH.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor po-
sition. This variable is available only in shell functions invoked by the pro-
grammable completion facilities (see Section 8.6 [Programmable Completion],
page 158).

COMP_KEY The key (or final key of a key sequence) used to invoke the current comple-
tion function. This variable is available only in shell functions and external
commands invoked by the programmable completion facilities (see Section 8.6
[Programmable Completion], page 158).

Chapter 5: Shell Variables 91

COMP_LINE
The current command line. This variable is available only in shell functions
and external commands invoked by the programmable completion facilities (see
Section 8.6 [Programmable Completion], page 158).

COMP_POINT
The index of the current cursor position relative to the beginning of the current
command. If the current cursor position is at the end of the current command,
the value of this variable is equal to ${#COMP_LINE}. This variable is available
only in shell functions and external commands invoked by the programmable
completion facilities (see Section 8.6 [Programmable Completion|, page 158).

COMP_TYPE
Set to an integer value corresponding to the type of attempted completion that
caused a completion function to be called: TAB, for normal completion, ‘?’; for
listing completions after successive tabs, ‘!’, for listing alternatives on partial
word completion, ‘@’, to list completions if the word is not unmodified, or ‘%’, for
menu completion. This variable is available only in shell functions and external
commands invoked by the programmable completion facilities (see Section 8.6

[Programmable Completion], page 158).

COMP_WORDBREAKS
The set of characters that the Readline library treats as word separators when
performing word completion. If COMP_WORDBREAKS is unset, it loses its special
properties, even if it is subsequently reset.

COMP_WORDS
An array variable consisting of the individual words in the current command
line. The line is split into words as Readline would split it, using COMP_
WORDBREAKS as described above. This variable is available only in shell func-
tions invoked by the programmable completion facilities (see Section 8.6 [Pro-
grammable Completion], page 158).

COMPREPLY
An array variable from which Bash reads the possible completions generated
by a shell function invoked by the programmable completion facility (see
Section 8.6 [Programmable Completion|, page 158). FEach array element
contains one possible completion.

COPROC An array variable created to hold the file descriptors for output from and input
to an unnamed coprocess (see Section 3.2.6 [Coprocesses|, page 18).

DIRSTACK An array variable containing the current contents of the directory stack. Direc-
tories appear in the stack in the order they are displayed by the dirs builtin.
Assigning to members of this array variable may be used to modify directories
already in the stack, but the pushd and popd builtins must be used to add
and remove directories. Assigning to this variable does not change the cur-
rent directory. If DIRSTACK is unset, it loses its special properties, even if it is
subsequently reset.

Chapter 5: Shell Variables 92

EMACS If Bash finds this variable in the environment when the shell starts, and its
value is ‘t’, Bash assumes that the shell is running in an Emacs shell buffer and
disables line editing.

ENV Expanded and executed similarly to BASH_ENV (see Section 6.2 [Bash Startup
Files], page 102) when an interactive shell is invoked in POSIX mode (see
Section 6.11 [Bash POSIX Mode]|, page 116).

EPOCHREALTIME
Each time this parameter is referenced, it expands to the number of seconds
since the Unix Epoch as a floating-point value with micro-second granularity
(see the documentation for the C library function time for the definition of
Epoch). Assignments to EPOCHREALTIME are ignored. If EPOCHREALTIME is
unset, it loses its special properties, even if it is subsequently reset.

EPOCHSECONDS
Each time this parameter is referenced, it expands to the number of seconds
since the Unix Epoch (see the documentation for the C library function time
for the definition of Epoch). Assignments to EPOCHSECONDS are ignored. If
EPOCHSECONDS is unset, it loses its special properties, even if it is subsequently
reset.

EUID The numeric effective user id of the current user. This variable is readonly.

EXECIGNORE

A colon-separated list of shell patterns (see Section 3.5.8.1 [Pattern Matching],
page 39) defining the set of filenames to be ignored by command search using
PATH. Files whose full pathnames match one of these patterns are not considered
executable files for the purposes of completion and command execution via PATH
lookup. This does not affect the behavior of the [, test, and [[commands.
Full pathnames in the command hash table are not subject to EXECIGNORE.
Use this variable to ignore shared library files that have the executable bit set,
but are not executable files. The pattern matching honors the setting of the
extglob shell option.

FCEDIT The editor used as a default by the fc builtin command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename comple-
tion. A filename whose suffix matches one of the entries in FIGNORE is excluded
from the list of matched filenames. A sample value is ‘.0:™’

FUNCNAME An array variable containing the names of all shell functions currently in the
execution call stack. The element with index 0 is the name of any currently-
executing shell function. The bottom-most element (the one with the highest
index) is "main". This variable exists only when a shell function is executing.
Assignments to FUNCNAME have no effect. If FUNCNAME is unset, it loses its special
properties, even if it is subsequently reset.

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element
of FUNCNAME has corresponding elements in BASH_LINENO and BASH_SOURCE to
describe the call stack. For instance, ${FUNCNAME[$i]} was called from the
file ${BASH_SQURCE[$i+1]} at line number ${BASH_LINENO[$i]}. The caller
builtin displays the current call stack using this information.

Chapter 5: Shell Variables 93

FUNCNEST A numeric value greater than 0 defines a maximum function nesting level. Func-
tion invocations that exceed this nesting level cause the current command to
abort.

GLOBIGNORE
A colon-separated list of patterns defining the set of file names to be ignored
by filename expansion. If a file name matched by a filename expansion pattern
also matches one of the patterns in GLOBIGNORE, it is removed from the list of
matches. The pattern matching honors the setting of the extglob shell option.

GLOBSORT Controls how the results of filename expansion are sorted. The value of this
variable specifies the sort criteria and sort order for the results of filename
expansion. If this variable is unset or set to the null string, filename expansion
uses the historical behavior of sorting by name, in ascending lexicographic order
as determined by the LC_COLLATE shell variable.

If set, a valid value begins with an optional ‘+’, which is ignored, or ‘-’, which
reverses the sort order from ascending to descending, followed by a sort specifier.
The valid sort specifiers are ‘name’, ‘numeric’, ‘size’, ‘mtime’, ‘atime’, ‘ctime’,
and ‘blocks’, which sort the files on name, names in numeric rather than
lexicographic order, file size, modification time, access time, inode change time,
and number of blocks, respectively. If any of the non-name keys compare as
equal (e.g., if two files are the same size), sorting uses the name as a secondary
sort key.

For example, a value of -mtime sorts the results in descending order by modi-
fication time (newest first).

The ‘numeric’ specifier treats names consisting solely of digits as numbers and
sorts them using their numeric value (so “2” sorts before “10”, for example).
When using ‘numeric’, names containing non-digits sort after all the all-digit
names and are sorted by name using the traditional behavior.

A sort specifier of ‘nosort’ disables sorting completely; Bash returns the results
in the order they are read from the file system, ignoring any leading ‘-’.

If the sort specifier is missing, it defaults to name, so a value of ‘+’ is equivalent
to the null string, and a value of ‘=’ sorts by name in descending order.

Any invalid value restores the historical sorting behavior.

GROUPS An array variable containing the list of groups of which the current user is a
member. Assignments to GROUPS have no effect. If GROUPS is unset, it loses its
special properties, even if it is subsequently reset.

histchars
The two or three characters which control history expansion, quick substitu-
tion, and tokenization (see Section 9.3 [History Interaction], page 171). The
first character is the history expansion character, the character which begins
a history expansion, normally ‘!’. The second character is the quick substi-
tution character, normally ‘~’. When it appears as the first character on the
line, history substitution repeats the previous command, replacing one string
with another. The optional third character is the history comment character,

normally ‘#’, which indicates that the remainder of the line is a comment when

Chapter 5: Shell Variables 94

HISTCMD

it appears as the first character of a word. The history comment character
disables history substitution for the remaining words on the line. It does not
necessarily cause the shell parser to treat the rest of the line as a comment.

The history number, or index in the history list, of the current command.
Assignments to HISTCMD have no effect. If HISTCMD is unset, it loses its special
properties, even if it is subsequently reset.

HISTCONTROL

HISTFILE

A colon-separated list of values controlling how commands are saved on the
history list. If the list of values includes ‘ignorespace’, lines which begin with
a space character are not saved in the history list. A value of ‘ignoredups’
causes lines which match the previous history entry not to be saved. A value
of ‘ignoreboth’ is shorthand for ‘ignorespace’ and ‘ignoredups’. A value of
‘erasedups’ causes all previous lines matching the current line to be removed
from the history list before that line is saved. Any value not in the above list
is ignored. If HISTCONTROL is unset, or does not include a valid value, Bash
saves all lines read by the shell parser on the history list, subject to the value
of HISTIGNORE. If the first line of a multi-line compound command was saved,
the second and subsequent lines are not tested, and are added to the history
regardless of the value of HISTCONTROL. If the first line was not saved, the
second and subsequent lines of the command are not saved either.

The name of the file to which the command history is saved. Bash assigns a
default value of “/.bash_history. If HISTFILE is unset or null, the shell does
not save the command history when it exits.

HISTFILESIZE

HISTIGNORE

The maximum number of lines contained in the history file. When this variable
is assigned a value, the history file is truncated, if necessary, to contain no more
than the number of history entries that total no more than that number of lines
by removing the oldest entries. If the history list contains multi-line entries, the
history file may contain more lines than this maximum to avoid leaving partial
history entries. The history file is also truncated to this size after writing it
when a shell exits or by the history builtin. If the value is 0, the history file is
truncated to zero size. Non-numeric values and numeric values less than zero
inhibit truncation. The shell sets the default value to the value of HISTSIZE
after reading any startup files.

A colon-separated list of patterns used to decide which command lines should
be saved on the history list. If a command line matches one of the patterns in
the value of HISTIGNORE, it is not saved on the history list. Each pattern is
anchored at the beginning of the line and must match the complete line (Bash
does not implicitly append a ‘*’). Each pattern is tested against the line after
the checks specified by HISTCONTROL are applied. In addition to the normal
shell pattern matching characters, ‘&’ matches the previous history line. A
backslash escapes the ‘&’; the backslash is removed before attempting a match.
If the first line of a multi-line compound command was saved, the second and
subsequent lines are not tested, and are added to the history regardless of the

Chapter 5: Shell Variables 95

HISTSIZE

value of HISTIGNORE. If the first line was not saved, the second and subsequent
lines of the command are not saved either. The pattern matching honors the
setting of the extglob shell option.

HISTIGNORE subsumes some of the function of HISTCONTROL. A pattern of ‘&’
is identical to ignoredups, and a pattern of ‘[]*’ is identical to ignorespace.
Combining these two patterns, separating them with a colon, provides the func-
tionality of ignoreboth.

The maximum number of commands to remember on the history list. If the
value is 0, commands are not saved in the history list. Numeric values less than
zero result in every command being saved on the history list (there is no limit).
The shell sets the default value to 500 after reading any startup files.

HISTTIMEFORMAT

HOSTFILE

HOSTNAME
HOSTTYPE
IGNOREEQF

INPUTRC

If this variable is set and not null, its value is used as a format string for
strftime(3) to print the time stamp associated with each history entry dis-
played by the history builtin. If this variable is set, the shell writes time
stamps to the history file so they may be preserved across shell sessions. This
uses the history comment character to distinguish timestamps from other his-
tory lines.

Contains the name of a file in the same format as /etc/hosts that should be
read when the shell needs to complete a hostname. The list of possible hostname
completions may be changed while the shell is running; the next time hostname
completion is attempted after the value is changed, Bash adds the contents of
the new file to the existing list. If HOSTFILE is set, but has no value, or does
not name a readable file, Bash attempts to read /etc/hosts to obtain the list
of possible hostname completions. When HOSTFILE is unset, Bash clears the
hostname list.

The name of the current host.

A string describing the machine Bash is running on.

Controls the action of the shell on receipt of an EOF character as the sole input.
If set, the value is the number of consecutive EQOF characters that can be read
as the first character on an input line before Bash exits. If the variable is set
but does not have a numeric value, or the value is null, then the default is 10.
If the variable is unset, then EOF signifies the end of input to the shell. This is
only in effect for interactive shells.

The name of the Readline initialization file, overriding the default of
~/.inputrec.

INSIDE_EMACS

LANG

If Bash finds this variable in the environment when the shell starts, it assumes
that the shell is running in an Emacs shell buffer and may disable line editing
depending on the value of TERM.

Used to determine the locale category for any category not specifically selected
with a variable starting with LC_.

Chapter 5: Shell Variables 96

LC_ALL This variable overrides the value of LANG and any other LC_ variable specifying
a locale category.

LC_COLLATE
This variable determines the collation order used when sorting the results of
filename expansion, and determines the behavior of range expressions, equiv-
alence classes, and collating sequences within filename expansion and pattern
matching (see Section 3.5.8 [Filename Expansion], page 39).

LC_CTYPE This variable determines the interpretation of characters and the behavior
of character classes within filename expansion and pattern matching (see
Section 3.5.8 [Filename Expansion], page 39).

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings pre-
ceded by a ‘$’ (see Section 3.1.2.5 [Locale Translation], page 7).

LC_NUMERIC
This variable determines the locale category used for number formatting.

LC_TIME This variable determines the locale category used for data and time formatting.

LINENO The line number in the script or shell function currently executing. Line num-
bers start with 1. When not in a script or function, the value is not guaranteed
to be meaningful. If LINENO is unset, it loses its special properties, even if it is
subsequently reset.

LINES Used by the select command to determine the column length for printing
selection lists. Automatically set if the checkwinsize option is enabled (see
Section 4.3.2 [The Shopt Builtin], page 78), or in an interactive shell upon
receipt of a SIGWINCH.

MACHTYPE A string that fully describes the system type on which Bash is executing, in the
standard GNU cpu-company-system format.

MAILCHECK
How often (in seconds) that the shell should check for mail in the files specified
in the MATLPATH or MAIL variables. The default is 60 seconds. When it is time
to check for mail, the shell does so before displaying the primary prompt. If
this variable is unset, or set to a value that is not a number greater than or
equal to zero, the shell disables mail checking.

MAPFILE An array variable created to hold the text read by the mapfile builtin when
no variable name is supplied.

OLDPWD The previous working directory as set by the cd builtin.

OPTERR If set to the value 1, Bash displays error messages generated by the getopts
builtin command. OPTERR is initialized to 1 each time the shell is invoked.

OSTYPE A string describing the operating system Bash is running on.

PIPESTATUS
An array variable (see Section 6.7 [Arrays|, page 110) containing a list of exit
status values from the commands in the most-recently-executed foreground

Chapter 5: Shell Variables 97

pipeline, which may consist of only a simple command (see Section 3.2 [Shell
Commands|, page 9). Bash sets PIPESTATUS after executing multi-element
pipelines, timed and negated pipelines, simple commands, subshells created
with the ‘(" operator, the [[and ((compound commands, and after error
conditions that result in the shell aborting command execution.

POSIXLY_CORRECT

PPID

If this variable is in the environment when Bash starts, the shell enters POSIX

mode (see Section 6.11 [Bash POSIX Mode|, page 116) before reading the

startup files, as if the ——posix invocation option had been supplied. If it is

set while the shell is running, Bash enables POSIX mode, as if the command
set -o posix

had been executed. When the shell enters POSIX mode, it sets this variable if

it was not already set.

The process 1D of the shell’s parent process. This variable is readonly.

PROMPT _COMMAND

If this variable is set, and is an array, the value of each set element is interpreted
as a command to execute before printing the primary prompt ($PS1). If this is
set but not an array variable, its value is used as a command to execute instead.

PROMPT_DIRTRIM

PSO

PS3

PS4

PWD
RANDOM

If set to a number greater than zero, the value is used as the number of trailing
directory components to retain when expanding the \w and \W prompt string es-
capes (see Section 6.9 [Controlling the Prompt], page 114). Characters removed
are replaced with an ellipsis.

The value of this parameter is expanded like PS1 and displayed by interactive
shells after reading a command and before the command is executed.

The value of this variable is used as the prompt for the select command. If
this variable is not set, the select command prompts with ‘#7’

The value of this parameter is expanded like PS1 and the expanded value is
the prompt printed before the command line is echoed when the -x option is
set (see Section 4.3.1 [The Set Builtin], page 74). The first character of the
expanded value is replicated multiple times, as necessary, to indicate multiple
levels of indirection. The default is ‘+ °.

The current working directory as set by the cd builtin.

Each time this parameter is referenced, it expands to a random integer between
0 and 32767. Assigning a value to RANDOM initializes (seeds) the sequence of
random numbers. Seeding the random number generator with the same con-
stant value produces the same sequence of values. If RANDOM is unset, it loses
its special properties, even if it is subsequently reset.

READLINE_ARGUMENT

Any numeric argument given to a Readline command that was defined using
‘bind -x’ (see Section 4.2 [Bash Builtins], page 61) when it was invoked.

Chapter 5: Shell Variables 98

READLINE_LINE

The contents of the Readline line buffer, for use with ‘bind -x’ (see Section 4.2
[Bash Builtins], page 61).

READLINE_MARK

The position of the mark (saved insertion point) in the Readline line buffer, for
use with ‘bind -x’ (see Section 4.2 [Bash Builtins|, page 61). The characters
between the insertion point and the mark are often called the region.

READLINE_POINT

REPLY

SECONDS

SHELL

SHELLOPTS

SHLVL

SRANDOM

TIMEFORMAT

The position of the insertion point in the Readline line buffer, for use with ‘bind
-x’ (see Section 4.2 [Bash Builtins|, page 61).

The default variable for the read builtin; set to the line read when read is not
supplied a variable name argument.

This variable expands to the number of seconds since the shell was started.
Assignment to this variable resets the count to the value assigned, and the
expanded value becomes the value assigned plus the number of seconds since
the assignment. The number of seconds at shell invocation and the current time
are always determined by querying the system clock at one-second resolution. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

This environment variable expands to the full pathname to the shell. If it is not
set when the shell starts, Bash assigns to it the full pathname of the current
user’s login shell.

A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the -o option to the set builtin command (see Section 4.3.1 [The
Set Builtin], page 74). The options appearing in SHELLOPTS are those reported
as ‘on’ by ‘set -o’. If this variable is in the environment when Bash starts
up, the shell enables each option in the list before reading any startup files. If
this variable is exported, child shells will enable each option in the list. This
variable is readonly.

Incremented by one each time a new instance of Bash is started. This is intended
to be a count of how deeply your Bash shells are nested.

This variable expands to a 32-bit pseudo-random number each time it is ref-
erenced. The random number generator is not linear on systems that support
/dev/urandom or arc4random, so each returned number has no relationship to
the numbers preceding it. The random number generator cannot be seeded,
so assignments to this variable have no effect. If SRANDOM is unset, it loses its
special properties, even if it is subsequently reset.

The value of this parameter is used as a format string specifying how the tim-
ing information for pipelines prefixed with the time reserved word should be
displayed. The ‘)’ character introduces an escape sequence that is expanded to
a time value or other information. The escape sequences and their meanings
are as follows; the brackets denote optional portions.

Chapter 5: Shell Variables 99

TMOUT

TMPDIR

UID

ot A literal *%’.

%[p] [11R The elapsed time in seconds.

%[p] [1JU The number of CPU seconds spent in user mode.
%[p] [11S The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.

The optional p is a digit specifying the precision, the number of fractional digits
after a decimal point. A value of 0 causes no decimal point or fraction to be
output. time prints at most six digits after the decimal point; values of p
greater than 6 are changed to 6. If p is not specified, time prints three digits
after the decimal point.

The optional 1 specifies a longer format, including minutes, of the form
MMmSS.FFs. The value of p determines whether or not the fraction is
included.

If this variable is not set, Bash acts as if it had the value
$’\nreal\t%31R\nuser\t%31U\nsys\t%31S’

If the value is null, Bash does not display any timing information. A trailing
newline is added when the format string is displayed.

If set to a value greater than zero, the read builtin uses the value as its default
timeout (see Section 4.2 [Bash Builtins], page 61). The select command (see
Section 3.2.5.2 [Conditional Constructs], page 12) terminates if input does not
arrive after TMOUT seconds when input is coming from a terminal.

In an interactive shell, the value is interpreted as the number of seconds to
wait for a line of input after issuing the primary prompt. Bash terminates after
waiting for that number of seconds if a complete line of input does not arrive.

If set, Bash uses its value as the name of a directory in which Bash creates
temporary files for the shell’s use.

The numeric real user id of the current user. This variable is readonly.

100

6 Bash Features

This chapter describes features unique to Bash.

6.1 Invoking Bash

bash [long-opt] [-ir] [-abefhkmnptuvxdBCDHP] [-o option]
[-0 shopt_option] [argument ...]

bash [long-opt] [-abefhkmnptuvxdBCDHP] [-o option]
[-0 shopt_option] -c string [argument ...]

bash [long-opt] -s [-abefhkmnptuvxdBCDHP] [-o option]
[-0 shopt_option] [argument ...]

All of the single-character options used with the set builtin (see Section 4.3.1 [The Set
Builtin], page 74) can be used as options when the shell is invoked. In addition, there
are several multi-character options that you can use. These options must appear on the
command line before the single-character options to be recognized.

--debugger
Arrange for the debugger profile to be executed before the shell starts. Turns
on extended debugging mode (see Section 4.3.2 [The Shopt Builtin], page 78,
for a description of the extdebug option to the shopt builtin).

—-—dump-po-strings
Print a list of all double-quoted strings preceded by ‘¢’ on the standard output
in the GNU gettext PO (portable object) file format. Equivalent to -D except
for the output format.
-—dump-strings
Equivalent to -D.
--help Display a usage message on standard output and exit successfully.
--init-file filename
--rcfile filename
Execute commands from filename (instead of ~/.bashrc) in an interactive shell.

--login Equivalent to -1.

--noediting
Do not use the GNU Readline library (see Chapter 8 [Command Line Editing],
page 130) to read command lines when the shell is interactive.

—--noprofile
Don’t load the system-wide startup file /etc/profile or any of the personal ini-
tialization files “/.bash_profile, "/.bash_login, or “/.profile when Bash
is invoked as a login shell.

--norc Don’t read the ~/.bashrc initialization file in an interactive shell. This is on
by default if the shell is invoked as sh.

--posix Enable POSIX mode; change the behavior of Bash where the default operation
differs from the POSIX standard to match the standard. This is intended to
make Bash behave as a strict superset of that standard. See Section 6.11 [Bash
POSIX Mode], page 116, for a description of the Bash POSIX mode.

Chapter 6: Bash Features 101

--restricted
Equivalent to -r. Make the shell a restricted shell (see Section 6.10 [The Re-
stricted Shell], page 115).

--verbose
Equivalent to —-v. Print shell input lines as they’re read.

--version
Show version information for this instance of Bash on the standard output and
exit successfully.

There are several single-character options that may be supplied at invocation which are
not available with the set builtin.

-c Read and execute commands from the first non-option argument com-
mand_string, then exit. If there are arguments after the command_string, the
first argument is assigned to $0 and any remaining arguments are assigned to
the positional parameters. The assignment to $0 sets the name of the shell,
which is used in warning and error messages.

-i Force the shell to run interactively. Interactive shells are described in Section 6.3
[Interactive Shells], page 104.
-1 Make this shell act as if it had been directly invoked by login. When the

shell is interactive, this is equivalent to starting a login shell with ‘exec -1
bash’. When the shell is not interactive, it will read and execute the login shell
startup files. ‘exec bash -1’ or ‘exec bash --login’ will replace the current
shell with a Bash login shell. See Section 6.2 [Bash Startup Files|, page 102,
for a description of the special behavior of a login shell.

-r Make the shell a restricted shell (see Section 6.10 [The Restricted Shell],
page 115).
-s If this option is present, or if no arguments remain after option processing,

then Bash reads commands from the standard input. This option allows the
positional parameters to be set when invoking an interactive shell or when
reading input through a pipe.

-D Print a list of all double-quoted strings preceded by ‘$’ on the standard output.
These are the strings that are subject to language translation when the current
locale is not C or POSIX (see Section 3.1.2.5 [Locale Translation], page 7). This
implies the —n option; no commands will be executed.

[-+]0 [shopt_option]
shopt_option is one of the shell options accepted by the shopt builtin (see
Section 4.3.2 [The Shopt Builtin|, page 78). If shopt_option is present, -0 sets
the value of that option; +0 unsets it. If shopt_option is not supplied, Bash
prints the names and values of the shell options accepted by shopt on the
standard output. If the invocation option is +0, the output is displayed in a
format that may be reused as input.

- A -- signals the end of options and disables further option processing. Any
arguments after the —- are treated as a shell script filename (see Section 3.8
[Shell Scripts], page 50) and arguments passed to that script.

Chapter 6: Bash Features 102

- Equivalent to --.

A login shell is one whose first character of argument zero is ‘~’, or one invoked with the
--login option.

An interactive shell is one started without non-option arguments, unless -s is specified,
without specifying the -c option, and whose standard input and standard error are both
connected to terminals (as determined by isatty(3)), or one started with the -i option. See
Section 6.3 [Interactive Shells|, page 104, for more information.

If arguments remain after option processing, and neither the -c nor the -s option has
been supplied, the first argument is treated as the name of a file containing shell commands
(see Section 3.8 [Shell Scripts], page 50). When Bash is invoked in this fashion, $0 is set
to the name of the file, and the positional parameters are set to the remaining arguments.
Bash reads and executes commands from this file, then exits. Bash’s exit status is the exit
status of the last command executed in the script. If no commands are executed, the exit
status is 0. Bash first attempts to open the file in the current directory, and, if no file is
found, searches the directories in PATH for the script.

6.2 Bash Startup Files

This section describes how Bash executes its startup files. If any of the files exist but cannot
be read, Bash reports an error. Tildes are expanded in filenames as described above under
Tilde Expansion (see Section 3.5.2 [Tilde Expansion|, page 26).

Interactive shells are described in Section 6.3 [Interactive Shells|, page 104.

Invoked as an interactive login shell, or with --login

When Bash is invoked as an interactive login shell, or as a non-interactive shell with the
--login option, it first reads and executes commands from the file /etc/profile, if that
file exists. After reading that file, it looks for ~/.bash_profile, ~/.bash_login, and
~/.profile, in that order, and reads and executes commands from the first one that exists
and is readable. The —-noprofile option inhibits this behavior.

When an interactive login shell exits, or a non-interactive login shell executes the exit
builtin command, Bash reads and executes commands from the file “/.bash_logout, if it
exists.

Invoked as an interactive non-login shell

When Bash runs as an interactive shell that is not a login shell, it reads and executes
commands from ~/.bashrc, if that file exists. The —--norc option inhibits this behavior.
The --rcfile file option causes Bash to use file instead of ~/.bashrc.

So, typically, your ~/.bash_profile contains the line
if [-f ~/.bashrc]; then . ~/.bashrc; fi

after (or before) any login-specific initializations.

Invoked non-interactively

When Bash is started non-interactively, to run a shell script, for example, it looks for the
variable BASH_ENV in the environment, expands its value if it appears there, and uses the

Chapter 6: Bash Features 103

expanded value as the name of a file to read and execute. Bash behaves as if the following
command were executed:

if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi
but does not the value of the PATH variable to search for the filename.

As noted above, if a non-interactive shell is invoked with the --login option, Bash
attempts to read and execute commands from the login shell startup files.

Invoked with name sh

If Bash is invoked with the name sh, it tries to mimic the startup behavior of historical
versions of sh as closely as possible, while conforming to the POSIX standard as well.

When invoked as an interactive login shell, or as a non-interactive shell with the
--login option, it first attempts to read and execute commands from /etc/profile and
~/.profile, in that order. The --noprofile option inhibits this behavior.

When invoked as an interactive shell with the name sh, Bash looks for the variable ENV,
expands its value if it is defined, and uses the expanded value as the name of a file to read
and execute. Since a shell invoked as sh does not attempt to read and execute commands
from any other startup files, the ——rcfile option has no effect.

A non-interactive shell invoked with the name sh does not attempt to read any other
startup files.

When invoked as sh, Bash enters POSIX mode after reading the startup files.

Invoked in POSIX mode

When Bash is started in POSIX mode, as with the --posix command line option, it follows
the PosIX standard for startup files. In this mode, interactive shells expand the ENV variable
and read and execute commands from the file whose name is the expanded value. No other
startup files are read.

Invoked by remote shell daemon

Bash attempts to determine when it is being run with its standard input connected to
a network connection, as when executed by the historical and rarely-seen remote shell
daemon, usually rshd, or the secure shell daemon sshd. If Bash determines it is being run
non-interactively in this fashion, it reads and executes commands from ~/.bashrc, if that
file exists and is readable. Bash does not read this file if invoked as sh. The —--norc option
inhibits this behavior, and the ——rcfile option makes Bash use a different file instead of
~/ .bashrc, but neither rshd nor sshd generally invoke the shell with those options or allow
them to be specified.

Invoked with unequal effective and real UID/GIDs

If Bash is started with the effective user (group) id not equal to the real user (group) id,
and the -p option is not supplied, no startup files are read, shell functions are not inherited
from the environment, the SHELLOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if
they appear in the environment, are ignored, and the effective user id is set to the real user
id. If the -p option is supplied at invocation, the startup behavior is the same, but the
effective user id is not reset.

Chapter 6: Bash Features 104

6.3 Interactive Shells

6.3.1 What is an Interactive Shell?

An interactive shell is one started without non-option arguments (unless -s is specified)
and without specifying the -c option, whose input and error output are both connected to
terminals (as determined by isatty(3)), or one started with the -i option.

An interactive shell generally reads from and writes to a user’s terminal.

The -s invocation option may be used to set the positional parameters when an inter-
active shell starts.

6.3.2 Is this Shell Interactive?

To determine within a startup script whether or not Bash is running interactively, test the
value of the ‘-’ special parameter. It contains i when the shell is interactive. For example:
case "$-" in
i) echo This shell is interactive ;;
*) echo This shell is not interactive ;;
esac

Alternatively, startup scripts may examine the variable PS1; it is unset in non-interactive
shells, and set in interactive shells. Thus:
if [-z "$PS1"]; then
echo This shell is not interactive
else
echo This shell is interactive
fi

6.3.3 Interactive Shell Behavior

When the shell is running interactively, it changes its behavior in several ways.
1. Bash reads and executes startup files as described in Section 6.2 [Bash Startup Files],
page 102.
2. Job Control (see Chapter 7 [Job Control], page 125) is enabled by default. When job
control is in effect, Bash ignores the keyboard-generated job control signals SIGTTIN,
SIGTTOU, and SIGTSTP.

3. Bash executes the values of the set elements of the PROMPT_COMMAND array variable as
commands before printing the primary prompt, $PS1 (see Section 5.2 [Bash Variables],
page 87).

4. Bash expands and displays PS1 before reading the first line of a command, and expands
and displays PS2 before reading the second and subsequent lines of a multi-line com-
mand. Bash expands and displays PSO after it reads a command but before executing
it. See Section 6.9 [Controlling the Prompt], page 114, for a complete list of prompt
string escape sequences.

5. Bash uses Readline (see Chapter 8 [Command Line Editing], page 130) to read com-
mands from the user’s terminal.

6. Bash inspects the value of the ignoreeof option to set -o instead of exiting imme-
diately when it receives an EOF on its standard input when reading a command (see
Section 4.3.1 [The Set Builtin], page 74).

Chapter 6: Bash Features 105

7. Bash enables Command history (see Section 9.1 [Bash History Facilities], page 168) and
history expansion (see Section 9.3 [History Interaction], page 171) by default. When a
shell with history enabled exits, Bash saves the command history to the file named by
$HISTFILE.

8. Alias expansion (see Section 6.6 [Aliases|, page 109) is performed by default.

9. In the absence of any traps, Bash ignores SIGTERM (see Section 3.7.6 [Signals|, page 49).

10. In the absence of any traps, SIGINT is caught and handled (see Section 3.7.6 [Signals],
page 49). SIGINT will interrupt some shell builtins.

11. An interactive login shell sends a SIGHUP to all jobs on exit if the huponexit shell
option has been enabled (see Section 3.7.6 [Signals|, page 49).

12. The -n option has no effect, whether at invocation or when using ‘set -n’ (see
Section 4.3.1 [The Set Builtin], page 74).

13. Bash will check for mail periodically, depending on the values of the MAIL, MAILPATH,
and MAILCHECK shell variables (see Section 5.2 [Bash Variables], page 87).

14. The shell will not exit on expansion errors due to references to unbound shell variables
after ‘set —u’ has been enabled (see Section 4.3.1 [The Set Builtin], page 74).

15. The shell will not exit on expansion errors caused by var being unset or null in
${var:?word} expansions (see Section 3.5.3 [Shell Parameter Expansion|, page 27).

16. Redirection errors encountered by shell builtins will not cause the shell to exit.

17. When running in POSIX mode, a special builtin returning an error status will not cause
the shell to exit (see Section 6.11 [Bash POSIX Mode], page 116).

18. A failed exec will not cause the shell to exit (see Section 4.1 [Bourne Shell Builtins],
page 52).

19. Parser syntax errors will not cause the shell to exit.

20. If the cdspell shell option is enabled, the shell will attempt simple spelling correction
for directory arguments to the cd builtin (see the description of the cdspell option to

the shopt builtin in Section 4.3.2 [The Shopt Builtin], page 78). The cdspell option
is only effective in interactive shells.

21. The shell will check the value of the TMOUT variable and exit if a command is not
read within the specified number of seconds after printing $PS1 (see Section 5.2 [Bash
Variables], page 87).

6.4 Bash Conditional Expressions

Conditional expressions are used by the [[compound command (see Section 3.2.5.2 [Condi-
tional Constructs|, page 12) and the test and [builtin commands (see Section 4.1 [Bourne
Shell Builtins], page 52). The test and [commands determine their behavior based on
the number of arguments; see the descriptions of those commands for any other command-
specific actions.

Expressions may be unary or binary, and are formed from the primaries listed below.
Unary expressions are often used to examine the status of a file or shell variable. Binary
operators are used for string, numeric, and file attribute comparisons.

Bash handles several filenames specially when they are used in expressions. If the operat-
ing system on which Bash is running provides these special files, Bash uses them; otherwise

Chapter 6: Bash Features 106

it emulates them internally with this behavior: If the file argument to one of the primaries is
of the form /dev/fd/N, then Bash checks file descriptor N. If the file argument to one of the
primaries is one of /dev/stdin, /dev/stdout, or /dev/stderr, Bash checks file descriptor
0, 1, or 2, respectively.

When used with [[, the ‘<’ and ‘>’ operators sort lexicographically using the current
locale. The test command uses ASCII ordering.

Unless otherwise specified, primaries that operate on files follow symbolic links and
operate on the target of the link, rather than the link itself.

-a file True if file exists.

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file.

-g file True if file exists and its set-group-id bit is set.

-h file True if file exists and is a symbolic link.

-k file True if file exists and its "sticky" bit is set.

-p file True if file exists and is a named pipe (FIFO).

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t fd True if file descriptor fd is open and refers to a terminal.
-u file True if file exists and its set-user-id bit is set.

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-G file True if file exists and is owned by the effective group id.
-L file True if file exists and is a symbolic link.

-N file True if file exists and has been modified since it was last accessed.
-0 file True if file exists and is owned by the effective user id.
-S file True if file exists and is a socket.

filel —ef file2
True if filel and file2 refer to the same device and inode numbers.

filel -nt file2
True if filel is newer (according to modification date) than file2, or if filel exists
and file2 does not.

filel -ot file2
True if filel is older than file2, or if file2 exists and filel does not.

Chapter 6: Bash Features 107

-0 optname
True if the shell option optname is enabled. The list of options appears in
the description of the -o option to the set builtin (see Section 4.3.1 [The Set
Builtin], page 74).

-V varname
True if the shell variable varname is set (has been assigned a value). If varname
is an indexed array variable name subscripted by ‘@ or ‘*’, this returns true
if the array has any set elements. If varname is an associative array variable
name subscripted by ‘@ or ‘*’, this returns true if an element with that key is
set.

-R varname
True if the shell variable varname is set and is a name reference.

-z string True if the length of string is zero.

-n string
string True if the length of string is non-zero.

stringl == string?2

stringl = string?2
True if the strings are equal. When used with the [[command, this per-
forms pattern matching as described above (see Section 3.2.5.2 [Conditional
Constructs|, page 12).

‘=" should be used with the test command for POSIX conformance.

stringl !'= string?2
True if the strings are not equal.

stringl < string?2
True if stringl sorts before string2 lexicographically.

stringl > string?2
True if stringl sorts after string2 lexicographically.

argl OP arg2

0P is one of ‘-eq’, ‘-ne’, ‘-1t’, ‘-le’, ‘~gt’, or ‘-ge’. These arithmetic binary
operators return true if argl is equal to, not equal to, less than, less than or
equal to, greater than, or greater than or equal to arg2, respectively. Argl and
arg2 may be positive or negative integers. When used with the [[command,
argl and arg2 are evaluated as arithmetic expressions (see Section 6.5 [Shell
Arithmetic], page 107). Since the expansions the [[command performs on
argl and arg2 can potentially result in empty strings, arithmetic expression
evaluation treats those as expressions that evaluate to 0.

¢

6.5 Shell Arithmetic

The shell allows arithmetic expressions to be evaluated, as one of the shell expansions or
by using the ((compound command, the let and declare builtins, the arithmetic for
command, the [[conditional command, or the -i option to the declare builtin.

Chapter 6: Bash Features 108

Evaluation is done in the largest fixed-width integers available, with no check for overflow,
though division by 0 is trapped and flagged as an error. The operators and their precedence,
associativity, and values are the same as in the C language. The following list of operators is
grouped into levels of equal-precedence operators. The levels are listed in order of decreasing
precedence.

id++ id-- variable post-increment and post-decrement
++id --id variable pre-increment and pre-decrement
-+ unary minus and plus

P logical and bitwise negation

*% exponentiation

* /% multiplication, division, remainder
+ - addition, subtraction

<< >> left and right bitwise shifts

<= >= <> comparison

== I= equality and inequality

& bitwise AND

- bitwise exclusive OR
| bitwise OR

&& logical AND

[logical OR

expr 7 if-true-expr : if-false-expr
conditional operator

assignment

exprl , expr2
comma,

Shell variables are allowed as operands; parameter expansion is performed before the
expression is evaluated. Within an expression, shell variables may also be referenced by
name without using the parameter expansion syntax. This means you can use x, where x
is a shell variable name, in an arithmetic expression, and the shell will evaluate its value as
an expression and use the result. A shell variable that is null or unset evaluates to 0 when
referenced by name in an expression.

The value of a variable is evaluated as an arithmetic expression when it is referenced, or
when a variable which has been given the integer attribute using ‘declare -i’ is assigned
a value. A null value evaluates to 0. A shell variable need not have its integer attribute
enabled to be used in an expression.

Integer constants follow the C language definition, without suffixes or character con-
stants. Constants with a leading 0 are interpreted as octal numbers. A leading ‘0x’ or ‘0X’

Chapter 6: Bash Features 109

denotes hexadecimal. Otherwise, numbers take the form [base#]n, where the optional base
is a decimal number between 2 and 64 representing the arithmetic base, and n is a number
in that base. If base# is omitted, then base 10 is used. When specifying n, if a non-digit is
required, the digits greater than 9 are represented by the lowercase letters, the uppercase
letters, ‘@, and ‘_’, in that order. If base is less than or equal to 36, lowercase and uppercase
letters may be used interchangeably to represent numbers between 10 and 35.

Operators are evaluated in precedence order. Sub-expressions in parentheses are evalu-
ated first and may override the precedence rules above.

6.6 Aliases

Aliases allow a string to be substituted for a word that is in a position in the input where it
can be the first word of a simple command. Aliases have names and corresponding values
that are set and unset using the alias and unalias builtin commands (see Chapter 4 [Shell
Builtin Commands], page 52).

If the shell reads an unquoted word in the right position, it checks the word to see if it
matches an alias name. If it matches, the shell replaces the word with the alias value, and
reads that value as if it had been read instead of the word. The shell doesn’t look at any
characters following the word before attempting alias substitution.

The characters ‘/’, ‘§’, “¢’, ‘=" and any of the shell metacharacters or quoting characters
listed above may not appear in an alias name. The replacement text may contain any valid
shell input, including shell metacharacters. The first word of the replacement text is tested
for aliases, but a word that is identical to an alias being expanded is not expanded a second
time. This means that one may alias 1s to "1s -F", for instance, and Bash does not try to
recursively expand the replacement text.

If the last character of the alias value is a blank, then the shell checks the next command
word following the alias for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias
command.

There is no mechanism for using arguments in the replacement text, as in csh. If
arguments are needed, use a shell function (see Section 3.3 [Shell Functions|, page 19)
instead.

Aliases are not expanded when the shell is not interactive, unless the expand_aliases
shell option is set using shopt (see Section 4.3.2 [The Shopt Builtin], page 78).

The rules concerning the definition and use of aliases are somewhat confusing. Bash
always reads at least one complete line of input, and all lines that make up a compound
command, before executing any of the commands on that line or the compound command.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias
definition appearing on the same line as another command does not take effect until the shell
reads the next line of input, and an alias definition in a compound command does not take
effect until the shell parses and executes the entire compound command. The commands
following the alias definition on that line, or in the rest of a compound command, are
not affected by the new alias. This behavior is also an issue when functions are executed.
Aliases are expanded when a function definition is read, not when the function is executed,
because a function definition is itself a command. As a consequence, aliases defined in a

Chapter 6: Bash Features 110

function are not available until after that function is executed. To be safe, always put alias
definitions on a separate line, and do not use alias in compound commands.

For almost every purpose, shell functions are preferable to aliases.

6.7 Arrays

Bash provides one-dimensional indexed and associative array variables. Any variable may
be used as an indexed array; the declare builtin explicitly declares an array. There is
no maximum limit on the size of an array, nor any requirement that members be indexed
or assigned contiguously. Indexed arrays are referenced using arithmetic expressions that
must expand to an integer (see Section 6.5 [Shell Arithmetic], page 107)) and are zero-based,;
associative arrays use arbitrary strings. Unless otherwise noted, indexed array indices must
be non-negative integers.

The shell performs parameter and variable expansion, arithmetic expansion, command
substitution, and quote removal on indexed array subscripts. Since this can potentially
result in empty strings, subscript indexing treats those as expressions that evaluate to 0.

The shell performs tilde expansion, parameter and variable expansion, arithmetic ex-
pansion, command substitution, and quote removal on associative array subscripts. Empty
strings cannot be used as associative array keys.

Bash automatically creates an indexed array if any variable is assigned to using the
syntax

name[subscript]=value

The subscript is treated as an arithmetic expression that must evaluate to a number greater
than or equal to zero. To explicitly declare an indexed array, use

declare -a name

(see Section 4.2 [Bash Builtins|, page 61). The syntax
declare -a name[subscript]

is also accepted; the subscript is ignored.

Associative arrays are created using
declare -A name

Attributes may be specified for an array variable using the declare and readonly
builtins. Each attribute applies to all members of an array.

Arrays are assigned using compound assignments of the form
name=(valuel value2 ...)
where each value may be of the form [subscript]=string. Indexed array assignments do
not require anything but string.

Each value in the list undergoes the shell expansions described above (see Section 3.5
[Shell Expansions|, page 24), but values that are valid variable assignments including the
brackets and subscript do not undergo brace expansion and word splitting, as with individual
variable assignments.

When assigning to indexed arrays, if the optional subscript is supplied, that index is
assigned to; otherwise the index of the element assigned is the last index assigned to by the
statement plus one. Indexing starts at zero.

Chapter 6: Bash Features 111

When assigning to an associative array, the words in a compound assignment may be
either assignment statements, for which the subscript is required, or a list of words that is
interpreted as a sequence of alternating keys and values: name=(keyl valuel key2 value2

.). These are treated identically to name=([keyl|=valuel [key2|=value2 ...). The
first word in the list determines how the remaining words are interpreted; all assignments in
a list must be of the same type. When using key/value pairs, the keys may not be missing
or empty; a final missing value is treated like the empty string.

This syntax is also accepted by the declare builtin. Individual array elements may be
assigned to using the name[subscript]=value syntax introduced above.

When assigning to an indexed array, if name is subscripted by a negative number, that
number is interpreted as relative to one greater than the maximum index of name, so
negative indices count back from the end of the array, and an index of -1 references the last
element.

The ‘+=’ operator appends to an array variable when assigning using the compound
assignment syntax; see Section 3.4 [Shell Parameters|, page 22, above.

An array element is referenced using ${name[subscript]}. The braces are required to
avoid conflicts with the shell’s filename expansion operators. If the subscript is ‘@” or ‘*’, the
word expands to all members of the array name, unless otherwise noted in the description
of a builtin or word expansion. These subscripts differ only when the word appears within
double quotes. If the word is double-quoted, ${name[*]} expands to a single word with
the value of each array member separated by the first character of the IFS variable, and
${name[@]} expands each element of name to a separate word. When there are no array
members, ${name[@]} expands to nothing. If the double-quoted expansion occurs within a
word, the expansion of the first parameter is joined with the beginning part of the expansion
of the original word, and the expansion of the last parameter is joined with the last part
of the expansion of the original word. This is analogous to the expansion of the special
parameters ‘@ and ‘x’.

${#name[subscript]} expands to the length of ${namel[subscript]l}. If subscript is
‘@’ or ‘*’, the expansion is the number of elements in the array.

If the subscript used to reference an element of an indexed array evaluates to a number
less than zero, it is interpreted as relative to one greater than the maximum index of the
array, so negative indices count back from the end of the array, and an index of -1 refers to
the last element.

Referencing an array variable without a subscript is equivalent to referencing with a
subscript of 0. Any reference to a variable using a valid subscript is valid; Bash creates an
array if necessary.

An array variable is considered set if a subscript has been assigned a value. The null
string is a valid value.

It is possible to obtain the keys (indices) of an array as well as the values. ${!name[Q]}
and ${!name[*]} expand to the indices assigned in array variable name. The treatment
when in double quotes is similar to the expansion of the special parameters ‘@ and ‘¥’
within double quotes.

The unset builtin is used to destroy arrays. unset name[subscript] unsets the array
element at index subscript. Negative subscripts to indexed arrays are interpreted as de-
scribed above. Unsetting the last element of an array variable does not unset the variable.

Chapter 6: Bash Features 112

unset name, where name is an array, removes the entire array. unset name[subscript]
behaves differently depending on the array type when subscript is ‘*’ or ‘@’. When name is
an associative array, it removes the element with key ‘*’ or ‘@’. If name is an indexed array,
unset removes all of the elements, but does not remove the array itself.

When using a variable name with a subscript as an argument to a command, such as
with unset, without using the word expansion syntax described above (e.g., unset a[4]),
the argument is subject to the shell’s filename expansion. Quote the argument if pathname
expansion is not desired (e.g., unset 'a[4]’).

The declare, local, and readonly builtins each accept a —a option to specify an indexed
array and a —-A option to specify an associative array. If both options are supplied, -A takes
precedence. The read builtin accepts a —a option to assign a list of words read from the
standard input to an array, and can read values from the standard input into individual
array elements. The set and declare builtins display array values in a way that allows them
to be reused as input. Other builtins accept array name arguments as well (e.g., mapfile);
see the descriptions of individual builtins for details. The shell provides a number of builtin
array variables.

6.8 The Directory Stack

The directory stack is a list of recently-visited directories. The pushd builtin adds directories
to the stack as it changes the current directory, and the popd builtin removes specified
directories from the stack and changes the current directory to the directory removed. The
dirs builtin displays the contents of the directory stack. The current directory is always
the "top" of the directory stack.

The contents of the directory stack are also visible as the value of the DIRSTACK shell
variable.

6.8.1 Directory Stack Builtins
dirs
dirs [-clpv] [+N | -N]

Without options, display the list of currently remembered directories. Directo-
ries are added to the list with the pushd command; the popd command removes
directories from the list. The current directory is always the first directory in
the stack.

Options, if supplied, have the following meanings:
-c Clears the directory stack by deleting all of the elements.

-1 Produces a listing using full pathnames; the default listing format
uses a tilde to denote the home directory.

-p Causes dirs to print the directory stack with one entry per line.

-v Causes dirs to print the directory stack with one entry per line,
prefixing each entry with its index in the stack.

+N Displays the Nth directory (counting from the left of the list printed
by dirs when invoked without options), starting with zero.

Chapter 6: Bash Features 113

popd

pushd

-N Displays the Nth directory (counting from the right of the list
printed by dirs when invoked without options), starting with zero.

popd [-n] [+N | -N]

Remove elements from the directory stack. The elements are numbered from 0
starting at the first directory listed by dirs; that is, popd is equivalent to popd
+0.

When no arguments are given, popd removes the top directory from the stack
and changes to the new top directory.

Arguments, if supplied, have the following meanings:

-n Suppress the normal change of directory when removing directories
from the stack, only manipulate the stack.

+N Remove the Nth directory (counting from the left of the list printed
by dirs), starting with zero, from the stack.

-N Remove the Nth directory (counting from the right of the list
printed by dirs), starting with zero, from the stack.

If the top element of the directory stack is modified, and the -n option was not
supplied, popd uses the cd builtin to change to the directory at the top of the
stack. If the cd fails, popd returns a non-zero value.

Otherwise, popd returns an unsuccessful status if an invalid option is specified,
the directory stack is empty, or N specifies a non-existent directory stack entry.

If the popd command is successful, Bash runs dirs to show the final contents
of the directory stack, and the return status is 0.

pushd [-n] [+N | -N | dir]

Add a directory to the top of the directory stack, or rotate the stack, making
the new top of the stack the current working directory. With no arguments,
pushd exchanges the top two elements of the directory stack.

Arguments, if supplied, have the following meanings:

-n Suppress the normal change of directory when rotating or adding
directories to the stack, only manipulate the stack.

+N Rotate the stack so that the Nth directory (counting from the left
of the list printed by dirs, starting with zero) is at the top.

-N Rotate the stack so that the Nth directory (counting from the right
of the list printed by dirs, starting with zero) is at the top.

dir Make dir be the top of the stack.

After the stack has been modified, if the -n option was not supplied, pushd
uses the cd builtin to change to the directory at the top of the stack. If the cd
fails, pushd returns a non-zero value.

Chapter 6: Bash Features 114

Otherwise, if no arguments are supplied, pushd returns zero unless the directory
stack is empty. When rotating the directory stack, pushd returns zero unless the
directory stack is empty or N specifies a non-existent directory stack element.

If the pushd command is successful, Bash runs dirs to show the final contents
of the directory stack.

6.9 Controlling the Prompt

In addition, the following table describes the special characters which can appear in the
prompt variables PSO, PS1, PS2, and PS4:

\a A bell character.
\d The date, in "Weekday Month Date" format (e.g., "Tue May 26").
\D{format}

The format is passed to strftime(3) and the result is inserted into the prompt
string; an empty format results in a locale-specific time representation. The
braces are required.

\e An escape character.

\h The hostname, up to the first <.’ .

\H The hostname.

\j The number of jobs currently managed by the shell.

\1 The basename of the shell’s terminal device name (e.g., "ttys0").

\n A newline.

\r A carriage return.

\s The name of the shell: the basename of $0 (the portion following the final
slash).

\t The time, in 24-hour HH:MM:SS format.

\T The time, in 12-hour HH:MM:SS format.

\a@ The time, in 12-hour am/pm format.

\A The time, in 24-hour HH:MM format.

\u The username of the current user.

\v The Bash version (e.g., 2.00).

\V The Bash release, version + patchlevel (e.g., 2.00.0).

\w The value of the PWD shell variable ($PWD), with $HOME abbreviated with a tilde
(uses the $PROMPT_DIRTRIM variable).

\W The basename of $PWD, with $HOME abbreviated with a tilde.

\! The history number of this command.

\# The command number of this command.

Chapter 6: Bash Features 115

\$ If the effective uid is 0, #, otherwise $.

\nnn The character whose ASCII code is the octal value nnn.

\\ A backslash.

\[Begin a sequence of non-printing characters. Thiss could be used to embed a

terminal control sequence into the prompt.
\] End a sequence of non-printing characters.

The command number and the history number are usually different: the history number
of a command is its position in the history list, which may include commands restored from
the history file (see Section 9.1 [Bash History Facilities], page 168), while the command
number is the position in the sequence of commands executed during the current shell
session.

After the string is decoded, it is expanded via parameter expansion, command substitu-
tion, arithmetic expansion, and quote removal, subject to the value of the promptvars shell
option (see Section 4.3.2 [The Shopt Builtin|, page 78). This can have unwanted side effects
if escaped portions of the string appear within command substitution or contain characters
special to word expansion.

6.10 The Restricted Shell

If Bash is started with the name rbash, or the ——restricted or -r option is supplied at
invocation, the shell becomes restricted. A restricted shell is used to set up an environment
more controlled than the standard shell. A restricted shell behaves identically to bash with
the exception that the following are disallowed or not performed:

e Changing directories with the cd builtin.

e Setting or unsetting the values of the SHELL, PATH, HISTFILE, ENV, or BASH_ENV vari-
ables.

e Specifying command names containing slashes.
e Specifying a filename containing a slash as an argument to the . builtin command.
e Using the -p option to the . builtin command to specify a search path.

e Specifying a filename containing a slash as an argument to the history builtin com-
mand.

e Specifying a filename containing a slash as an argument to the -p option to the hash
builtin command.

e Importing function definitions from the shell environment at startup.

e Parsing the value of SHELLOPTS from the shell environment at startup.

e Redirecting output using the >, *>|’, ‘<>’, >&’, ‘&>’, and ‘>>’ redirection operators.
e Using the exec builtin to replace the shell with another command.

e Adding or deleting builtin commands with the -f and -d options to the enable builtin.
e Using the enable builtin command to enable disabled shell builtins.

e Specifying the —-p option to the command builtin.

e Turning off restricted mode with ‘set +r’ or ‘shopt -u restricted_shell’.

Chapter 6: Bash Features 116

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (see Section 3.8 [Shell
Scripts], page 50), rbash turns off any restrictions in the shell spawned to execute the script.

The restricted shell mode is only one component of a useful restricted environment. It
should be accompanied by setting PATH to a value that allows execution of only a few verified
commands (commands that allow shell escapes are particularly vulnerable), changing the
current directory to a non-writable directory other than $HOME after login, not allowing the
restricted shell to execute shell scripts, and cleaning the environment of variables that cause
some commands to modify their behavior (e.g., VISUAL or PAGER).

Modern systems provide more secure ways to implement a restricted environment, such
as jails, zones, or containers.

6.11 Bash and POSIX
6.11.1 What is POSIX?

POSIX is the name for a family of standards based on Unix. A number of Unix services, tools,
and functions are part of the standard, ranging from the basic system calls and C library
functions to common applications and tools to system administration and management.

The Posix Shell and Utilities standard was originally developed by IEEE Working Group
1003.2 (POSIX.2). The first edition of the 1003.2 standard was published in 1992. It
was merged with the original IEEE 1003.1 Working Group and is currently maintained by
the Austin Group (a joint working group of the IEEE, The Open Group and ISO/IEC
SC22/WG15). Today the Shell and Utilities are a volume within the set of documents that
make up IEEE Std 1003.1-2024, and thus the former POSIX.2 (from 1992) is now part of
the current unified POSIX standard.

The Shell and Utilities volume concentrates on the command interpreter interface and
utility programs commonly executed from the command line or by other programs. The
standard is freely available on the web at https://pubs.opengroup.org/onlinepubs/
9799919799/utilities/contents.html.

Bash is concerned with the aspects of the shell’s behavior defined by the POSIX Shell and
Utilities volume. The shell command language has of course been standardized, including
the basic flow control and program execution constructs, I/O redirection and pipelines,
argument handling, variable expansion, and quoting.

The special builtins, which must be implemented as part of the shell to provide the
desired functionality, are specified as being part of the shell; examples of these are eval and
export. Other utilities appear in the sections of POSIX not devoted to the shell which are
commonly (and in some cases must be) implemented as builtin commands, such as read and
test. POSIX also specifies aspects of the shell’s interactive behavior, including job control
and command line editing. Only vi-style line editing commands have been standardized;
emacs editing commands were left out due to objections.

6.11.2 Bash POSIX Mode

Although Bash is an implementation of the POSIX shell specification, there are areas where
the Bash default behavior differs from the specification. The Bash posix mode changes the
Bash behavior in these areas so that it conforms more strictly to the standard.

https://pubs.opengroup.org/onlinepubs/9799919799/utilities/contents.html
https://pubs.opengroup.org/onlinepubs/9799919799/utilities/contents.html

Chapter 6: Bash Features 117

Starting Bash with the ——posix command-line option or executing ‘set -o posix’ while

Bash is running will cause Bash to conform more closely to the POSIX standard by changing
the behavior to match that specified by POSIX in areas where the Bash default differs.

When invoked as sh, Bash enters POSIX mode after reading the startup files.
The following list is what’s changed when POSIX mode is in effect:

1. Bash ensures that the POSIXLY_CORRECT variable is set.

10.
11.
12.

13.

14.

15.

16.

Bash reads and executes the POSIX startup files ($ENV) rather than the normal Bash
files (see Section 6.2 [Bash Startup Files|, page 102).

Alias expansion is always enabled, even in non-interactive shells.

. Reserved words appearing in a context where reserved words are recognized do not

undergo alias expansion.

Alias expansion is performed when initially parsing a command substitution. The
default (non-posix) mode generally defers it, when enabled, until the command sub-
stitution is executed. This means that command substitution will not expand aliases
that are defined after the command substitution is initially parsed (e.g., as part of a
function definition).

The time reserved word may be used by itself as a simple command. When used in
this way, it displays timing statistics for the shell and its completed children. The
TIMEFORMAT variable controls the format of the timing information.

The parser does not recognize time as a reserved word if the next token begins with a
(o

When parsing and expanding a ${. ..} expansion that appears within double quotes,
single quotes are no longer special and cannot be used to quote a closing brace or
other special character, unless the operator is one of those defined to perform pattern
removal. In this case, they do not have to appear as matched pairs.

Redirection operators do not perform filename expansion on the word in a redirection
unless the shell is interactive.

Redirection operators do not perform word splitting on the word in a redirection.
Function names may not be the same as one of the POSIX special builtins.

Tilde expansion is only performed on assignments preceding a command name, rather
than on all assignment statements on the line.

While variable indirection is available, it may not be applied to the ‘# and ‘?’ special
parameters.

Expanding the ‘*’ special parameter in a pattern context where the expansion is double-
quoted does not treat the $* as if it were double-quoted.

A double quote character (‘"’) is treated specially when it appears in a backquoted
command substitution in the body of a here-document that undergoes expansion. That
means, for example, that a backslash preceding a double quote character will escape it
and the backslash will be removed.

Command substitutions don’t set the ‘?’ special parameter. The exit status of a simple
command without a command word is still the exit status of the last command substi-
tution that occurred while evaluating the variable assignments and redirections in that
command, but that does not happen until after all of the assignments and redirections.

Chapter 6: Bash Features 118

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

Literal tildes that appear as the first character in elements of the PATH variable are not
expanded as described above under Section 3.5.2 [Tilde Expansion], page 26.

Command lookup finds POSIX special builtins before shell functions, including output
printed by the type and command builtins.

Even if a shell function whose name contains a slash was defined before entering POSIX
mode, the shell will not execute a function whose name contains one or more slashes.

When a command in the hash table no longer exists, Bash will re-search $PATH to find
the new location. This is also available with ‘shopt -s checkhash’.

Bash will not insert a command without the execute bit set into the command hash
table, even if it returns it as a (last-ditch) result from a $PATH search.

The message printed by the job control code and builtins when a job exits with a
non-zero status is ‘Done(status)’.

The message printed by the job control code and builtins when a job is stopped is
‘Stopped(signame)’, where signame is, for example, SIGTSTP.

If the shell is interactive, Bash does not perform job notifications between executing
commands in lists separated by ‘;’ or newline. Non-interactive shells print status
messages after a foreground job in a list completes.

If the shell is interactive, Bash waits until the next prompt before printing the status
of a background job that changes status or a foreground job that terminates due to a
signal. Non-interactive shells print status messages after a foreground job completes.

Bash permanently removes jobs from the jobs table after notifying the user of their
termination via the wait or jobs builtins. It removes the job from the jobs list after
notifying the user of its termination, but the status is still available via wait, as long
as wait is supplied a PID argument.

The vi editing mode will invoke the vi editor directly when the ‘v’ command is run,
instead of checking $VISUAL and $EDITOR.

Prompt expansion enables the POSIX PS1 and PS2 expansions of ‘!’ to the history
number and ‘!'!’ to ‘!’, and Bash performs parameter expansion on the values of PS1
and PS2 regardless of the setting of the promptvars option.

The default history file is /.sh_history (this is the default value the shell assigns to
$HISTFILE).

The ‘!’ character does not introduce history expansion within a double-quoted string,
even if the histexpand option is enabled.

When printing shell function definitions (e.g., by type), Bash does not print the
function reserved word unless necessary.

Non-interactive shells exit if a syntax error in an arithmetic expansion results in an
invalid expression.

Non-interactive shells exit if a parameter expansion error occurs.

If a POSIX special builtin returns an error status, a non-interactive shell exits. The fatal
errors are those listed in the POSIX standard, and include things like passing incorrect
options, redirection errors, variable assignment errors for assignments preceding the
command name, and so on.

Chapter 6: Bash Features 119

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

A non-interactive shell exits with an error status if a variable assignment error occurs
when no command name follows the assignment statements. A variable assignment
error occurs, for example, when trying to assign a value to a readonly variable.

A non-interactive shell exits with an error status if a variable assignment error occurs
in an assignment statement preceding a special builtin, but not with any other simple
command. For any other simple command, the shell aborts execution of that command,
and execution continues at the top level ("the shell shall not perform any further
processing of the command in which the error occurred").

A non-interactive shell exits with an error status if the iteration variable in a for
statement or the selection variable in a select statement is a readonly variable or has
an invalid name.

Non-interactive shells exit if filename in . filename is not found.

Non-interactive shells exit if there is a syntax error in a script read with the . or source
builtins, or in a string processed by the eval builtin.

Non-interactive shells exit if the export, readonly or unset builtin commands get an
argument that is not a valid identifier, and they are not operating on shell functions.
These errors force an exit because these are special builtins.

Assignment statements preceding POSIX special builtins persist in the shell environment
after the builtin completes.

The command builtin does not prevent builtins that take assignment statements as ar-
guments from expanding them as assignment statements; when not in POSIX mode,
declaration commands lose their assignment statement expansion properties when pre-
ceded by command.

Enabling POSIX mode has the effect of setting the inherit_errexit option, so subshells
spawned to execute command substitutions inherit the value of the -e option from the
parent shell. When the inherit_errexit option is not enabled, Bash clears the -e
option in such subshells.

Enabling POSIX mode has the effect of setting the shift_verbose option, so numeric
arguments to shift that exceed the number of positional parameters will result in an
error message.

Enabling POSIX mode has the effect of setting the interactive_comments option (see
Section 3.1.3 [Comments|, page 9).

The . and source builtins do not search the current directory for the filename argument
if it is not found by searching PATH.

When the alias builtin displays alias definitions, it does not display them with a
leading ‘alias ’ unless the —-p option is supplied.

The bg builtin uses the required format to describe each job placed in the background,
which does not include an indication of whether the job is the current or previous job.

When the cd builtin is invoked in logical mode, and the pathname constructed from
$PWD and the directory name supplied as an argument does not refer to an existing
directory, cd will fail instead of falling back to physical mode.

When the cd builtin cannot change a directory because the length of the pathname
constructed from $PWD and the directory name supplied as an argument exceeds PATH_
MAX when canonicalized, cd will attempt to use the supplied directory name.

Chapter 6: Bash Features 120

51.

52.

53.

o4.
95.
56.

o7.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

When the xpg_echo option is enabled, Bash does not attempt to interpret any ar-
guments to echo as options. echo displays each argument after converting escape
sequences.

The export and readonly builtin commands display their output in the format re-
quired by POSIX.

When listing the history, the fc builtin does not include an indication of whether or
not a history entry has been modified.

The default editor used by fc is ed.
fc treats extra arguments as an error instead of ignoring them.

If there are too many arguments supplied to fc -s, fc prints an error message and
returns failure.

The output of ‘kill -1’ prints all the signal names on a single line, separated by spaces,
without the ‘SIG’ prefix.

The kill builtin does not accept signal names with a ‘SIG’ prefix.

The kill builtin returns a failure status if any of the pid or job arguments are invalid
or if sending the specified signal to any of them fails. In default mode, kill returns
success if the signal was successfully sent to any of the specified processes.

The printf builtin uses double (via strtod) to convert arguments corresponding to
floating point conversion specifiers, instead of long double if it’s available. The ‘L’
length modifier forces printf to use long double if it’s available.

The pwd builtin verifies that the value it prints is the same as the current directory,
even if it is not asked to check the file system with the -P option.

The read builtin may be interrupted by a signal for which a trap has been set. If Bash
receives a trapped signal while executing read, the trap handler executes and read
returns an exit status greater than 128.

When the set builtin is invoked without options, it does not display shell function
names and definitions.

When the set builtin is invoked without options, it displays variable values without
quotes, unless they contain shell metacharacters, even if the result contains nonprinting
characters.

The test builtin compares strings using the current locale when evaluating the ‘<’ and
>’ binary operators.

The test builtin’s -t unary primary requires an argument. Historical versions of test
made the argument optional in certain cases, and Bash attempts to accommodate those
for backwards compatibility.

The trap builtin displays signal names without the leading SIG.

The trap builtin doesn’t check the first argument for a possible signal specification
and revert the signal handling to the original disposition if it is, unless that argument
consists solely of digits and is a valid signal number. If users want to reset the handler
for a given signal to the original disposition, they should use ‘-’ as the first argument.

trap -p without arguments displays signals whose dispositions are set to SIG_DFL and
those that were ignored when the shell started, not just trapped signals.

Chapter 6: Bash Features 121

70. The type and command builtins will not report a non-executable file as having been
found, though the shell will attempt to execute such a file if it is the only so-named file
found in $PATH.

71. The ulimit builtin uses a block size of 512 bytes for the —c and -f options.

72. The unset builtin with the -v option specified returns a fatal error if it attempts to
unset a readonly or non-unsettable variable, which causes a non-interactive shell to
exit.

73. When asked to unset a variable that appears in an assignment statement preceding
the command, the unset builtin attempts to unset a variable of the same name in the
current or previous scope as well. This implements the required "if an assigned variable
is further modified by the utility, the modifications made by the utility shall persist"
behavior.

74. The arrival of SIGCHLD when a trap is set on SIGCHLD does not interrupt the wait
builtin and cause it to return immediately. The trap command is run once for each
child that exits.

75. Bash removes an exited background process’s status from the list of such statuses after
the wait builtin returns it.

There is additional POSIX behavior that Bash does not implement by default even when
in POSIX mode. Specifically:

1. POSIX requires that word splitting be byte-oriented. That is, each byte in the value of
IFS potentially splits a word, even if that byte is part of a multibyte character in IFS or
part of multibyte character in the word. Bash allows multibyte characters in the value
of IFS, treating a valid multibyte character as a single delimiter, and will not split a
valid multibyte character even if one of the bytes composing that character appears in
IFS. This is POSIX interpretation 1560, further modified by issue 1924.

2. The fc builtin checks $EDITOR as a program to edit history entries if FCEDIT is unset,
rather than defaulting directly to ed. fc uses ed if EDITOR is unset.

3. As noted above, Bash requires the xpg_echo option to be enabled for the echo builtin
to be fully conformant.

Bash can be configured to be PosiX-conformant by default, by specifying the -—enable-
strict-posix-default to configure when building (see Section 10.8 [Optional Features],
page 178).

6.12 Shell Compatibility Mode

Bash-4.0 introduced the concept of a shell compatibility level, specified as a set of options
to the shopt builtin (compat31, compat32, compat40, compat4l, and so on). There is only
one current compatibility level — each option is mutually exclusive. The compatibility level
is intended to allow users to select behavior from previous versions that is incompatible
with newer versions while they migrate scripts to use current features and behavior. It’s
intended to be a temporary solution.

This section does not mention behavior that is standard for a particular version (e.g.,
setting compat32 means that quoting the right hand side of the regexp matching operator
quotes special regexp characters in the word, which is default behavior in bash-3.2 and
subsequent versions).

Chapter 6: Bash Features 122

If a user enables, say, compat32, it may affect the behavior of other compatibility levels
up to and including the current compatibility level. The idea is that each compatibility level
controls behavior that changed in that version of Bash, but that behavior may have been
present in earlier versions. For instance, the change to use locale-based comparisons with
the [[command came in bash-4.1, and earlier versions used ASCII-based comparisons, so
enabling compat32 will enable ASCII-based comparisons as well. That granularity may not
be sufficient for all uses, and as a result users should employ compatibility levels carefully.
Read the documentation for a particular feature to find out the current behavior.

Bash-4.3 introduced a new shell variable: BASH_COMPAT. The value assigned to this
variable (a decimal version number like 4.2, or an integer corresponding to the compat NN
option, like 42) determines the compatibility level.

Starting with bash-4.4, Bash began deprecating older compatibility levels. Eventually,
the options will be removed in favor of BASH_COMPAT.

Bash-5.0 was the final version for which there was an individual shopt option for the
previous version. BASH_COMPAT is the only mechanism to control the compatibility level in
versions newer than bash-5.0.

The following table describes the behavior changes controlled by each compatibility level
setting. The compat NN tag is used as shorthand for setting the compatibility level to NN
using one of the following mechanisms. For versions prior to bash-5.0, the compatibility
level may be set using the corresponding compat NN shopt option. For bash-4.3 and later
versions, the BASH_COMPAT variable is preferred, and it is required for bash-5.1 and later
versions.

compat31
e Quoting the rhs of the [[command’s regexp matching operator (=") has
no special effect
compat40

e The ‘<’ and ‘>’ operators to the [[command do not consider the current
locale when comparing strings; they use ASCII ordering. Bash versions
prior to bash-4.1 use ASCII collation and stremp(3); bash-4.1 and later
use the current locale’s collation sequence and strcoll(3).

compat4l

e In POSIX mode, time may be followed by options and still be recognized
as a reserved word (this is POSIX interpretation 267).

e In POSIX mode, the parser requires that an even number of single quotes
occur in the word portion of a double-quoted ${. ..} parameter expansion
and treats them specially, so that characters within the single quotes are
considered quoted (this is POSIX interpretation 221).

compat42

e The replacement string in double-quoted pattern substitution does not
undergo quote removal, as it does in versions after bash-4.2.

e In POSIX mode, single quotes are considered special when expanding the

word portion of a double-quoted ${. ..} parameter expansion and can be
used to quote a closing brace or other special character (this is part of

Chapter 6: Bash Features 123

compat43

compat44

POSIX interpretation 221); in later versions, single quotes are not special
within double-quoted word expansions.

Word expansion errors are considered non-fatal errors that cause the cur-
rent command to fail, even in POSIX mode (the default behavior is to make
them fatal errors that cause the shell to exit).

When executing a shell function, the loop state (while/until/etc.) is not
reset, so break or continue in that function will break or continue loops
in the calling context. Bash-4.4 and later reset the loop state to prevent
this.

The shell sets up the values used by BASH_ARGV and BASH_ARGC so they
can expand to the shell’s positional parameters even if extended debugging
mode is not enabled.

A subshell inherits loops from its parent context, so break or continue
will cause the subshell to exit. Bash-5.0 and later reset the loop state to
prevent the exit.

Variable assignments preceding builtins like export and readonly that set
attributes continue to affect variables with the same name in the calling
environment even if the shell is not in POSIX mode.

compat50 (set using BASH_COMPAT)

Bash-5.1 changed the way $RANDOM is generated to introduce slightly more
randomness. If the shell compatibility level is set to 50 or lower, it reverts
to the method from bash-5.0 and previous versions, so seeding the random
number generator by assigning a value to RANDOM will produce the same
sequence as in bash-5.0.

If the command hash table is empty, Bash versions prior to bash-5.1 printed
an informational message to that effect, even when producing output that
can be reused as input. Bash-5.1 suppresses that message when the -1
option is supplied.

compatb51 (set using BASH_COMPAT)

The unset builtin will unset the array a given an argument like ‘a[@]’.
Bash-5.2 will unset an element with key ‘@ (associative arrays) or remove
all the elements without unsetting the array (indexed arrays).

Arithmetic commands (((...))) and the expressions in an arithmetic for
statement can be expanded more than once.

Expressions used as arguments to arithmetic operators in the [[conditional
command can be expanded more than once.

The expressions in substring parameter brace expansion can be expanded
more than once.

The expressions in the $((...)) word expansion can be expanded more
than once.

Chapter 6: Bash Features 124

Arithmetic expressions used as indexed array subscripts can be expanded
more than once.

test -v, when given an argument of ‘A[@]’, where A is an existing asso-
ciative array, will return true if the array has any set elements. Bash-5.2
will look for and report on a key named ‘@’.

the ${parameter|:]=value} word expansion will return value, before any
variable-specific transformations have been performed (e.g., converting to
lowercase). Bash-5.2 will return the final value assigned to the variable.

Parsing command substitutions will behave as if extended globbing (see
Section 4.3.2 [The Shopt Builtin], page 78) is enabled, so that parsing a
command substitution containing an extglob pattern (say, as part of a shell
function) will not fail. This assumes the intent is to enable extglob before
the command is executed and word expansions are performed. It will fail
at word expansion time if extglob hasn’t been enabled by the time the
command is executed.

compat52 (set using BASH_COMPAT)

The test builtin uses its historical algorithm to parse parenthesized subex-
pressions when given five or more arguments.

If the -p or P option is supplied to the bind builtin, bind treats any argu-
ments remaining after option processing as bindable command names, and
displays any key sequences bound to those commands, instead of treating
the arguments as key sequences to bind.

Interactive shells will notify the user of completed jobs while sourcing a
script. Newer versions defer notification until script execution completes.

125

7 Job Control

This chapter discusses what job control is, how it works, and how Bash allows you to access
its facilities.

7.1 Job Control Basics

Job control refers to the ability to selectively stop (suspend) the execution of processes and
continue (resume) their execution at a later point. A user typically employs this facility
via an interactive interface supplied jointly by the operating system kernel’s terminal driver
and Bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs,
which the jobs command will display. Each job has a job number, which jobs displays
between brackets. Job numbers start at 1. When Bash starts a job asynchronously, it prints
a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the
pipeline associated with this job is 25647. All of the processes in a single pipeline are
members of the same job. Bash uses the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, each process has
a process group ID, and the operating system maintains the notion of a current terminal
process group ID. This terminal process group ID is associated with the controlling terminal.

Processes that have the same process group ID are said to be part of the same process
group. Members of the foreground process group (processes whose process group ID is equal
to the current terminal process group ID) receive keyboard-generated signals such as SIGINT.
Processes in the foreground process group are said to be foreground processes. Background
processes are those whose process group ID differs from the controlling terminal’s; such
processes are immune to keyboard-generated signals. Only foreground processes are allowed
to read from or, if the user so specifies with stty tostop, write to the controlling terminal.
The system sends a SIGTTIN (SIGTTOU) signal to background processes which attempt to
read from (write to when tostop is in effect) the terminal, which, unless caught, suspends
the process.

If the operating system on which Bash is running supports job control, Bash contains
facilities to use it. Typing the suspend character (typically ‘~Z’, Control-Z) while a process
is running stops that process and returns control to Bash. Typing the delayed suspend
character (typically ‘°Y’, Control-Y) causes the process to stop when it attempts to read
input from the terminal, and returns control to Bash. The user then manipulates the state
of this job, using the bg command to continue it in the background, the fg command to
continue it in the foreground, or the kill command to kill it. The suspend character takes
effect immediately, and has the additional side effect of discarding any pending output and
typeahead. If you want to force a background process to stop, or stop a process that’s not
associated with your terminal session, send it the SIGSTOP signal using kill.

There are a number of ways to refer to a job in the shell. The ‘%’ character introduces
a job specification (jobspec).

Job number n may be referred to as ‘%n’. A job may also be referred to using a prefix
of the name used to start it, or using a substring that appears in its command line. For

Chapter 7: Job Control 126

example, ‘%ce’ refers to a job whose command name begins with ‘ce’. Using ‘%7ce’, on the
other hand, refers to any job containing the string ‘ce’ in its command line. If the prefix
or substring matches more than one job, Bash reports an error.

The symbols ‘%% and ‘%+’ refer to the shell’s notion of the current job. A single ‘%’ (with
no accompanying job specification) also refers to the current job. ‘%~ refers to the previous
job. When a job starts in the background, a job stops while in the foreground, or a job is
resumed in the background, it becomes the current job. The job that was the current job
becomes the previous job. When the current job terminates, the previous job becomes the
current job. If there is only a single job, ‘%+’ and ‘%-’ can both be used to refer to that
job. In output pertaining to jobs (e.g., the output of the jobs command), the current job
is always marked with a ‘+’, and the previous job with a ‘-’.

Simply naming a job can be used to bring it into the foreground: ‘%1’ is a synonym for
‘fg %1’, bringing job 1 from the background into the foreground. Similarly, ‘%1 &’ resumes
job 1 in the background, equivalent to ‘bg %1’.

The shell learns immediately whenever a job changes state. Normally, Bash waits until
it is about to print a prompt before notifying the user about changes in a job’s status so as
to not interrupt any other output, though it will notify of changes in a job’s status after a
foreground command in a list completes, before executing the next command in the list. If
the -b option to the set builtin is enabled, Bash reports status changes immediately (see
Section 4.3.1 [The Set Builtin], page 74). Bash executes any trap on SIGCHLD for each child
process that terminates.

When a job terminates and Bash notifies the user about it, Bash removes the job from
the jobs table. It will not appear in jobs output, but wait will report its exit status, as
long as it’s supplied the process ID associated with the job as an argument. When the table
is empty, job numbers start over at 1.

If a user attempts to exit Bash while jobs are stopped, (or running, if the checkjobs
option is enabled — see Section 4.3.2 [The Shopt Builtin|, page 78), the shell prints a warning
message, and if the checkjobs option is enabled, lists the jobs and their statuses. The jobs
command may then be used to inspect their status. If the user immediately attempts to
exit again, without an intervening command, Bash does not print another warning, and
terminates any stopped jobs.

When the shell is waiting for a job or process using the wait builtin, and job control is
enabled, wait will return when the job changes state. The -f option causes wait to wait
until the job or process terminates before returning.

7.2 Job Control Builtins

bg
bg [jobspec ...]

Resume each suspended job jobspec in the background, as if it had been started
with ‘&’. If jobspec is not supplied, the shell uses its notion of the current job.
bg returns zero unless it is run when job control is not enabled, or, when run
with job control enabled, any jobspec was not found or specifies a job that was
started without job control.

Chapter 7: Job Control 127

fg

jobs

kill

fg [jobspec]

Resume the job jobspec in the foreground and make it the current job. If
jobspec is not supplied, fg resumes the current job. The return status is that
of the command placed into the foreground, or non-zero if run when job control
is disabled or, when run with job control enabled, jobspec does not specify a
valid job or jobspec specifies a job that was started without job control.

jobs [-1nprs] [jobspec]
jobs -x command [arguments]

The first form lists the active jobs. The options have the following meanings:
-1 List process 1Ds in addition to the normal information.

-n Display information only about jobs that have changed status since
the user was last notified of their status.

-p List only the process ID of the job’s process group leader.
-r Display only running jobs.
-s Display only stopped jobs.

If jobspec is supplied, jobs restricts output to information about that job. If
jobspec is not supplied, jobs lists the status of all jobs. The return status is
zero unless an invalid option is encountered or an invalid jobspec is supplied.

If the -x option is supplied, jobs replaces any jobspec found in command or
arguments with the corresponding process group ID, and executes command,
passing it arguments, returning its exit status.

kill [-s sigspec] [-n signum] [-sigspec] id [...]

kill -1|-L [exit_status]
Send a signal specified by sigspec or signum to the processes named by each id.
Each id may be a job specification jobspec or process ID pid. sigspec is either
a case-insensitive signal name such as SIGINT (with or without the SIG prefix)
or a signal number; signum is a signal number. If sigspec and signum are not
present, kill sends SIGTERM.

The -1 option lists the signal names. If any arguments are supplied when -1 is
supplied, kill lists the names of the signals corresponding to the arguments,
and the return status is zero. exit_status is a number specifying a signal number
or the exit status of a process terminated by a signal; if it is supplied, kill prints
the name of the signal that caused the process to terminate. kill assumes that
process exit statuses are greater than 128; anything less than that is a signal
number. The -L option is equivalent to -1.

The return status is zero if at least one signal was successfully sent, or non-zero
if an error occurs or an invalid option is encountered.

Chapter 7: Job Control 128

wait

disown

suspend

wait [-fn] [-p varname] [id ...]
Wait until the child process specified by each id exits and return the exit status
of the last id. Each id may be a process ID pid or a job specification jobspec;
if a jobspec is supplied, wait waits for all processes in the job.

If no options or ids are supplied, wait waits for all running background jobs
and the last-executed process substitution, if its process id is the same as $!,
and the return status is zero.

If the -n option is supplied, wait waits for any one of the ids or, if no ids
are supplied, any job or process substitution, to complete and returns its exit
status. If none of the supplied ids is a child of the shell, or if no arguments are
supplied and the shell has no unwaited-for children, the exit status is 127.

If the -p option is supplied, wait assigns the process or job identifier of the
job for which the exit status is returned to the variable varname named by
the option argument. The variable, which cannot be readonly, will be unset
initially, before any assignment. This is useful only when used with the -n
option.

Supplying the -f option, when job control is enabled, forces wait to wait for
each id to terminate before returning its status, instead of returning when it
changes status.

If none of the ids specify one of the shell’s an active child processes, the return
status is 127. If wait is interrupted by a signal, any varname will remain
unset, and the return status will be greater than 128, as described above (see
Section 3.7.6 [Signals], page 49). Otherwise, the return status is the exit status
of the last id.

disown [-ar] [-h] [id ...]
Without options, remove each id from the table of active jobs. Each id may be
a job specification jobspec or a process ID pid; if id is a pid, disown uses the
job containing pid as jobspec.
If the -h option is supplied, disown does not remove the jobs corresponding to

each id from the jobs table, but rather marks them so the shell does not send
SIGHUP to the job if the shell receives a SIGHUP.

If no id is supplied, the —a option means to remove or mark all jobs; the -r
option without an id argument removes or marks running jobs. If no id is
supplied, and neither the -a nor the -r option is supplied, disown removes or
marks the current job.

The return value is 0 unless an id does not specify a valid job.

suspend [-f]
Suspend the execution of this shell until it receives a SIGCONT signal. A login
shell, or a shell without job control enabled, cannot be suspended; the -f option
will override this and force the suspension. The return status is 0 unless the
shell is a login shell or job control is not enabled and -f is not supplied.

Chapter 7: Job Control 129

When job control is not active, the kill and wait builtins do not accept jobspec argu-
ments. They must be supplied process IDs.

7.3 Job Control Variables

auto_resume

This variable controls how the shell interacts with the user and job control.
If this variable exists then simple commands consisting of only a single word,
without redirections, are treated as candidates for resumption of an existing
job. There is no ambiguity allowed; if there is more than one job beginning
with or containing the word, then this selects the most recently accessed job.
The name of a stopped job, in this context, is the command line used to start it,
as displayed by jobs. If this variable is set to the value ‘exact’, the word must
match the name of a stopped job exactly; if set to ‘substring’, the word needs
to match a substring of the name of a stopped job. The ‘substring’ value
provides functionality analogous to the ‘%?string’ job ID (see Section 7.1 [Job
Control Basics], page 125). If set to any other value (e.g., ‘prefix’), the word
must be a prefix of a stopped job’s name; this provides functionality analogous
to the ‘“Yistring’ job ID.

130

8 Command Line Editing

This chapter describes the basic features of the GNU command line editing interface. Com-
mand line editing is provided by the Readline library, which is used by several different
programs, including Bash. Command line editing is enabled by default when using an in-
teractive shell, unless the —-noediting option is supplied at shell invocation. Line editing
is also used when using the -e option to the read builtin command (see Section 4.2 [Bash
Builtins], page 61). By default, the line editing commands are similar to those of Emacs;
a vi-style line editing interface is also available. Line editing can be enabled at any time
using the -o emacs or -o vi options to the set builtin command (see Section 4.3.1 [The
Set Builtin], page 74), or disabled using the +o emacs or +o vi options to set.

8.1 Introduction to Line Editing

The following paragraphs use Emacs style to describe the notation used to represent
keystrokes.

The text C-k is read as ‘Control-K’ and describes the character produced when the k
key is pressed while the Control key is depressed.

The text M-k is read as ‘Meta-K’ and describes the character produced when the Meta
key (if you have one) is depressed, and the k key is pressed (a meta character), then both
are released. The Meta key is labeled ALT or Option on many keyboards. On keyboards
with two keys labeled ALT (usually to either side of the space bar), the ALT on the left side
is generally set to work as a Meta key. One of the ALT keys may also be configured as some
other modifier, such as a Compose key for typing accented characters.

On some keyboards, the Meta key modifier produces characters with the eighth bit
(0200) set. You can use the enable-meta-key variable to control whether or not it does
this, if the keyboard allows it. On many others, the terminal or terminal emulator converts
the metafied key to a key sequence beginning with ESC as described in the next paragraph.

If you do not have a Meta or ALT key, or another key working as a Meta key, you can
generally achieve the latter effect by typing ESC first, and then typing k. The ESC character
is known as the meta prefix).

Either process is known as metafying the k key.

If your Meta key produces a key sequence with the ESC meta prefix, you can make M-key
key bindings you specify (see Key Bindings in Section 8.3.1 [Readline Init File Syntax],
page 133) do the same thing by setting the force-meta-prefix variable.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by
metafying C-k.

In addition, several keys have their own names. Specifically, DEL, ESC, LFD, SPC, RET,
and TAB all stand for themselves when seen in this text, or in an init file (see Section 8.3
[Readline Init File], page 133). If your keyboard lacks a LFD key, typing C-j will output the
appropriate character. The RET key may be labeled Return or Enter on some keyboards.

8.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for

Chapter 8: Command Line Editing 131

manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press RET. You do not have to be at the end
of the line to press RET; the entire line is accepted regardless of the location of the cursor
within the line.

8.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type C-b to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with C-f.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled
back’ to fill in the blank space created by the removal of the text. These are the bare
essentials for editing the text of an input line:

C-b Move back one character.
Cc-f Move forward one character.

DEL or Backspace
Delete the character to the left of the cursor.

c-d Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

C-_or C-x C-u
Undo the last editing command. You can undo all the way back to an empty
line.

Depending on your configuration, the Backspace key might be set to delete the character
to the left of the cursor and the DEL key set to delete the character underneath the cursor,
like C-d, rather than the character to the left of the cursor.

8.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing
of the input line. For your convenience, many other commands are available in addition to
C-b, C-f, C-d, and DEL. Here are some commands for moving more rapidly within the line.

C-a Move to the start of the line.
C-e Move to the end of the line.
M-f Move forward a word, where a word is composed of letters and digits.

M-b Move backward a word.

Chapter 8: Command Line Editing 132

C-1 Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

8.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent jargon for
‘kill” and ‘yank’.)

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by M-f.

M-DEL Kill from the cursor to the start of the current word, or, if between words, to
the start of the previous word. Word boundaries are the same as those used by
M-b.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL

because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer into the line at the current cursor position.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

8.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you
can type the remainder of the digits, and then the command. For example, to give the C-d
command an argument of 10, you could type ‘M-1 0 C-d’, which will delete the next ten
characters on the input line.

Chapter 8: Command Line Editing 133

8.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history (see Section 9.1
[Bash History Facilities], page 168) for lines containing a specified string. There are two
search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters
as needed to find the desired history entry. When using emacs editing mode, type C-r to
search backward in the history for a particular string. Typing C-s searches forward through
the history. The characters present in the value of the isearch-terminators variable are
used to terminate an incremental search. If that variable has not been assigned a value, the
ESC and C-j characters terminate an incremental search. C-g aborts an incremental search
and restores the original line. When the search is terminated, the history entry containing
the search string becomes the current line.

To find other matching entries in the history list, type C-r or C-s as appropriate. This
searches backward or forward in the history for the next entry matching the search string
typed so far. Any other key sequence bound to a Readline command terminates the search
and executes that command. For instance, a RET terminates the search and accepts the
line, thereby executing the command from the history list. A movement command will
terminate the search, make the last line found the current line, and begin editing.

Readline remembers the last incremental search string. If two C-rs are typed without
any intervening characters defining a new search string, Readline uses any remembered
search string.

Non-incremental searches read the entire search string before starting to search for
matching history entries. The search string may be typed by the user or be part of the
contents of the current line.

8.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed by
default, it is possible to use a different set of keybindings. Any user can customize programs
that use Readline by putting commands in an inputrc file, conventionally in their home
directory. The name of this file is taken from the value of the shell variable INPUTRC. If
that variable is unset, the default is ~/.inputrc. If that file does not exist or cannot be
read, Readline looks for /etc/inputrc. The bind builtin command can also be used to set
Readline keybindings and variables. See Section 4.2 [Bash Builtins|, page 61.

When a program that uses the Readline library starts up, Readline reads the init file
and sets any variables and key bindings it contains.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

8.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#" are comments. Lines beginning with a ‘$’ indicate
conditional constructs (see Section 8.3.2 [Conditional Init Constructs], page 143). Other
lines denote variable settings and key bindings.

Chapter 8: Command Line Editing 134

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. The syntax
is simple:
set variable value

Here, for example, is how to change from the default Emacs-like key binding to
use vi line editing commands:

set editing-mode vi

Variable names and values, where appropriate, are recognized without regard
to case. Unrecognized variable names are ignored.

Boolean variables (those that can be set to on or off) are set to on if the value is
null or empty, on (case-insensitive), or 1. Any other value results in the variable
being set to off.

The bind -V command lists the current Readline variable names and values.
See Section 4.2 [Bash Builtins|, page 61.

A great deal of run-time behavior is changeable with the following variables.

active-region-start-color

A string variable that controls the text color and background when
displaying the text in the active region (see the description of
enable-active-region below). This string must not take up any
physical character positions on the display, so it should consist only
of terminal escape sequences. It is output to the terminal before
displaying the text in the active region. This variable is reset to
the default value whenever the terminal type changes. The default
value is the string that puts the terminal in standout mode, as ob-
tained from the terminal’s terminfo description. A sample value
might be ‘\e[01;33m’.

active-region-end-color

A string variable that “undoes” the effects of active-region-
start-color and restores “normal” terminal display appearance
after displaying text in the active region. This string must not take
up any physical character positions on the display, so it should con-
sist only of terminal escape sequences. It is output to the terminal
after displaying the text in the active region. This variable is re-
set to the default value whenever the terminal type changes. The
default value is the string that restores the terminal from stand-
out mode, as obtained from the terminal’s terminfo description. A
sample value might be ‘\e [Om’.

bell-style
Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

Chapter 8: Command Line Editing 135

bind-tty-special-chars

If set to ‘on’ (the default), Readline attempts to bind the control
characters that are treated specially by the kernel’s terminal driver
to their Readline equivalents. These override the default Readline
bindings described here. Type ‘stty -a’ at a Bash prompt to see
your current terminal settings, including the special control char-
acters (usually cchars). This binding takes place on each call to
readline(), so changes made by ‘stty’ can take effect.

blink-matching-paren
If set to ‘on’, Readline attempts to briefly move the cursor to an
opening parenthesis when a closing parenthesis is inserted. The
default is ‘off’.

colored-completion-prefix

If set to ‘on’, when listing completions, Readline displays the com-
mon prefix of the set of possible completions using a different color.
The color definitions are taken from the value of the LS_COLORS en-
vironment variable. If there is a color definition in LS_COLORS for
the custom suffix ‘readline-colored-completion-prefix’, Read-
line uses this color for the common prefix instead of its default. The
default is ‘off’.

colored-stats
If set to ‘on’, Readline displays possible completions using different
colors to indicate their file type. The color definitions are taken
from the value of the LS_COLORS environment variable. The default
is ‘off’.

comment-begin
The string to insert at the beginning of the line by the
insert-comment command. The default value is "#".

completion-display-width
The number of screen columns used to display possible matches
when performing completion. The value is ignored if it is less than
0 or greater than the terminal screen width. A value of 0 causes
matches to be displayed one per line. The default value is -1.

completion-ignore-case
If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-map-case
If set to ‘on’, and completion-ignore-case is enabled, Readline treats
hyphens (‘-’) and underscores (‘_’) as equivalent when performing
case-insensitive filename matching and completion. The default
value is ‘off’.

completion-prefix-display-length
The maximum length in characters of the common prefix of a list of
possible completions that is displayed without modification. When

Chapter 8: Command Line Editing 136

set to a value greater than zero, Readline replaces common prefixes
longer than this value with an ellipsis when displaying possible
completions. If a completion begins with a period, and Readline is
completing filenames, it uses three underscores instead of an ellipsis.

completion-query-items

The number of possible completions that determines when the user
is asked whether the list of possibilities should be displayed. If
the number of possible completions is greater than or equal to
this value, Readline asks whether or not the user wishes to view
them; otherwise, Readline simply lists the completions. This vari-
able must be set to an integer value greater than or equal to zero.
A zero value means Readline should never ask; negative values are
treated as zero. The default limit is 100.

convert-meta

If set to ‘on’, Readline converts characters it reads that have the
eighth bit set to an ASCII key sequence by clearing the eighth bit
and prefixing an ESC character, converting them to a meta-prefixed
key sequence. The default value is ‘on’, but Readline sets it to ‘off’
if the locale contains characters whose encodings may include bytes
with the eighth bit set. This variable is dependent on the LC_CTYPE
locale category, and may change if the locale changes. This variable
also affects key bindings; see the description of force-meta-prefix
below.

disable-completion
If set to ‘On’, Readline inhibits word completion. Completion char-
acters are inserted into the line as if they had been mapped to
self-insert. The default is ‘off’.

echo-control-characters
When set to ‘on’, on operating systems that indicate they support
it, Readline echoes a character corresponding to a signal generated
from the keyboard. The default is ‘on’.

editing-mode
The editing-mode variable controls the default set of key bindings.
By default, Readline starts up in emacs editing mode, where the
keystrokes are most similar to Emacs. This variable can be set to
either ‘emacs’ or ‘vi’.

emacs-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
emacs editing mode is active. The value is expanded like a key bind-
ing, so the standard set of meta- and control- prefixes and backslash
escape sequences is available. The ‘\1” and ‘\2’ escapes begin and
end sequences of non-printing characters, which can be used to em-
bed a terminal control sequence into the mode string. The default
is ‘@’.

Chapter 8: Command Line Editing 137

enable-active-region
point is the current cursor position, and mark refers to a saved cur-
sor position (see Section 8.4.1 [Commands For Moving|, page 147).
The text between the point and mark is referred to as the re-
gion. When this variable is set to ‘On’, Readline allows certain
commands to designate the region as active. When the region is
active, Readline highlights the text in the region using the value
of the active-region-start-color, which defaults to the string
that enables the terminal’s standout mode. The active region shows
the text inserted by bracketed-paste and any matching text found
by incremental and non-incremental history searches. The default
is ‘On’.

enable-bracketed-paste
When set to ‘On’, Readline configures the terminal to insert each
paste into the editing buffer as a single string of characters, instead
of treating each character as if it had been read from the keyboard.
This is called putting the terminal into bracketed paste mode; it
prevents Readline from executing any editing commands bound to
key sequences appearing in the pasted text. The default is ‘On’.

enable-keypad
When set to ‘on’, Readline tries to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

enable-meta-key

When set to ‘on’, Readline tries to enable any meta modifier key the
terminal claims to support when it is called. On many terminals,
the Meta key is used to send eight-bit characters; this variable
checks for the terminal capability that indicates the terminal can
enable and disable a mode that sets the eighth bit of a character
(0200) if the Meta key is held down when the character is typed (a
meta character). The default is ‘on’.

expand-tilde
If set to ‘on’, Readline attempts tilde expansion when it attempts
word completion. The default is ‘off’.

force-meta-prefix

If set to ‘on’, Readline modifies its behavior when binding key se-
quences containing \M- or Meta- (see Key Bindings in Section 8.3.1
[Readline Init File Syntax], page 133) by converting a key sequence
of the form \M-C or Meta-C to the two-character sequence ESC
C (adding the meta prefix). If force-meta-prefix is set to ‘off’
(the default), Readline uses the value of the convert-meta variable
to determine whether to perform this conversion: if convert-meta
is ‘on’, Readline performs the conversion described above; if it is
‘off’, Readline converts C to a meta character by setting the eighth
bit (0200). The default is ‘off’.

Chapter 8: Command Line Editing 138

history-preserve-point

If set to ‘on’, the history code attempts to place the point (the
current cursor position) at the same location on each history line
retrieved with previous-history or next-history. The default
is ‘off’.

history-size

Set the maximum number of history entries saved in the history
list. If set to zero, any existing history entries are deleted and no
new entries are saved. If set to a value less than zero, the number of
history entries is not limited. By default, Bash sets the maximum
number of history entries to the value of the HISTSIZE shell variable.
If you try to set history-size to a non-numeric value, the maximum
number of history entries will be set to 500.

horizontal-scroll-mode

input-meta

Setting this variable to ‘on’ means that the text of the lines being
edited will scroll horizontally on a single screen line when the lines
are longer than the width of the screen, instead of wrapping onto
a new screen line. This variable is automatically set to ‘on’ for
terminals of height 1. By default, this variable is set to ‘off’.

If set to ‘on’, Readline enables eight-bit input (that is, it does not
clear the eighth bit in the characters it reads), regardless of what
the terminal claims it can support. The default value is ‘off’,
but Readline sets it to ‘on’ if the locale contains characters whose
encodings may include bytes with the eighth bit set. This variable
is dependent on the LC_CTYPE locale category, and its value may
change if the locale changes. The name meta-flag is a synonym
for input-meta.

isearch-terminators

keymap

The string of characters that should terminate an incremental
search without subsequently executing the character as a
command (see Section 8.2.5 [Searching|, page 133). If this variable
has not been given a value, the characters ESC and C-j terminate
an incremental search.

Sets Readline’s idea of the current keymap for key binding
commands. Built-in keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command (vi-move is also a
synonym); emacs is equivalent to emacs-standard. Applications
may add additional names. The default value is emacs; the value
of the editing-mode variable also affects the default keymap.

keyseg-timeout

Specifies the duration Readline will wait for a character when read-
ing an ambiguous key sequence (one that can form a complete key

Chapter 8: Command Line Editing 139

sequence using the input read so far, or can take additional input
to complete a longer key sequence). If Readline doesn’t receive any
input within the timeout, it uses the shorter but complete key se-
quence. Readline uses this value to determine whether or not input
is available on the current input source (rl_instream by default).
The value is specified in milliseconds, so a value of 1000 means that
Readline will wait one second for additional input. If this variable
is set to a value less than or equal to zero, or to a non-numeric
value, Readline waits until another key is pressed to decide which
key sequence to complete. The default value is 500.

mark-directories
If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines
When this variable is set to ‘on’, Readline displays an asterisk (‘*’)
at the start of history lines which have been modified. This variable
is ‘off’ by default.

mark-symlinked-directories
If set to ‘on’, completed names which are symbolic links to
directories have a slash appended, subject to the wvalue of
mark-directories. The default is ‘off’.

match-hidden-files
This variable, when set to ‘on’, forces Readline to match files whose
names begin with a ‘.’ (hidden files) when performing filename
completion. If set to ‘off’, the user must include the leading ‘.’ in
the filename to be completed. This variable is ‘on’ by default.

menu-complete-display-prefix
If set to ‘on’, menu completion displays the common prefix of the
list of possible completions (which may be empty) before cycling
through the list. The default is ‘off’.

output-meta
If set to ‘on’, Readline displays characters with the eighth bit set di-
rectly rather than as a meta-prefixed escape sequence. The default
is ‘off’, but Readline sets it to ‘on’ if the locale contains characters
whose encodings may include bytes with the eighth bit set. This
variable is dependent on the LC_CTYPE locale category, and its value
may change if the locale changes.

page—-completions
If set to ‘on’, Readline uses an internal pager resembling more(1) to
display a screenful of possible completions at a time. This variable
is ‘on’ by default.

prefer-visible-bell
See bell-style.

Chapter 8: Command Line Editing 140

print-completions-horizontally
If set to ‘on’, Readline displays completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

revert-all-at-newline
If set to ‘on’, Readline will undo all changes to history lines before
returning when executing accept-line. By default, history lines
may be modified and retain individual undo lists across calls to
readline (). The default is ‘off’.

search-ignore-case
If set to ‘on’, Readline performs incremental and non-incremental
history list searches in a case-insensitive fashion. The default value
is ‘off’.

show-all-if-ambiguous
This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

show-all-if-unmodified
This alters the default behavior of the completion functions in a
fashion similar to show-all-if-ambiguous. If set to ‘on’, words which
have more than one possible completion without any possible par-
tial completion (the possible completions don’t share a common
prefix) cause the matches to be listed immediately instead of ring-
ing the bell. The default value is ‘off’.

show-mode-in-prompt
If set to ‘on’, add a string to the beginning of the prompt indicating
the editing mode: emacs, vi command, or vi insertion. The mode
strings are user-settable (e.g., emacs-mode-string). The default
value is ‘off’.

skip-completed-text
If set to ‘on’, this alters the default completion behavior when in-
serting a single match into the line. It’s only active when perform-
ing completion in the middle of a word. If enabled, Readline does
not insert characters from the completion that match characters
after point in the word being completed, so portions of the word
following the cursor are not duplicated. For instance, if this is en-
abled, attempting completion when the cursor is after the first ‘e’
in ‘Makefile’ will result in ‘Makefile’ rather than ‘Makefilefile’,
assuming there is a single possible completion. The default value
is ‘off’.

vi-cmd-mode-string
If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when

Chapter 8: Command Line Editing 141

vi editing mode is active and in command mode. The value is ex-
panded like a key binding, so the standard set of meta- and control-
prefixes and backslash escape sequences is available. The ‘\1’ and
‘\2’ escapes begin and end sequences of non-printing characters,
which can be used to embed a terminal control sequence into the
mode string. The default is ‘(cmd)’.
vi-ins-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
vi editing mode is active and in insertion mode. The value is ex-
panded like a key binding, so the standard set of meta- and control-
prefixes and backslash escape sequences is available. The ‘\1’ and
‘\2’ escapes begin and end sequences of non-printing characters,
which can be used to embed a terminal control sequence into the
mode string. The default is ‘(ins)’.

visible-stats
If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.
Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.

Once you know the name of the command, simply place on a line in the init
file the name of the key you wish to bind the command to, a colon, and then
the name of the command. There can be no space between the key name and
the colon — that will be interpreted as part of the key name. The name of
the key can be expressed in different ways, depending on what you find most
comfortable.

In addition to command names, Readline allows keys to be bound to a string
that is inserted when the key is pressed (a macro). The difference between a
macro and a command is that a macro is enclosed in single or double quotes.

The bind -p command displays Readline function names and bindings in a
format that can be put directly into an initialization file. See Section 4.2 [Bash
Builtins], page 61.

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:
Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the example above, C-u is bound to the function
universal-argument, M-DEL is bound to the function
backward-kill-word, and C-o is bound to run the macro
expressed on the right hand side (that is, to insert the text ‘>
output’ into the line).

Chapter 8: Command Line Editing 142

This key binding syntax recognizes a number of symbolic character
names: DEL, ESC, ESCAPE, LFD, NEWLINE, RET, RETURN,
RUBOUT (a destructive backspace), SPACE, SPC, and TAB.

"keyseq": function-name or macro

keyseq differs from keyname above in that strings denoting an entire
key sequence can be specified, by placing the key sequence in double
quotes. Some GNU Emacs style key escapes can be used, as in the
following example, but none of the special character names are
recognized.

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

"\e[11™": "Function Key 1"
In the above example, C-u is again bound to the function
universal-argument (just as it was in the first example), ‘C-x
C-r’ is bound to the function re-read-init-file, and ‘ESC [1 1
~’ is bound to insert the text ‘Function Key 1’.

The following GNU Emacs style escape sequences are available when specifying
key sequences:

\C-
\M-

\e
\\
\"
\?

A control prefix.

Adding the meta prefix or converting the following character to a
meta character, as described above under force-meta-prefix (see
Variable Settings in Section 8.3.1 [Readline Init File Syntax],
page 133).

An escape character.
Backslash.
" a double quotation mark.

> a single quote or apostrophe.

In addition to the GNU Emacs style escape sequences, a second set of backslash
escapes is available:

\a
\b
\d
\f
\n
\r
\t
\v

\nnn

alert (bell)
backspace
delete

form feed
newline
carriage return
horizontal tab
vertical tab

The eight-bit character whose value is the octal value nnn (one to
three digits).

Chapter 8: Command Line Editing 143

\xHH The eight-bit character whose value is the hexadecimal value HH
(one or two hex digits).

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name.
The backslash escapes described above are expanded in the macro body. Back-
slash will quote any other character in the macro text, including ‘"’ and ‘*’.
For example, the following binding will make ‘C-x \’ insert a single ‘\’ into the
line:

"\C‘X\\ ". n\\u

8.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features of
the C preprocessor which allows key bindings and variable settings to be performed as the
result of tests. There are four parser directives available.

$if

The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test,
after any comparison operator, extends to the end of the line; unless otherwise
noted, no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Read-
line is in emacs or vi mode. This may be used in conjunction
with the ‘set keymap’ command, for instance, to set bindings in
the emacs-standard and emacs-ctlx keymaps only if Readline is
starting out in emacs mode.

term The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=’ is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘=’. This allows xterm to match both xterm
and xterm-256color, for instance.

version The version test may be used to perform comparisons against
specific Readline versions. The version expands to the current
Readline version. The set of comparison operators includes ‘=" (and
‘==7), ‘1=" <=’ >=" ‘<’ and ‘>’. The version number supplied on
the right side of the operator consists of a major version number, an
optional decimal point, and an optional minor version (e.g., ‘7.1’).
If the minor version is omitted, it defaults to ‘0’. The operator may
be separated from the string version and from the version number
argument by whitespace. The following example sets a variable if
the Readline version being used is 7.0 or newer:

$if version >= 7.0
set show-mode-in-prompt on
$endif

Chapter 8: Command Line Editing 144

application

variable

The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for a particular value. This could be used to
bind key sequences to functions useful for a specific program. For
instance, the following command adds a key sequence that quotes
the current or previous word in Bash:

$if Bash

Quote the current or previous word
"\C-xq": "\eb\"\ef\""

$endif

The variable construct provides simple equality tests for Readline
variables and values. The permitted comparison operators are ‘=’,
‘==""and ‘!=’. The variable name must be separated from the
comparison operator by whitespace; the operator may be separated
from the value on the right hand side by whitespace. String and
boolean variables may be tested. Boolean variables must be tested
against the values on and off. The following example is equivalent

to the mode=emacs test described above:

$if editing-mode == emacs

set show-mode-in-prompt on

$endif
$else Commands in this branch of the $if directive are executed if the test fails.
$endif This command, as seen in the previous example, terminates an $if command.

$include This directive takes a single filename as an argument and reads commands and
key bindings from that file. For example, the following directive reads from
/etc/inputrec:

$include /etc/inputrc

8.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment, and

conditional syntax.

Chapter 8: Command Line Editing

This file controls the behavior of line input editing for
programs that use the GNU Readline library. Existing
programs include FTP, Bash, and GDB.

You can re-read the inputrc file with C-x C-r.

First, include any system-wide bindings and variable
assignments from /etc/Inputrc
include /etc/Inputrc

#

#
#
#
#
#
Lines beginning with ’#’ are comments.
#
#
#
$

Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h:

#

Arrow keys
#

#"\M-0D":
#"\M-0C":
#"\M-0A":
#"\M-0B" :

#

Arrow keys
#

"\M-[D":
"\M-[C":
II\M_ [All .
"\M-[B":

#

Arrow keys
"\M-\C-0D":
M-\C-0C":
M-\C-0A":
M-\C-0B":

\
ll\
ll\
\

Arrow keys
"\M-\C-[D":

#
#
#
#
#
#
#
#
#"\

#"\M-\C-[C":

in

in

in

in

backward-kill-word Text after the function name is

keypad mode

backward-char
forward-char
previous-history
next-history

ANSI mode

backward-char
forward-char
previous-history
next-history

8 bit keypad mode
backward-char
forward-char
previous-history
next-history

8 bit ANSI mode

backward-char
forward-char

145

ignored

Chapter 8: Command Line Editing 146

#"\M-\C-[A": previous-history
#"\M-\C-[B": next-history

C-q: quoted-insert
$endif

An old-style binding. This happens to be the default.
TAB: complete

Macros that are convenient for shell interaction
$if Bash

edit the path

"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"

prepare to type a quoted word —-

insert open and close double quotes

and move to just after the open quote

MNC-x\"": "\ "\"\C-b"

insert a backslash (testing backslash escapes

in sequences and macros)

"\C-x\\": A\

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line

Edit variable on current line.

"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="

$endif

use a visible bell if one is available
set bell-style visible

don’t strip characters to 7 bits when reading
set input-meta on

allow iso-latinl characters to be inserted rather
than converted to prefix-meta sequences
set convert-meta off

display characters with the eighth bit set directly
rather than as meta-prefixed characters
set output-meta on

if there are 150 or more possible completions for a word,
ask whether or not the user wants to see all of them
set completion-query-items 150

Chapter 8: Command Line Editing 147

For FTP

$if Ftp

"\C-xg": "get \M-7"
"\C-xt": "put \M-7"
"\M-.": yank-last-arg
$endif

8.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences. You can
list your key bindings by executing bind -P or, for a more terse format, suitable for an
inputre file, bind -p. (See Section 4.2 [Bash Builtins], page 61.) Command names without
an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers
to a cursor position saved by the set-mark command. The text between the point and mark
is referred to as the region. Readline has the concept of an active region: when the region
is active, Readline redisplay highlights the region using the value of the active-region-
start-color variable. The enable-active-region variable turns this on and off. Several
commands set the region to active; those are noted below.

8.4.1 Commands For Moving

beginning-of-line (C-a)
Move to the start of the current line. This may also be bound to the Home key
on some keyboards.

end-of-line (C-e)
Move to the end of the line. This may also be bound to the End key on some
keyboards.

forward-char (C-f)

Move forward a character. This may also be bound to the right arrow key on
some keyboards.

backward-char (C-b)
Move back a character. This may also be bound to the left arrow key on some
keyboards.

forward-word (M-f)
Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)

Move back to the start of the current or previous word. Words are composed
of letters and digits.

shell-forward-word (M-C-f)
Move forward to the end of the next word. Words are delimited by non-quoted
shell metacharacters.

shell-backward-word (M-C-b)
Move back to the start of the current or previous word. Words are delimited
by non-quoted shell metacharacters.

Chapter 8: Command Line Editing 148

previous-screen-line ()
Attempt to move point to the same physical screen column on the previous
physical screen line. This will not have the desired effect if the current Readline
line does not take up more than one physical line or if point is not greater than
the length of the prompt plus the screen width.

next-screen-line ()
Attempt to move point to the same physical screen column on the next physical
screen line. This will not have the desired effect if the current Readline line does
not take up more than one physical line or if the length of the current Readline
line is not greater than the length of the prompt plus the screen width.

clear-display (M-C-1)
Clear the screen and, if possible, the terminal’s scrollback buffer, then redraw
the current line, leaving the current line at the top of the screen.

clear-screen (C-1)
Clear the screen, then redraw the current line, leaving the current line at the
top of the screen. If given a numeric argument, this refreshes the current line
without clearing the screen.

redraw-current-line ()
Refresh the current line. By default, this is unbound.

8.4.2 Commands For Manipulating The History

accept-line (Newline or Return)
Accept the line regardless of where the cursor is. If this line is non-empty, add it
to the history list according to the setting of the HISTCONTROL and HISTIGNORE
variables. If this line is a modified history line, then restore the history line to
its original state.

previous-history (C-p)
Move ‘back’ through the history list, fetching the previous command. This may
also be bound to the up arrow key on some keyboards.

next-history (C-n)
Move ‘forward’ through the history list, fetching the next command. This may
also be bound to the down arrow key on some keyboards.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search. This command sets the region
to the matched text and activates the region.

Chapter 8: Command Line Editing 149

forward-search-history (C-s)
Search forward starting at the current line and moving ‘down’ through the
history as necessary. This is an incremental search. This command sets the
region to the matched text and activates the region.

non-incremental-reverse-search-history (M-p)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user. The search string may match anywhere in a history line.

non-incremental-forward-search-history (M-n)
Search forward starting at the current line and moving ‘down’ through the
history as necessary using a non-incremental search for a string supplied by the
user. The search string may match anywhere in a history line.

history-search-backward ()
Search backward through the history for the string of characters between the
start of the current line and the point. The search string must match at the
beginning of a history line. This is a non-incremental search. By default,
this command is unbound, but may be bound to the Page Down key on some
keyboards.

history-search-forward ()
Search forward through the history for the string of characters between the start
of the current line and the point. The search string must match at the beginning
of a history line. This is a non-incremental search. By default, this command
is unbound, but may be bound to the Page Up key on some keyboards.

history-substring-search-backward ()
Search backward through the history for the string of characters between the
start of the current line and the point. The search string may match anywhere
in a history line. This is a non-incremental search. By default, this command
is unbound.

history-substring-search-forward ()
Search forward through the history for the string of characters between the
start of the current line and the point. The search string may match anywhere
in a history line. This is a non-incremental search. By default, this command
is unbound.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on
the previous line) at point. With an argument n, insert the nth word from the
previous command (the words in the previous command begin with word 0). A
negative argument inserts the nth word from the end of the previous command.
Once the argument n is computed, this uses the history expansion facilities to
extract the nth word, as if the ‘!n’ history expansion had been specified.

yank-last-arg (M-. or M-_)
Insert last argument to the previous command (the last word of the previous
history entry). With a numeric argument, behave exactly like yank-nth-arg.

Chapter 8: Command Line Editing 150

Successive calls to yank-last-arg move back through the history list, inserting
the last word (or the word specified by the argument to the first call) of each line
in turn. Any numeric argument supplied to these successive calls determines
the direction to move through the history. A negative argument switches the
direction through the history (back or forward). This uses the history expansion
facilities to extract the last word, as if the ‘!$’ history expansion had been
specified.

operate-and-get-next (C-o)
Accept the current line for return to the calling application as if a newline had
been entered, and fetch the next line relative to the current line from the history
for editing. A numeric argument, if supplied, specifies the history entry to use
instead of the current line.

fetch-history O
With a numeric argument, fetch that entry from the history list and make it the
current line. Without an argument, move back to the first entry in the history
list.

8.4.3 Commands For Changing Text

end-of-file (usually C-d)
The character indicating end-of-file as set, for example, by stty. If this charac-
ter is read when there are no characters on the line, and point is at the beginning
of the line, Readline interprets it as the end of input and returns EOF.

delete-char (C-d)
Delete the character at point. If this function is bound to the same character
as the tty EOF character, as C-d commonly is, see above for the effects. This
may also be bound to the Delete key on some keyboards.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric argument means to kill the
characters, saving them on the kill ring, instead of deleting them.

forward-backward-delete-char ()
Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q or C-v)
Add the next character typed to the line verbatim. This is how to insert key
sequences like C-q, for example.

self-insert (a, b, A, 1, !, ...)
Insert the character typed.

bracketed-paste-begin ()
This function is intended to be bound to the "bracketed paste" escape sequence
sent by some terminals, and such a binding is assigned by default. It allows
Readline to insert the pasted text as a single unit without treating each char-
acter as if it had been read from the keyboard. The characters are inserted

Chapter 8: Command Line Editing 151

as if each one was bound to self-insert instead of executing any editing
commands.

Bracketed paste sets the region (the characters between point and the mark)
to the inserted text. It sets the active region.

transpose-chars (C-t)
Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line.

shell-transpose-words (M-C-t)
Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line. Word boundaries are the same as shell-forward-
word and shell-backward-word.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-1)
Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

overwrite-mode ()
Toggle overwrite mode. With an explicit positive numeric argument, switches
to overwrite mode. With an explicit non-positive numeric argument, switches to
insert mode. This command affects only emacs mode; vi mode does overwrite
differently. Each call to readline () starts in insert mode.

In overwrite mode, characters bound to self-insert replace the text at
point rather than pushing the text to the right. Characters bound to
backward-delete-char replace the character before point with a space.

By default, this command is unbound, but may be bound to the Insert key on
some keyboards.

8.4.4 Killing And Yanking

kill-line (C-k)
Kill the text from point to the end of the current line. With a negative numeric
argument, kill backward from the cursor to the beginning of the line.

Chapter 8: Command Line Editing 152

backward-kill-line (C-x Rubout)
Kill backward from the cursor to the beginning of the current line. With a
negative numeric argument, kill forward from the cursor to the end of the line.

unix-line-discard (C-u)
Kill backward from the cursor to the beginning of the current line.

kill-whole-line ()
Kill all characters on the current line, no matter where point is. By default,
this is unbound.

kill-word (M-4d)
Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-DEL)
Kill the word behind point. Word boundaries are the same as backward-word.

shell-kill-word (M-C-d)
Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as shell-forward-word.

shell-backward-kill-word ()
Kill the word behind point. Word boundaries are the same as shell-backward-
word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary, saving the
killed text on the kill-ring.

unix-filename-rubout ()
Kill the word behind point, using white space and the slash character as the
word boundaries, saving the killed text on the kill-ring.

delete-horizontal-space ()
Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()
Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()
Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()
Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

copy-forward-word ()
Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

yank (C-y)
Yank the top of the kill ring into the buffer at point.

Chapter 8: Command Line Editing 153

yank-pop (M-y)
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

8.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)
Add this digit to the argument already accumulating, or start a new argument.
M-- starts a negative argument.

universal-argument ()

This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument
again ends the numeric argument, but is otherwise ignored. As a special case,
if this command is immediately followed by a character that is neither a digit
nor minus sign, the argument count for the next command is multiplied by
four. The argument count is initially one, so executing this function the first
time makes the argument count four, a second time makes the argument count
sixteen, and so on. By default, this is not bound to a key.

8.4.6 Letting Readline Type For You

complete (TAB)

Attempt to perform completion on the text before point. The actual completion
performed is application-specific. Bash attempts completion by first checking
for any programmable completions for the command word (see Section 8.6 [Pro-
grammable Completion], page 158), otherwise treating the text as a variable (if
the text begins with ‘§’), username (if the text begins with ‘~’), hostname (if the
text begins with ‘@’), or command (including aliases, functions, and builtins) in
turn. If none of these produces a match, it falls back to filename completion.

possible-completions (M-7)
List the possible completions of the text before point. When displaying com-
pletions, Readline sets the number of columns used for display to the value of
completion-display-width, the value of the environment variable COLUMNS,
or the screen width, in that order.

insert-completions (M-*)
Insert all completions of the text before point that would have been generated
by possible-completions, separated by a space.

menu-complete ()

Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeatedly executing menu-complete
steps through the list of possible completions, inserting each match in turn. At
the end of the list of completions, menu-complete rings the bell (subject to
the setting of bell-style) and restores the original text. An argument of n
moves n positions forward in the list of matches; a negative argument moves
backward through the list. This command is intended to be bound to TAB, but
is unbound by default.

Chapter 8: Command Line Editing 154

menu-complete-backward ()
Identical to menu-complete, but moves backward through the list of possible
completions, as if menu-complete had been given a negative argument. This
command is unbound by default.

export-completions ()
Perform completion on the word before point as described above and write
the list of possible completions to Readline’s output stream using the following
format, writing information on separate lines:

e the number of matches N;
e the word being completed;

e S:E, where S and E are the start and end offsets of the word in the Readline
line buffer; then

e each match, one per line

If there are no matches, the first line will be “0”, and this command does not
print any output after the S:E. If there is only a single match, this prints
a single line containing it. If there is more than one match, this prints the
common prefix of the matches, which may be empty, on the first line after the
S:E, then the matches on subsequent lines. In this case, N will include the first
line with the common prefix.

The user or application should be able to accommodate the possibility of a
blank line. The intent is that the user or application reads N lines after the line
containing S:F to obtain the match list. This command is unbound by default.

delete-char-or-list ()
Deletes the character under the cursor if not at the beginning or end of the
line (like delete-char). At the end of the line, it behaves identically to
possible-completions. This command is unbound by default.

complete-filename (M-/)
Attempt filename completion on the text before point.

possible-filename-completions (C-x /)
List the possible completions of the text before point, treating it as a filename.

complete-username (M-")
Attempt completion on the text before point, treating it as a username.

possible-username-completions (C-x)
List the possible completions of the text before point, treating it as a username.

complete-variable (M-$)
Attempt completion on the text before point, treating it as a shell variable.

possible-variable-completions (C-x $)
List the possible completions of the text before point, treating it as a shell
variable.

complete-hostname (M-Q)
Attempt completion on the text before point, treating it as a hostname.

Chapter 8: Command Line Editing 155

possible-hostname-completions (C-x @)
List the possible completions of the text before point, treating it as a hostname.

complete-command (M-!)
Attempt completion on the text before point, treating it as a command name.
Command completion attempts to match the text against aliases, reserved
words, shell functions, shell builtins, and finally executable filenames, in that
order.

possible-command-completions (C-x !)
List the possible completions of the text before point, treating it as a command
name.

dynamic-complete-history (M-TAB)
Attempt completion on the text before point, comparing the text against history
list entries for possible completion matches.

dabbrev-expand ()
Attempt menu completion on the text before point, comparing the text against
lines from the history list for possible completion matches.

complete-into-braces (M-{)
Perform filename completion and insert the list of possible completions enclosed
within braces so the list is available to the shell (see Section 3.5.1 [Brace Ex-
pansion|, page 25).

8.4.7 Keyboard Macros

start-kbd-macro (C-x ()
Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

print-last-kbd-macro ()
Print the last keyboard macro defined in a format suitable for the inputre file.

8.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)
Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)
Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

Chapter 8: Command Line Editing 156

do-lowercase-version (M-A, M-B, M-x, ...)
If the metafied character x is upper case, run the command that is bound to
the corresponding metafied lower case character. The behavior is undefined if
x is already lower case.

prefix-meta (ESC)
Metafy the next character typed. Typing ‘ESC £’ is equivalent to typing M-f.

undo (C-_ or C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This is like executing the undo command
enough times to get back to the initial state.

tilde-expand (M-&)
Perform tilde expansion on the current word.

set-mark (C-@)
Set the mark to the point. If a numeric argument is supplied, set the mark to
that position.

exchange-point-and-mark (C-x C-x)
Swap the point with the mark. Set the current cursor position to the saved
position, then set the mark to the old cursor position.

character-search (C-])
Read a character and move point to the next occurrence of that character. A
negative argument searches for previous occurrences.

character-search-backward (M-C-])
Read a character and move point to the previous occurrence of that character.
A negative argument searches for subsequent occurrences.

skip-csi-sequence ()
Read enough characters to consume a multi-key sequence such as those defined
for keys like Home and End. CSI sequences begin with a Control Sequence In-
dicator (CSI), usually ESC [. If this sequence is bound to "\e[", keys producing
CSI sequences have no effect unless explicitly bound to a Readline command,
instead of inserting stray characters into the editing buffer. This is unbound by
default, but usually bound to ESC [.

insert-comment (M-#)
Without a numeric argument, insert the value of the comment-begin variable
at the beginning of the current line. If a numeric argument is supplied, this
command acts as a toggle: if the characters at the beginning of the line do not
match the value of comment-begin, insert the value; otherwise delete the char-
acters in comment-begin from the beginning of the line. In either case, the line
is accepted as if a newline had been typed. The default value of comment-begin
causes this command to make the current line a shell comment. If a numeric ar-
gument causes the comment character to be removed, the line will be executed
by the shell.

Chapter 8: Command Line Editing 157

dump-functions ()
Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-variables ()
Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-macros ()
Print all of the Readline key sequences bound to macros and the strings they
output to the Readline output stream. If a numeric argument is supplied, the
output is formatted in such a way that it can be made part of an inputrc file.
This command is unbound by default.

execute-named-command (M-x)
Read a bindable Readline command name from the input and execute the func-
tion to which it’s bound, as if the key sequence to which it was bound appeared
in the input. If this function is supplied with a numeric argument, it passes
that argument to the function it executes.

spell-correct-word (C-x s)
Perform spelling correction on the current word, treating it as a directory or
filename, in the same way as the cdspell shell option. Word boundaries are
the same as those used by shell-forward-word.

glob-complete-word (M-g)
Treat the word before point as a pattern for pathname expansion, with an
asterisk implicitly appended, then use the pattern to generate a list of matching
file names for possible completions.

glob-expand-word (C-x *)
Treat the word before point as a pattern for pathname expansion, and insert
the list of matching file names, replacing the word. If a numeric argument is
supplied, append a ‘*’ before pathname expansion.

glob-list-expansions (C-x g)
Display the list of expansions that would have been generated by glob-expand-
word, and redisplay the line. If a numeric argument is supplied, append a ‘¥’
before pathname expansion.

shell-expand-line (M-C-e)
Expand the line by performing shell word expansions. This performs alias and
history expansion, $’string’ and $"string" quoting, tilde expansion, parameter
and variable expansion, arithmetic expansion, command and process substi-
tution, word splitting, and quote removal. An explicit argument suppresses
command and process substitution.

history-expand-line (M-")
Perform history expansion on the current line.

Chapter 8: Command Line Editing 158

magic-space ()
Perform history expansion on the current line and insert a space (see Section 9.3
[History Interaction], page 171).

alias-expand-line ()
Perform alias expansion on the current line (see Section 6.6 [Aliases|, page 109).

history-and-alias-expand-line ()
Perform history and alias expansion on the current line.

insert-last-argument (M-. or M-_)
A synonym for yank-last-arg.

edit-and-execute-command (C-x C-e)
Invoke an editor on the current command line, and execute the result as shell
commands. Bash attempts to invoke $VISUAL, $EDITOR, and emacs as the
editor, in that order.

display-shell-version (C-x C-v)
Display version information about the current instance of Bash.

8.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the sh description in the POSIX standard.

You can use the ‘set -o emacs’ and ‘set -o vi’ commands (see Section 4.3.1 [The Set
Builtin], page 74) to switch interactively between emacs and vi editing modes, The Readline
default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing ESC switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

8.6 Programmable Completion

When the user attempts word completion for a command or an argument to a command
for which a completion specification (a compspec) has been defined using the complete
builtin (see Section 8.7 [Programmable Completion Builtins], page 161), Readline invokes
the programmable completion facilities.

First, Bash identifies the command name. If a compspec has been defined for that
command, the compspec is used to generate the list of possible completions for the word.
If the command word is the empty string (completion attempted at the beginning of an
empty line), Bash uses any compspec defined with the -E option to complete. The -I
option to complete indicates that the command word is the first non-assignment word on
the line, or after a command delimiter such as ‘;’ or ‘|’. This usually indicates command
name completion.

If the command word is a full pathname, Bash searches for a compspec for the full
pathname first. If there is no compspec for the full pathname, Bash attempts to find a

Chapter 8: Command Line Editing 159

compspec for the portion following the final slash. If those searches do not result in a
compspec, or if there is no compspec for the command word, Bash uses any compspec
defined with the -D option to complete as the default. If there is no default compspec,
Bash performs alias expansion on the command word as a final resort, and attempts to find
a compspec for the command word resulting from any successful expansion.

If a compspec is not found, Bash performs its default completion described above (see
Section 8.4.6 [Commands For Completion], page 153). Otherwise, once a compspec has
been found, Bash uses it to generate the list of matching words.

First, Bash performs the actions specified by the compspec. This only returns matches
which are prefixes of the word being completed. When the -f or -d option is used for
filename or directory name completion, Bash uses shell the variable FIGNORE to filter the
matches. See Section 5.2 [Bash Variables|, page 87, for a description of FIGNORE.

Next, programmable completion generates matches specified by a pathname expansion
pattern supplied as an argument to the -G option. The words generated by the pattern
need not match the word being completed. Bash uses the FIGNORE variable to filter the
matches, but does not use the GLOBIGNORE shell variable.

Next, completion considers the string specified as the argument to the -W option. The
string is first split using the characters in the IFS special variable as delimiters. This honors
shell quoting within the string, in order to provide a mechanism for the words to contain shell
metacharacters or characters in the value of IFS. Each word is then expanded using brace
expansion, tilde expansion, parameter and variable expansion, command substitution, and
arithmetic expansion, as described above (see Section 3.5 [Shell Expansions]|, page 24). The
results are split using the rules described above (see Section 3.5.7 [Word Splitting], page 38).
The results of the expansion are prefix-matched against the word being completed, and the
matching words become possible completions.

After these matches have been generated, Bash executes any shell function or command
specified with the -F and -C options. When the command or function is invoked, Bash
assigns values to the COMP_LINE, COMP_POINT, COMP_KEY, and COMP_TYPE variables as de-
scribed above (see Section 5.2 [Bash Variables], page 87). If a shell function is being invoked,
Bash also sets the COMP_WORDS and COMP_CWORD variables. When the function or command
is invoked, the first argument ($1) is the name of the command whose arguments are being
completed, the second argument ($2) is the word being completed, and the third argument
($3) is the word preceding the word being completed on the current command line. There is
no filtering of the generated completions against the word being completed; the function or
command has complete freedom in generating the matches and they do not need to match
a prefix of the word.

Any function specified with -F is invoked first. The function may use any of the shell
facilities, including the compgen and compopt builtins described below (see Section 8.7
[Programmable Completion Builtins|, page 161), to generate the matches. It must put the
possible completions in the COMPREPLY array variable, one per array element.

Next, any command specified with the —-C option is invoked in an environment equivalent
to command substitution. It should print a list of completions, one per line, to the standard
output. Backslash will escape a newline, if necessary. These are added to the set of possible
completions.

Chapter 8: Command Line Editing 160

External commands that are invoked to generate completions ("external completers")
receive the word preceding the completion word as an argument, as described above. This
provides context that is sometimes useful, but may include information that is considered
sensitive or part of a word expansion that will not appear in the command line after expan-
sion. That word may be visible in process listings or in audit logs. This may be a concern
to users and completion specification authors if there is sensitive information on the com-
mand line before expansion, since completion takes place before words are expanded. If
this is an issue, completion authors should use functions as wrappers around external com-
mands and pass context information to the external command in a different way. External
completers can infer context from the COMP_LINE and COMP_POINT environment vari-
ables, but they need to ensure they break words in the same way Readline does, using the
COMP_WORDBREAKS variable.

After generating all of the possible completions, Bash applies any filter specified with
the -X option to the completions in the list. The filter is a pattern as used for pathname
expansion; a ‘¢’ in the pattern is replaced with the text of the word being completed. A
literal ‘&’ may be escaped with a backslash; the backslash is removed before attempting
a match. Any completion that matches the pattern is removed from the list. A leading
‘1’ negates the pattern; in this case Bash removes any completion that does not match
the pattern. If the nocasematch shell option is enabled (see the description of shopt in
Section 4.3.2 [The Shopt Builtin], page 78), Bash performs the match without regard to the
case of alphabetic characters.

Finally, programmable completion adds any prefix and suffix specified with the -P and
-S options, respectively, to each completion, and returns the result to Readline as the list
of possible completions.

If the previously-applied actions do not generate any matches, and the -o dirnames
option was supplied to complete when the compspec was defined, Bash attempts directory
name completion.

If the -o plusdirs option was supplied to complete when the compspec was defined,
Bash attempts directory name completion and adds any matches to the set of possible
completions.

By default, if a compspec is found, whatever it generates is returned to the completion
code as the full set of possible completions. The default Bash completions and the Readline
default of filename completion are disabled. If the —o bashdefault option was supplied
to complete when the compspec was defined, and the compspec generates no matches,
Bash attempts its default completions. If the compspec and, if attempted, the default Bash
completions generate no matches, and the -o default option was supplied to complete
when the compspec was defined, programmable completion performs Readline’s default
completion.

The options supplied to complete and compopt can control how Readline treats the
completions. For instance, the —o fullquote option tells Readline to quote the matches
as if they were filenames. See the description of complete (see Section 8.7 [Programmable
Completion Builtins], page 161) for details.

When a compspec indicates that it wants directory name completion, the programmable
completion functions force Readline to append a slash to completed names which are sym-

Chapter 8: Command Line Editing 161

bolic links to directories, subject to the value of the mark-directories Readline variable,
regardless of the setting of the mark-symlinked-directories Readline variable.

There is some support for dynamically modifying completions. This is most useful when
used in combination with a default completion specified with -D. It’s possible for shell
functions executed as completion functions to indicate that completion should be retried by
returning an exit status of 124. If a shell function returns 124, and changes the compspec
associated with the command on which completion is being attempted (supplied as the
first argument when the function is executed), programmable completion restarts from the
beginning, with an attempt to find a new compspec for that command. This can be used
to build a set of completions dynamically as completion is attempted, rather than loading
them all at once.

For instance, assuming that there is a library of compspecs, each kept in a file corre-
sponding to the name of the command, the following default completion function would
load completions dynamically:

_completion_loader ()
{
"/etc/bash_completion.d/$1.sh" >/dev/null 2>&1 && return 124

X
complete -D -F _completion_loader -o bashdefault -o default

8.7 Programmable Completion Builtins

Three builtin commands are available to manipulate the programmable completion facilities:
one to specify how the arguments to a particular command are to be completed, and two
to modify the completion as it is happening.

compgen
compgen [-V varname] [option] [word]

Generate possible completion matches for word according to the options, which
may be any option accepted by the complete builtin with the exceptions of -p,
-r, -D, -E, and -I, and write the matches to the standard output.

If the -V option is supplied, compgen stores the generated completions into the
indexed array variable varname instead of writing them to the standard output.

When using the -F or -C options, the various shell variables set by the pro-
grammable completion facilities, while available, will not have useful values.

The matches will be generated in the same way as if the programmable com-
pletion code had generated them directly from a completion specification with
the same flags. If word is specified, only those completions matching word will
be displayed or stored.

The return value is true unless an invalid option is supplied, or no matches were
generated.
complete

complete [-abcdefgjksuv] [-o comp-option] [-DEI] [-A action]
[-G globpat] [-W wordlist] [-F function] [-C command]
[-X filterpat] [-P prefix] [-S suffix] name [name ...]

Chapter 8: Command Line Editing 162

complete -pr [-DEI] [name ...]
Specify how arguments to each name should be completed.

If the —p option is supplied, or if no options or names are supplied, print existing
completion specifications in a way that allows them to be reused as input. The
-r option removes a completion specification for each name, or, if no names are
supplied, all completion specifications.

The -D option indicates that other supplied options and actions should ap-
ply to the “default” command completion; that is, completion attempted on a
command for which no completion has previously been defined. The -E option
indicates that other supplied options and actions should apply to “empty” com-
mand completion; that is, completion attempted on a blank line. The -I option
indicates that other supplied options and actions should apply to completion on
the initial non-assignment word on the line, or after a command delimiter such
as ‘;’ or ‘|’, which is usually command name completion. If multiple options
are supplied, the -D option takes precedence over -E, and both take precedence
over —-I. If any of -D, -E, or -I are supplied, any other name arguments are
ignored; these completions only apply to the case specified by the option.

The process of applying these completion specifications when word completion
is attempted is described above (see Section 8.6 [Programmable Completion],
page 158).

Other options, if specified, have the following meanings. The arguments to the
-G, -W, and -X options (and, if necessary, the -P and -8 options) should be
quoted to protect them from expansion before the complete builtin is invoked.

-0 comp-option
The comp-option controls several aspects of the compspec’s behav-
ior beyond the simple generation of completions. comp-option may
be one of:

bashdefault
Perform the rest of the default Bash completions if the
compspec generates no matches.

default Use Readline’s default filename completion if the comp-
spec generates no matches.

dirnames Perform directory name completion if the compspec
generates no matches.

filenames
Tell Readline that the compspec generates filenames,
so it can perform any filename-specific processing (such
as adding a slash to directory names, quoting special
characters, or suppressing trailing spaces). This option
is intended to be used with shell functions specified
with -F.

fullquote
Tell Readline to quote all the completed words even if
they are not filenames.

Chapter 8: Command Line Editing 163

noquote Tell Readline not to quote the completed words if they
are filenames (quoting filenames is the default).

nosort Tell Readline not to sort the list of possible completions
alphabetically.

nospace Tell Readline not to append a space (the default) to
words completed at the end of the line.

plusdirs After generating any matches defined by the comp-
spec, attempt directory name completion and add any
matches to the results of the other actions.

-A action The action may be one of the following to generate a list of possible
completions:

alias Alias names. May also be specified as -a.
arrayvar Array variable names.

binding Readline key binding names (see Section 8.4 [Bindable
Readline Commands], page 147).

builtin Names of shell builtin commands. May also be specified
as -b.

command Command names. May also be specified as -c.

directory
Directory names. May also be specified as -d.

disabled Names of disabled shell builtins.
enabled Names of enabled shell builtins.

export Names of exported shell variables. May also be speci-
fied as -e.
file File and directory names, similar to Readline’s filename

completion. May also be specified as -f.
function Names of shell functions.
group Group names. May also be specified as -g.

helptopic
Help topics as accepted by the help builtin (see
Section 4.2 [Bash Builtins|, page 61).

hostname Hostnames, as taken from the file specified by
the HOSTFILE shell variable (see Section 5.2 [Bash
Variables], page 87).

job Job names, if job control is active. May also be speci-
fied as -j.

keyword Shell reserved words. May also be specified as -k.

running Names of running jobs, if job control is active.

Chapter 8: Command Line Editing 164

service Service names. May also be specified as -s.

setopt Valid arguments for the -o option to the set builtin
(see Section 4.3.1 [The Set Builtin], page 74).

shopt Shell option names as accepted by the shopt builtin
(see Section 4.2 [Bash Builtins], page 61).

signal Signal names.
stopped Names of stopped jobs, if job control is active.
user User names. May also be specified as -u.

variable Names of all shell variables. May also be specified as
-v.

-C command
command is executed in a subshell environment, and its output is
used as the possible completions. Arguments are passed as with
the -F option.

-F function

The shell function function is executed in the current shell envi-
ronment. When it is executed, the first argument ($1) is the name
of the command whose arguments are being completed, the sec-
ond argument ($2) is the word being completed, and the third
argument ($3) is the word preceding the word being completed,
as described above (see Section 8.6 [Programmable Completion],
page 158). When function finishes, programmable completion re-
trieves the possible completions from the value of the COMPREPLY
array variable.

-G globpat
Expand the filename expansion pattern globpat to generate the
possible completions.

-P prefix Add prefix to the beginning of each possible completion after all
other options have been applied.

-S suffix Append suffix to each possible completion after all other options
have been applied.

-W wordlist
Split the wordlist using the characters in the IFS special variable
as delimiters, and expand each resulting word. Shell quoting is
honored within wordlist in order to provide a mechanism for the
words to contain shell metacharacters or characters in the value of
IFS. The possible completions are the members of the resultant
list which match a prefix of the word being completed.

-X filterpat
filterpat is a pattern as used for filename expansion. It is applied to
the list of possible completions generated by the preceding options

Chapter 8: Command Line Editing 165

and arguments, and each completion matching filterpat is removed
from the list. A leading ‘!’ in filterpat negates the pattern; in this
case, any completion not matching filterpat is removed.

The return value is true unless an invalid option is supplied, an option other
than -p, -r, -D, -E, or -I is supplied without a name argument, an attempt is
made to remove a completion specification for a name for which no specification
exists, or an error occurs adding a completion specification.

compopt
compopt [-o option] [-DEI] [+o option] [namel]

Modify completion options for each name according to the options, or for the
currently-executing completion if no names are supplied. If no options are
given, display the completion options for each name or the current completion.
The possible values of option are those valid for the complete builtin described
above.

The -D option indicates that other supplied options should apply to the “de-
fault” command completion; the -E option indicates that other supplied options
should apply to “empty” command completion; and the -I option indicates that
other supplied options should apply to completion on the initial word on the
line. These are determined in the same way as the complete builtin.

If multiple options are supplied, the -D option takes precedence over -E, and
both take precedence over -I

The return value is true unless an invalid option is supplied, an attempt is made
to modify the options for a name for which no completion specification exists,
or an output error occurs.

8.8 A Programmable Completion Example

The most common way to obtain additional completion functionality beyond the default
actions complete and compgen provide is to use a shell function and bind it to a particular
command using complete -F.

The following function provides completions for the cd builtin. It is a reasonably good
example of what shell functions must do when used for completion. This function uses
the word passed as $2 to determine the directory name to complete. You can also use the
COMP_WORDS array variable; the current word is indexed by the COMP_CWORD variable.

The function relies on the complete and compgen builtins to do much of the work,
adding only the things that the Bash cd does beyond accepting basic directory names: tilde
expansion (see Section 3.5.2 [Tilde Expansion], page 26), searching directories in $CDPATH,
which is described above (see Section 4.1 [Bourne Shell Builtins], page 52), and basic support
for the cdable_vars shell option (see Section 4.3.2 [The Shopt Builtin], page 78). _comp_
cd modifies the value of IF'S so that it contains only a newline to accommodate file names
containing spaces and tabs — compgen prints the possible completions it generates one per
line.

Possible completions go into the COMPREPLY array variable, one completion per array
element. The programmable completion system retrieves the completions from there when
the function returns.

Chapter 8: Command Line Editing 166

A completion function for the cd builtin
based on the cd completion function from the bash_completion package
_comp_cd()

{

local IFS=$’ \t\n’ # normalize IFS
local cur _skipdot _cdpath
local i j k

Tilde expansion, which also expands tilde to full pathname
case "$2" in

\7*) eval cur="$§2" ;;
*) cur=$2 ;;
esac
no cdpath or absolute pathname -- straight directory completion
if [[-z "${CDPATH:-}" 11 || [["$cur" == @(./*|../*|/*) 1]1; then
compgen prints paths one per line; could also use while loop
IFS=$’\n’
COMPREPLY=($(compgen -d -- "$cur"))
IFs=$’> \t\n’

CDPATH+directories in the current directory if not in CDPATH
else
IFS=$’\n’
_skipdot=false
preprocess CDPATH to convert null directory names to .
_cdpath=${CDPATH/#:/.:}
_cdpath=${_cdpath//::/:.:}
_cdpath=${_cdpath/%:/:.}
for i in ${_cdpath//:/$’\n’}; do
if [[$i -ef . 1]; then _skipdot=true; fi
k="${#COMPREPLY [@] }"

for j in $(compgen -d -- "$i/$cur"); do
COMPREPLY [k++]=${j#$i/} # cut off directory
done
done
$_skipdot || COMPREPLY+=($(compgen -d -- "$cur"))
IFS=$’> \t\n’

fi

variable names if appropriate shell option set and no completions

if shopt -q cdable_vars && [[${#COMPREPLY[@]} -eq O]]; then
COMPREPLY=($(compgen -v -- "$cur"))

fi

return O

Chapter 8: Command Line Editing 167

We install the completion function using the -F option to complete:

Tell readline to quote appropriate and append slashes to directories;
use the bash default completion for other arguments
complete -o filenames -o nospace -o bashdefault -F _comp_cd cd

Since we’d like Bash and Readline to take care of some of the other details for us, we use
several other options to tell Bash and Readline what to do. The -o filenames option
tells Readline that the possible completions should be treated as filenames, and quoted
appropriately. That option will also cause Readline to append a slash to filenames it can
determine are directories (which is why we might want to extend _comp_cd to append a
slash if we’re using directories found via CDPATH: Readline can’t tell those completions are
directories). The -o nospace option tells Readline to not append a space character to the
directory name, in case we want to append to it. The -o bashdefault option brings in the
rest of the “Bash default” completions — possible completions that Bash adds to the default
Readline set. These include things like command name completion, variable completion for
words beginning with ‘¢’ or ‘${’, completions containing pathname expansion patterns (see
Section 3.5.8 [Filename Expansion], page 39), and so on.

Once installed using complete, _comp_cd will be called every time we attempt word
completion for a cd command.

Many more examples — an extensive collection of completions for most of the common
GNU, Unix, and Linux commands — are available as part of the bash_completion project.
This is installed by default on many GNU /Linux distributions. Originally written by Ian
Macdonald, the project now lives at https://github. com/scop/bash-completion/.
There are ports for other systems such as Solaris and Mac OS X.

An older version of the bash_completion package is distributed with bash in the
examples/complete subdirectory.

https://github.com/scop/bash-completion/

168

9 Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user’s
standpoint. It should be considered a user’s guide. For information on using the GNU
History Library in other programs, see the GNU Readline Library Manual.

9.1 Bash History Facilities

When the -o history option to the set builtin is enabled (see Section 4.3.1 [The Set
Builtin], page 74), the shell provides access to the command history, the list of commands
previously typed. The value of the HISTSIZE shell variable is used as the number of com-
mands to save in a history list: the shell saves the text of the last $HISTSIZE commands
(default 500). The shell stores each command in the history list prior to parameter and
variable expansion but after history expansion is performed, subject to the values of the
shell variables HISTIGNORE and HISTCONTROL.

When the shell starts up, Bash initializes the history list by reading history entries from
the file named by the HISTFILE variable (default ~/.bash_history). This is referred to
as the history file. The history file is truncated, if necessary, to contain no more than
the number of history entries specified by the value of the HISTFILESIZE variable. If
HISTFILESIZE is unset, or set to null, a non-numeric value, or a numeric value less than
zero, the history file is not truncated.

When the history file is read, lines beginning with the history comment character followed
immediately by a digit are interpreted as timestamps for the following history entry. These
timestamps are optionally displayed depending on the value of the HISTTIMEFORMAT variable
(see Section 5.2 [Bash Variables|, page 87). When present, history timestamps delimit
history entries, making multi-line entries possible.

When a shell with history enabled exits, Bash copies the last $HISTSIZE entries from
the history list to the file named by $HISTFILE. If the histappend shell option is set (see
Section 4.2 [Bash Builtins], page 61), Bash appends the entries to the history file, otherwise
it overwrites the history file. If HISTFILE is unset or null, or if the history file is unwritable,
the history is not saved. After saving the history, Bash truncates the history file to contain
no more than $HISTFILESIZE lines as described above.

If the HISTTIMEFORMAT variable is set, the shell writes the timestamp information associ-
ated with each history entry to the history file, marked with the history comment character,
so timestamps are preserved across shell sessions. When the history file is read, lines begin-
ning with the history comment character followed immediately by a digit are interpreted
as timestamps for the following history entry. As above, when using HISTTIMEFORMAT, the
timestamps delimit multi-line history entries.

The fc builtin command will list or edit and re-execute a portion of the history list.
The history builtin can display or modify the history list and manipulate the history file.
When using command-line editing, search commands are available in each editing mode that
provide access to the history list (see Section 8.4.2 [Commands For History], page 148).

The shell allows control over which commands are saved on the history list. The
HISTCONTROL and HISTIGNORE variables are used to save only a subset of the commands
entered. If the cmdhist shell option is enabled, the shell attempts to save each line of
a multi-line command in the same history entry, adding semicolons where necessary to

Chapter 9: Using History Interactively 169

preserve syntactic correctness. The lithist shell option modifies cmdhist by saving the
command with embedded newlines instead of semicolons. The shopt builtin is used to set
these options. See Section 4.3.2 [The Shopt Builtin], page 78, for a description of shopt.

9.2 Bash History Builtins

Bash provides two builtin commands which manipulate the history list and history file.

fc

history

fc [-e ename] [-1lnr] [first] [last]

fc -s [pat=rep] [command]
The first form selects a range of commands from first to last from the history
list and displays or edits and re-executes them. Both first and last may be
specified as a string (to locate the most recent command beginning with that
string) or as a number (an index into the history list, where a negative number
is used as an offset from the current command number).

When listing, a first or last of 0 is equivalent to -1 and -0 is equivalent to the
current command (usually the fc command); otherwise 0 is equivalent to -1
and -0 is invalid.

If last is not specified, it is set to the current command for listing and to first
otherwise. If first is not specified, it is set to the previous command for editing
and —16 for listing.

If the -1 flag is supplied, the commands are listed on standard output. The -n
flag suppresses the command numbers when listing. The -r flag reverses the
order of the listing.

Otherwise, fc invokes the editor named by ename on a file containing those
commands. If ename is not supplied, fc uses the value of the following variable
expansion: ${FCEDIT:-${EDITOR:-vi}}. This says to use the value of the
FCEDIT variable if set, or the value of the EDITOR variable if that is set, or vi if
neither is set. When editing is complete, fc reads the file of edited commands
and echoes and executes them.

In the second form, fc re-executes command after replacing each instance of
pat in the selected command with rep. command is interpreted the same as
first above.

A useful alias to use with the fc command is r="fc -s’, so that typing ‘r cc’
runs the last command beginning with cc and typing ‘r’ re-executes the last
command (see Section 6.6 [Aliases|, page 109).

If the first form is used, the return value is zero unless an invalid option is
encountered or first or last specify history lines out of range. When editing
and re-executing a file of commands, the return value is the value of the last
command executed or failure if an error occurs with the temporary file. If the
second form is used, the return status is that of the re-executed command,
unless command does not specify a valid history entry, in which case fc returns
a non-zero status.

history [n]

Chapter 9: Using History Interactively 170

history -c

history -d offset

history -d start-end

history [-anrw] [filename]

history -ps arg
With no options, display the history list with numbers. Entries prefixed with
a ‘*’ have been modified. An argument of n lists only the last n entries. If
the shell variable HISTTIMEFORMAT is set and not null, it is used as a format
string for strftime(3) to display the time stamp associated with each displayed
history entry. If history uses HISTTIMEFORMAT, it does not print an intervening
space between the formatted time stamp and the history entry.

Options, if supplied, have the following meanings:

-c Clear the history list. This may be combined with the other options
to replace the history list.

-d offset Delete the history entry at position offset. If offset is positive, it
should be specified as it appears when the history is displayed. If
offset is negative, it is interpreted as relative to one greater than the
last history position, so negative indices count back from the end
of the history, and an index of ‘-1’ refers to the current history
-d command.

-d start-end
Delete the range of history entries between positions start and end,
inclusive. Positive and negative values for start and end are inter-
preted as described above.

-a Append the "new" history lines to the history file. These are history
lines entered since the beginning of the current Bash session, but
not already appended to the history file.

-n Read the history lines not already read from the history file and
add them to the current history list. These are lines appended to
the history file since the beginning of the current Bash session.

-r Read the history file and append its contents to the history list.

-w Write the current history list to the history file, overwriting the
history file.

-p Perform history substitution on the args and display the result on
the standard output, without storing the results in the history list.

-s Add the args to the end of the history list as a single entry. The
last command in the history list is removed before adding the args.

If a filename argument is supplied with any of the -w, -r, -a, or -n options,
Bash uses filename as the history file. If not, it uses the value of the HISTFILE
variable. If HISTFILE is unset or null, these options have no effect.

If the HISTTIMEFORMAT variable is set, history writes the time stamp infor-
mation associated with each history entry to the history file, marked with the

Chapter 9: Using History Interactively 171

history comment character as described above. When the history file is read,
lines beginning with the history comment character followed immediately by a
digit are interpreted as timestamps for the following history entry.

The return value is 0 unless an invalid option is encountered, an error occurs
while reading or writing the history file, an invalid offset or range is supplied
as an argument to -d, or the history expansion supplied as an argument to -p
fails.

9.3 History Expansion

The shell provides a history expansion feature that is similar to the history expansion
provided by csh (also referred to as history substitution where appropriate). This section
describes the syntax used to manipulate the history information.

History expansion is enabled by default for interactive shells, and can be disabled using
the +H option to the set builtin command (see Section 4.3.1 [The Set Builtin|, page 74).
Non-interactive shells do not perform history expansion by default, but it can be enabled
with set -H.

History expansions introduce words from the history list into the input stream, making
it easy to repeat commands, insert the arguments to a previous command into the current
input line, or fix errors in previous commands quickly.

History expansion is performed immediately after a complete line is read, before the shell
breaks it into words, and is performed on each line individually. Bash attempts to inform
the history expansion functions about quoting still in effect from previous lines.

History expansion takes place in two parts. The first is to determine which entry from
the history list should be used during substitution. The second is to select portions of that
entry to include into the current one.

The entry selected from the history is called the event, and the portions of that entry
that are acted upon are words. Various modifiers are available to manipulate the selected
words. The entry is split into words in the same fashion that Bash does when reading input,
so that several words surrounded by quotes are considered one word. The event designator
selects the event, the optional word designator selects words from the event, and various
optional modifiers are available to manipulate the selected words.

History expansions are introduced by the appearance of the history expansion character,
which is ‘!’ by default. History expansions may appear anywhere in the input, but do not
nest.

History expansion implements shell-like quoting conventions: a backslash can be used to
remove the special handling for the next character; single quotes enclose verbatim sequences
of characters, and can be used to inhibit history expansion; and characters enclosed within
double quotes may be subject to history expansion, since backslash can escape the history
expansion character, but single quotes may not, since they are not treated specially within
double quotes.

When using the shell, only ‘\’ and ‘°’ may be used to escape the history expansion
character, but the history expansion character is also treated as quoted if it immediately
precedes the closing double quote in a double-quoted string.

Chapter 9: Using History Interactively 172

Several characters inhibit history expansion if found immediately following the history
expansion character, even if it is unquoted: space, tab, newline, carriage return, ‘=", and
the other shell metacharacters.

There is a special abbreviation for substitution, active when the quick substitution char-
acter (described above under histchars) is the first character on the line. It selects the
previous history list entry, using an event designator equivalent to !!, and substitutes one
string for another in that entry. It is described below (see Section 9.3.1 [Event Designators],
page 172). This is the only history expansion that does not begin with the history expansion
character.

Several shell options settable with the shopt builtin (see Section 4.3.2 [The Shopt
Builtin], page 78) modify history expansion behavior If the histverify shell option is
enabled, and Readline is being used, history substitutions are not immediately passed to
the shell parser. Instead, the expanded line is reloaded into the Readline editing buffer for
further modification. If Readline is being used, and the histreedit shell option is enabled,
a failed history expansion is reloaded into the Readline editing buffer for correction.

The -p option to the history builtin command shows what a history expansion will do
before using it. The -s option to the history builtin may be used to add commands to
the end of the history list without actually executing them, so that they are available for
subsequent recall. This is most useful in conjunction with Readline.

The shell allows control of the various characters used by the history expansion mech-
anism with the histchars variable, as explained above (see Section 5.2 [Bash Variables],
page 87). The shell uses the history comment character to mark history timestamps when
writing the history file.

9.3.1 Event Designators

An event designator is a reference to an entry in the history list. The event designator
consists of the portion of the word beginning with the history expansion character, and
ending with the word designator if one is present, or the end of the word. Unless the
reference is absolute, events are relative to the current position in the history list.

! Start a history substitution, except when followed by a space, tab, the end of
the line, ‘=", or the rest of the shell metacharacters defined above (see Chapter 2
[Definitions|, page 3).

I'n Refer to history list entry n.
I-n Refer to the history entry minus n.
I Refer to the previous entry. This is a synonym for ‘!-1’.

Istring Refer to the most recent command preceding the current position in the history
list starting with string.

1?7string[7]
Refer to the most recent command preceding the current position in the history
list containing string. The trailing ‘?” may be omitted if the string is followed
immediately by a newline. If string is missing, this uses the string from the
most recent search; it is an error if there is no previous search string.

Chapter 9: Using History Interactively 173

“stringl”string2”
Quick Substitution. Repeat the last command, replacing stringl with string2.
Equivalent to !!:s"stringl”string2”.

E: The entire command line typed so far.

9.3.2 Word Designators

Word designators are used to select desired words from the event. They are optional; if the
word designator isn’t supplied, the history expansion uses the entire event. A ‘:’ separates
the event specification from the word designator. It may be omitted if the word designator
begins with a ‘*’, ‘§’, ¥’ ‘=’ or ‘%’. Words are numbered from the beginning of the line,
with the first word being denoted by 0 (zero). That first word is usually the command
word, and the arguments begin with the second word. Words are inserted into the current
line separated by single spaces.

For example,

I designates the preceding command. When you type this, the preceding com-
mand is repeated in toto.

g designates the last word of the preceding command. This may be shortened to
1$.

1fi:2 designates the second argument of the most recent command starting with the
letters £1i.

Here are the word designators:

0 (zero) The O0th word. For the shell, and many other, applications, this is the command
word.

n The nth word.
The first argument: word 1.

$ The last word. This is usually the last argument, but expands to the zeroth
word if there is only one word in the line.

pA The first word matched by the most recent ‘?string?’ search, if the search
string begins with a character that is part of a word. By default, searches begin
at the end of each line and proceed to the beginning, so the first word matched
is the one closest to the end of the line.

x-y A range of words; ‘-y’ abbreviates ‘0-y’.

* All of the words, except the Oth. This is a synonym for ‘1-$’. It is not an error
to use ‘*’ if there is just one word in the event; it expands to the empty string
in that case.

X* Abbreviates ‘x-$’.
x- Abbreviates ‘x-$’ like ‘x*’, but omits the last word. If ‘x’ is missing, it defaults
to 0.

If a word designator is supplied without an event specification, the previous command
is used as the event, equivalent to !!.

Chapter 9: Using History Interactively 174

9.3.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’. These modify, or edit, the word or words selected from
the history event.

h Remove a trailing filename component, leaving only the head.

t Remove all leading filename components, leaving the tail.

T Remove a trailing suffix of the form ‘. suffix’, leaving the basename.

e Remove all but the trailing suffix.

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

X Quote the substituted words as with ‘q’, but break into words at spaces, tabs,
and newlines. The ‘q” and ‘x’ modifiers are mutually exclusive; expansion uses
the last one supplied.

s/old/new/

Substitute new for the first occurrence of old in the event line. Any character
may be used as the delimiter in place of ‘/’. The delimiter may be quoted in
old and new with a single backslash. If ‘&” appears in new, it is replaced with
old. A single backslash quotes the ‘&’ in old and new. If old is null, it is set to
the last old substituted, or, if no previous history substitutions took place, the
last string in a !?string [?] search. If new is null, each matching old is deleted.
The final delimiter is optional if it is the last character on the input line.

& Repeat the previous substitution.

g

a Cause changes to be applied over the entire event line. This is used in conjunc-

tion with ‘s’, as in gs/old/new/, or with ‘&’.

G Apply the following ‘s’ or ‘&’ modifier once to each word in the event.

175

10 Installing Bash

This chapter provides basic instructions for installing Bash on the various supported plat-
forms. The distribution supports the GNU operating systems, nearly every version of Unix,
and several non-Unix systems such as BeOS and Interix. Other independent ports exist for
Windows platforms.

10.1 Basic Installation

These are installation instructions for Bash.
The simplest way to compile Bash is:

1. cd to the directory containing the source code and type ‘./configure’ to configure
Bash for your system. If you're using csh on an old version of System V, you might
need to type ‘sh ./configure’ instead to prevent csh from trying to execute configure
itself.

Running configure takes some time. While running, it prints messages telling which
features it is checking for.

2. Type ‘make’ to compile Bash and build the bashbug bug reporting script.
Optionally, type ‘make tests’ to run the Bash test suite.

4. Type ‘make install’ to install bash and bashbug. This will also install the man-
ual pages and Info file, message translation files, some supplemental documentation, a
number of example loadable builtin commands, and a set of header files for developing
loadable builtins. You may need additional privileges to install bash to your desired
destination, which may require ‘sudo make install’. More information about control-
ling the locations where bash and other files are installed is below (see Section 10.4
[Installation Names|, page 177).

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a Makefile in each di-
rectory of the package (the top directory, the builtins, doc, po, and support directories,
each directory under 1lib, and several others). It also creates a config.h file containing
system-dependent definitions. Finally, it creates a shell script named config.status that
you can run in the future to recreate the current configuration, a file config.cache that
saves the results of its tests to speed up reconfiguring, and a file config.log containing
compiler output (useful mainly for debugging configure). If at some point config.cache
contains results you don’t want to keep, you may remove or edit it.

To find out more about the options and arguments that the configure script under-
stands, type
bash-4.2% ./configure --help
at the Bash prompt in your Bash source directory.

If you want to build Bash in a directory separate from the source directory — to build
for multiple architectures, for example — just use the full path to the configure script. The
following commands will build Bash in a directory under /usr/local/build from the source
code in /usr/local/src/bash-4.4:

mkdir /usr/local/build/bash-4.4

Chapter 10: Installing Bash 176

cd /usr/local/build/bash-4.4
bash /usr/local/src/bash-4.4/configure
make

See Section 10.3 [Compiling For Multiple Architectures], page 176, for more information
about building in a directory separate from the source.

If you need to do unusual things to compile Bash, please try to figure out how
configure could check whether or not to do them, and mail diffs or instructions to
bash-maintainers@gnu.org so they can be considered for the next release.

The file configure.ac is used to create configure by a program called Autoconf. You
only need configure.ac if you want to change it or regenerate configure using a newer
version of Autoconf. If you do this, make sure you are using Autoconf version 2.69 or newer.

You can remove the program binaries and object files from the source code directory by
typing ‘make clean’. To also remove the files that configure created (so you can compile
Bash for a different kind of computer), type ‘make distclean’.

10.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. You can give configure initial values for variables by setting them
in the environment. Using a Bourne-compatible shell, you can do that on the command
line like this:

CC=c89 CFLAGS=-02 LIBS=-lposix ./configure
On systems that have the env program, you can do it like this:

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure
The configuration process uses GCC to build Bash if it is available.

10.3 Compiling For Multiple Architectures

You can compile Bash for more than one kind of computer at the same time, by placing the
object files for each architecture in their own directory. To do this, you must use a version
of make that supports the VPATH variable, such as GNU make. cd to the directory where
you want the object files and executables to go and run the configure script from the
source directory (see Section 10.1 [Basic Installation], page 175). You may need to supply
the —-srcdir=PATH argument to tell configure where the source files are. configure
automatically checks for the source code in the directory that configure is in and in ...

If you have to use a make that does not support the VPATH variable, you can compile Bash
for one architecture at a time in the source code directory. After you have installed Bash
for one architecture, use ‘make distclean’ before reconfiguring for another architecture.

Alternatively, if your system supports symbolic links, you can use the support/mkclone
script to create a build tree which has symbolic links back to each file in the source directory.
Here’s an example that creates a build directory in the current directory from a source
directory /usr/gnu/src/bash-2.0:

bash /usr/gnu/src/bash-2.0/support/mkclone -s /usr/gnu/src/bash-2.0 .

The mkclone script requires Bash, so you must have already built Bash for at least one
architecture before you can create build directories for other architectures.

mailto:bash-maintainers@gnu.org

Chapter 10: Installing Bash 177

10.4 Installation Names

By default, ‘make install’ will install into /usr/local/bin, /usr/local/man, etc.; that
is, the installation prefix defaults to /usr/local. You can specify an installation prefix
other than /usr/local by giving configure the option --prefix=PATH, or by specifying
a value for the prefix ‘make’ variable when running ‘make install’ (e.g., ‘make install
prefix=PATH’). The prefix variable provides a default for exec_prefix and other variables
used when installing Bash.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you give configure the option --exec-prefix=PATH,
‘make install’ will use PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

If you would like to change the installation locations for a single run, you can specify
these variables as arguments to make: ‘make install exec_prefix=/’ will install bash and
bashbug into /bin instead of the default /usr/local/bin.

If you want to see the files Bash will install and where it will install them without
changing anything on your system, specify the variable DESTDIR as an argument to make.
Its value should be the absolute directory path you’d like to use as the root of your sample
installation tree. For example,

mkdir /fsl/bash-install
make install DESTDIR=/fsl1/bash-install

will install bash into /fs1/bash-install/usr/local/bin/bash, the documentation into
directories within /fs1/bash-install/usr/local/share, the example loadable builtins
into /fs1/bash-install/usr/local/lib/bash, and so on. You can use the usual exec_
prefix and prefix variables to alter the directory paths beneath the value of DESTDIR.

The GNU Makefile standards provide a more complete description of these variables and
their effects.

10.5 Specifying the System Type

There may be some features configure can not figure out automatically, but needs to
determine by the type of host Bash will run on. Usually configure can figure that out, but
if it prints a message saying it can not guess the host type, give it the ——host=TYPE option.
‘TYPE’ can either be a short name for the system type, such as ‘sun4’, or a canonical name
with three fields: ‘CPU-COMPANY-SYSTEM’ (e.g., ‘1386-unknown-freebsd4.2’).

See the file support/config.sub for the possible values of each field.

10.6 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called config.site that gives default values for variables like CC, cache_
file, and prefix. configure looks for PREFIX/share/config.site if it exists, then
PREFIX/etc/config.site if it exists. Or, you can set the CONFIG_SITE environment vari-
able to the location of the site script. A warning: the Bash configure looks for a site
script, but not all configure scripts do.

Chapter 10: Installing Bash 178

10.7 Operation Controls
configure recognizes the following options to control how it operates.

—-—cache-file=file
Use and save the results of the tests in file instead of ./config.cache. Set file
to /dev/null to disable caching, for debugging configure.

--help Print a summary of the options to configure, and exit.
-—quiet

--silent

-q Do not print messages saying which checks are being made.

--srcdir=dir
Look for the Bash source code in directory dir. Usually configure can deter-
mine that directory automatically.

--version
Print the version of Autoconf used to generate the configure script, and exit.

configure also accepts some other, not widely used, boilerplate options. ‘configure
—--help’ prints the complete list.

10.8 Optional Features

The Bash configure has a number of —-enable-feature options, where feature indicates
an optional part of Bash. There are also several -—with-package options, where package
is something like ‘bash-malloc’ or ‘afs’. To turn off the default use of a package, use
--without-package. To configure Bash without a feature that is enabled by default, use
-—-disable-feature.

Here is a complete list of the -—enable- and --with- options that the Bash configure
recognizes.

--with-afs
Define if you are using the Andrew File System from Transarc.

--with-bash-malloc

Use the Bash version of malloc in the directory 1ib/malloc. This is not the
same malloc that appears in GNU libc, but a custom version originally derived
from the 4.2 BSD malloc. This malloc is very fast, but wastes some space on
each allocation, though it uses several techniques to minimize the waste. This
option is enabled by default. The NOTES file contains a list of systems for which
this should be turned off, and configure disables this option automatically for
a number of systems.

--with-curses[=LIBNAME]
Use the curses library instead of the termcap library as the library where
the linker can find the termcap functions. configure usually chooses this
automatically, since most systems include the termcap functions in the
curses library. If LIBNAME is supplied, configure does not search for
an appropriate library and uses LIBNAME instead. LIBNAME should

Chapter 10: Installing Bash 179

be either an argument for the linker (e.g., -1libname) or a filename (e.g.,
/opt/local/lib/libncursesw.so).

--with-gnu-malloc
A synonym for ——with-bash-malloc.

--with-installed-readline [=PREFIX]

Define this to make Bash link with a locally-installed version of Readline rather
than the version in 1ib/readline. This works only with Readline 5.0 and later
versions. If PREFIX is yes or not supplied, configure uses the values of the
make variables includedir and libdir, which are subdirectories of prefix by
default, to find the installed version of Readline if it is not in the standard
system include and library directories. If PREFIX is no, Bash links with the
version in 1ib/readline. If PREFIX is set to any other value, configure
treats it as a directory pathname and looks for the installed version of Readline
in subdirectories of that directory (include files in PREFIX /include and the
library in PREFIX /1ib). The Bash default is to link with a static library built
in the 1ib/readline subdirectory of the build directory.

--with-libintl-prefix [=PREFIX]
Define this to make Bash link with a locally-installed version of the libintl
library instead of the version in 1ib/intl.

--with-libiconv-prefix [=PREFIX]
Define this to make Bash look for libiconv in PREFIX instead of the standard
system locations. The Bash distribution does not include this library.

--enable-minimal-config
This produces a shell with minimal features, closer to the historical Bourne
shell.

There are several ——enable- options that alter how Bash is compiled, linked, and in-
stalled, rather than changing run-time features.

-—enable-largefile
Enable support for large files (http://www.unix.org/version2/whatsnew/
1fs20mar . html) if the operating system requires special compiler options to
build programs which can access large files. This is enabled by default, if the
operating system provides large file support.

—-—enable-profiling
This builds a Bash binary that produces profiling information to be processed
by gprof each time it is executed.

--enable-separate-helpfiles
Use external files for the documentation displayed by the help builtin instead
of storing the text internally.

-—enable-static-link
This causes Bash to be linked statically, if gcc is being used. This could be
used to build a version to use as root’s shell.

http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html

Chapter 10: Installing Bash 180

The ‘minimal-config’ option can be used to disable all of the following options, but it
is processed first, so individual options may be enabled using ‘enable-feature’.

All of the following options except for ‘alt-array-implementation’,
‘disabled-builtins’, ‘direxpand-default’, ‘strict-posix-default’, and
‘xpg-echo-default’ are enabled by default, unless the operating system does not provide
the necessary support.

--enable-alias
Allow alias expansion and include the alias and unalias builtins (see
Section 6.6 [Aliases], page 109).

-—enable-alt-array-implementation
This builds Bash using an alternate implementation of arrays (see Section 6.7
[Arrays|, page 110) that provides faster access at the expense of using more
memory (sometimes many times more, depending on how sparse an array is).

—--enable-arith-for-command
Include support for the alternate form of the for command that behaves like the
C language for statement (see Section 3.2.5.1 [Looping Constructs]|, page 12).

--enable-array-variables
Include support for one-dimensional array shell variables (see Section 6.7 [Ar-
rays|, page 110).

--enable-bang-history
Include support for csh-like history substitution (see Section 9.3 [History In-
teraction|, page 171).

--enable-bash-source-fullpath-default
Set the default value of the bash_source_fullpath shell option described above
under Section 4.3.2 [The Shopt Builtin|, page 78, to be enabled. This controls
how filenames are assigned to the BASH_SOURCE array variable.

--enable-brace-expansion
Include csh-like brace expansion (b{a,b}c +— bac bbc). See Section 3.5.1
[Brace Expansion], page 25, for a complete description.

—--enable-casemod-attributes
Include support for case-modifying attributes in the declare builtin and as-
signment statements. Variables with the uppercase attribute, for example,
will have their values converted to uppercase upon assignment.

--enable-casemod-expansion
Include support for case-modifying word expansions.

-—-enable-command-timing
Include support for recognizing time as a reserved word and for displaying
timing statistics for the pipeline following time (see Section 3.2.3 [Pipelines],
page 10). This allows timing pipelines, shell compound commands, shell
builtins, and shell functions, which an external command cannot do easily.

-—enable-cond-command
Include support for the [[conditional command. (see Section 3.2.5.2 [Condi-
tional Constructs], page 12).

Chapter 10: Installing Bash 181

—--enable-cond-regexp
Include support for matching POSIX regular expressions using the ‘="’ binary
operator in the [[conditional command. (see Section 3.2.5.2 [Conditional Con-
structs], page 12).

¢

—--enable-coprocesses
Include support for coprocesses and the coproc reserved word (see Section 3.2.3
[Pipelines], page 10).

--enable-debugger
Include support for the Bash debugger (distributed separately).

--enable-dev-fd-stat-broken
If calling stat on /dev/fd/N returns different results than calling fstat on file
descriptor N, supply this option to enable a workaround. This has implications
for conditional commands that test file attributes.

—--enable-direxpand-default
Cause the direxpand shell option (see Section 4.3.2 [The Shopt Builtin],
page 78) to be enabled by default when the shell starts. It is normally disabled
by default.

--enable-directory-stack
Include support for a csh-like directory stack and the pushd, popd, and dirs
builtins (see Section 6.8 [The Directory Stack|, page 112).

—-—enable-disabled-builtins
Allow builtin commands to be invoked via ‘builtin xxx’ even after xxx has
been disabled using ‘enable -n xxx’. See Section 4.2 [Bash Builtins|, page 61,
for details of the builtin and enable builtin commands.

--enable-dparen-arithmetic
Include support for the ((...)) command (see Section 3.2.5.2 [Conditional
Constructs], page 12).

—--enable-extended-glob
Include support for the extended pattern matching features described above
under Section 3.5.8.1 [Pattern Matching], page 39.

--enable-extended-glob-default
Set the default value of the extglob shell option described above under
Section 4.3.2 [The Shopt Builtin], page 78, to be enabled.

--enable-function-import
Include support for importing function definitions exported by another instance
of the shell from the environment. This option is enabled by default.

--enable-glob-asciiranges—-default
Set the default value of the globasciiranges shell option described above un-
der Section 4.3.2 [The Shopt Builtin], page 78, to be enabled. This controls the
behavior of character ranges when used in pattern matching bracket expres-
sions.

Chapter 10: Installing Bash 182

-—-enable-help-builtin
Include the help builtin, which displays help on shell builtins and variables (see
Section 4.2 [Bash Builtins|, page 61).

--enable-history
Include command history and the fc and history builtin commands (see
Section 9.1 [Bash History Facilities|, page 168).

--enable-job-control
This enables the job control features (see Chapter 7 [Job Control], page 125),
if the operating system supports them.

-—-enable-multibyte
This enables support for multibyte characters if the operating system provides
the necessary support.

--enable-net-redirections
This enables the special handling of filenames of the form /dev/tcp/host/port
and /dev/udp/host/port when used in redirections (see Section 3.6 [Redirec-
tions|, page 41).

—-—-enable-process—substitution
This enables process substitution (see Section 3.5.6 [Process Substitution],
page 37) if the operating system provides the necessary support.

--enable-progcomp
Enable the programmable completion facilities (see Section 8.6 [Programmable
Completion], page 158). If Readline is not enabled, this option has no effect.

--enable-prompt-string-decoding
Turn on the interpretation of a number of backslash-escaped characters in the
$PS0, $PS1, $PS2, and $PS4 prompt strings. See Section 6.9 [Controlling the
Prompt], page 114, for a complete list of prompt string escape sequences.

--enable-readline
Include support for command-line editing and history with the Bash version of
the Readline library (see Chapter 8 [Command Line Editing], page 130).

-—enable-restricted
Include support for a restricted shell. If this is enabled, Bash enters a restricted
mode when called as rbash. See Section 6.10 [The Restricted Shell], page 115,
for a description of restricted mode.

--enable-select
Include the select compound command, which allows generation of simple
menus (see Section 3.2.5.2 [Conditional Constructs|, page 12).

--enable-single-help-strings
Store the text displayed by the help builtin as a single string for each help

topic. This aids in translating the text to different languages. You may need
to disable this if your compiler cannot handle very long string literals.

--enable-strict-posix-default
Make Bash posix-conformant by default (see Section 6.11 [Bash POSIX Mode],
page 116).

Chapter 10: Installing Bash 183

--enable-translatable-strings
Enable support for $"string" translatable strings (see Section 3.1.2.5 [Locale
Translation|, page 7).

--enable-usg-echo-default
A synonym for --enable-xpg-echo-default.

-—enable-xpg-echo-default
Make the echo builtin expand backslash-escaped characters by default, without
requiring the —e option. This sets the default value of the xpg_echo shell option
to on, which makes the Bash echo behave more like the version specified in the
Single Unix Specification, version 3. See Section 4.2 [Bash Builtins|, page 61,
for a description of the escape sequences that echo recognizes.

The file config-top.h contains C Preprocessor ‘#define’ statements for options which
are not settable from configure. Some of these are not meant to be changed; beware of
the consequences if you do. Read the comments associated with each definition for more
information about its effect.

184

Appendix A Reporting Bugs

Please report all bugs you find in Bash. But first, you should make sure that it really is a
bug, and that it appears in the latest version of Bash. The latest released version of Bash
is always available for FTP from ftp://ftp.gnu.org/pub/gnu/bash/ and from http://
git.savannah.gnu.org/cgit/bash.git/snapshot/bash-master.tar.gz.

Once you have determined that a bug actually exists, use the bashbug command to
submit a bug report or use the form at the Bash project page (https://savannah.
gnu.org/projects/bash/). If you have a fix, you are encouraged to submit that as
welll Suggestions and ‘philosophical’ bug reports may be mailed to bug-bash@gnu.org or
help-bash@gnu.org.

All bug reports should include:

e The version number of Bash.

e The hardware and operating system.

e The compiler used to compile Bash.

e A description of the bug behavior.

e A short script or ‘recipe’ which exercises the bug and may be used to reproduce it.
bashbug inserts the first three items automatically into the template it provides for filing a
bug report.

Please send all reports concerning this manual to bug-bash@gnu.org.

ftp://ftp.gnu.org/pub/gnu/bash/
http://git.savannah.gnu.org/cgit/bash.git/snapshot/bash-master.tar.gz
http://git.savannah.gnu.org/cgit/bash.git/snapshot/bash-master.tar.gz
https://savannah.gnu.org/projects/bash/
https://savannah.gnu.org/projects/bash/
mailto:bug-bash@gnu.org
mailto:help-bash@gnu.org
mailto:bug-bash@gnu.org

185

Appendix B Major Differences From The Bourne

Shell

Bash implements essentially the same grammar, parameter and variable expansion, redirec-
tion, and quoting as the Bourne Shell. Bash uses the POSIX standard as the specification
of how these features are to be implemented and how they should behave. There are some
differences between the traditional Bourne shell and Bash; this section quickly details the
differences of significance. A number of these differences are explained in greater depth in
previous sections. This section uses the version of sh included in SVR4.2 (the last version
of the historical Bourne shell) as the baseline reference.

Bash is posiX-conformant, even where the POSIX specification differs from traditional
sh behavior (see Section 6.11 [Bash POSIX Mode], page 116).

Bash has multi-character invocation options (see Section 6.1 [Invoking Bash]|, page 100).

The Bash restricted mode is more useful (see Section 6.10 [The Restricted Shell],
page 115); the SVR4.2 shell restricted mode is too limited.

Bash has command-line editing (see Chapter 8 [Command Line Editing], page 130)
and the bind builtin.

Bash provides a programmable word completion mechanism (see Section 8.6 [Pro-
grammable Completion], page 158), and builtin commands complete, compgen, and
compopt, to manipulate it.

Bash decodes a number of backslash-escape sequences in the prompt string variables
(PSO, PS1, PS2, and PS4) (see Section 6.9 [Controlling the Prompt|, page 114).

Bash expands and displays the PSO prompt string variable.

Bash runs commands from the PROMPT_COMMAND array variable before issuing each
primary prompt.

Bash has command history (see Section 9.1 [Bash History Facilities|, page 168) and the
history and fc builtins to manipulate it. The Bash history list maintains timestamp
information and uses the value of the HISTTIMEFORMAT variable to display it.

Bash implements csh-like history expansion (see Section 9.3 [History Interaction],
page 171).

Bash supports the $’ ...’ quoting syntax, which expands ANSI-C backslash-escaped
characters in the text between the single quotes (see Section 3.1.2.4 [ANSI-C Quoting],
page 6).

Bash supports the $"..." quoting syntax and performs locale-specific translation of
the characters between the double quotes. The -D, ——dump-strings, and --dump-
po-strings invocation options list the translatable strings found in a script (see
Section 3.1.2.5 [Locale Translation|, page 7).

Bash includes brace expansion (see Section 3.5.1 [Brace Expansion], page 25) and tilde
expansion (see Section 3.5.2 [Tilde Expansion], page 26).

Bash implements command aliases and the alias and unalias builtins (see Section 6.6
[Aliases|, page 109).

Bash implements the ! reserved word to negate the return value of a pipeline (see
Section 3.2.3 [Pipelines|, page 10). This is very useful when an if statement needs to
act only if a test fails. The Bash ‘-o pipefail’ option to set will cause a pipeline

Appendix B: Major Differences From The Bourne Shell 186

to return a failure status if any command fails (see Section 4.3.1 [The Set Builtin],
page 74).

e Bash has the time reserved word and command timing (see Section 3.2.3 [Pipelines],
page 10). The display of the timing statistics may be controlled with the TIMEFORMAT
variable.

e Bash provides coprocesses and the coproc reserved word (see Section 3.2.6 [Copro-
cesses|, page 18).

e Bash implements the for ((exprl ; expr2 ; expr3)) arithmetic for command, sim-
ilar to the C language (see Section 3.2.5.1 [Looping Constructs|, page 12).

e Bash includes the select compound command, which allows the generation of simple
menus (see Section 3.2.5.2 [Conditional Constructs|, page 12).

e Bash includes the [[compound command, which makes conditional testing part of
the shell grammar (see Section 3.2.5.2 [Conditional Constructs], page 12), including
optional regular expression matching.

e Bash provides optional case-insensitive matching for the case and [[constructs (see
Section 3.2.5.2 [Conditional Constructs|, page 12).

e Bash provides additional case statement action list terminators: ‘;& and ‘; ;& (see
Section 3.2.5.2 [Conditional Constructs], page 12).

e Bash provides shell arithmetic, the ((compound command (see Section 3.2.5.2 [Condi-
tional Constructs|, page 12), the let builtin, and arithmetic expansion (see Section 6.5
[Shell Arithmetic], page 107).

e Bash has one-dimensional array variables (see Section 6.7 [Arrays], page 110), and the
appropriate variable expansions and assignment syntax to use them. Several of the
Bash builtins take options to act on arrays. Bash provides a number of built-in array
variables.

e Variables present in the shell’s initial environment are automatically exported to child
processes (see Section 3.7.3 [Command Execution Environment], page 46). The Bourne
shell does not normally do this unless the variables are explicitly marked using the
export command.

e Bash can expand positional parameters beyond $9 using ${num} (see Section 3.5.3
[Shell Parameter Expansion], page 27).

e Bash supports the ‘+=" assignment operator, which appends to the value of the variable
named on the left hand side (see Section 3.4 [Shell Parameters|, page 22).

e Bash includes the POSIX pattern removal ‘%, ‘4, ‘%%’ and ‘##’ expansions to remove
leading or trailing substrings from variable values (see Section 3.5.3 [Shell Parameter
Expansion], page 27).

e The expansion ${#xx}, which returns the length of ${xx}, is supported (see
Section 3.5.3 [Shell Parameter Expansion|, page 27).

e The expansion ${var:offset[:length]}, which expands to the substring of var’s value
of length length, beginning at offset, is present (see Section 3.5.3 [Shell Parameter
Expansion], page 27).

e The expansion ${var/[/] pattern[/replacement]}, which matches pattern and replaces
it with replacement in the value of var, is available (see Section 3.5.3 [Shell Parameter
Expansion], page 27), with a mechanism to use the matched text in replacement.

Appendix B: Major Differences From The Bourne Shell 187

e The expansion ${!prefix*} expansion, which expands to the names of all shell vari-
ables whose names begin with prefix, is available (see Section 3.5.3 [Shell Parameter
Expansion], page 27).

e Bash has indirect variable expansion using ${!word} (see Section 3.5.3 [Shell Parameter
Expansion], page 27) and implements the nameref variable attribute for automatic
indirect variable expansion.

e Bash includes a set of parameter transformation word expansions of the form ${var@X},
where ‘X’ specifies the transformation (see Section 3.5.3 [Shell Parameter Expansion],
page 27).

e The Posix $() form of command substitution is implemented (see Section 3.5.4 [Com-
mand Substitution], page 36), and preferred to the Bourne shell’s < ¢ (which is also
implemented for backwards compatibility).

e Bash implements a variant of command substitution that runs the enclosed com-
mand in the current shell execution environment: ${ command;} or ${|command;}
(see Section 3.5.4 [Command Substitution], page 36).

e Bash has process substitution (see Section 3.5.6 [Process Substitution], page 37).

e Bash automatically assigns variables that provide information about the current
user (UID, EUID, and GROUPS), the current host (HOSTTYPE, OSTYPE, MACHTYPE, and
HOSTNAME), and the instance of Bash that is running (BASH, BASH_VERSION, and
BASH_VERSINFO). See Section 5.2 [Bash Variables|, page 87, for details.

e Bash uses many variables to provide functionality and customize shell behavior that
the Bourne shell does not. Examples include RANDOM, SRANDOM, EPOCHSECONDS,
EPOCHREALTIME, TIMEFORMAT, BASHPID, BASH_XTRACEFD, GLOBIGNORE, HISTIGNORE,
and BASH_VERSION. See Section 5.2 [Bash Variables]|, page 87, for a complete list.

e Bash uses the GLOBSORT shell variable to control how to sort the results of filename
expansion (see Section 3.5.8 [Filename Expansion], page 39).

e Bash uses the IFS variable to split only the results of expansion, not all words (see

Section 3.5.7 [Word Splitting], page 38). This closes a longstanding shell security hole.
e The filename expansion bracket expression code uses ‘!’ and ‘~’ to negate the set of
characters between the brackets (see Section 3.5.8 [Filename Expansion], page 39). The

Bourne shell uses only ‘!’.

e Bash implements the full set of POSIX filename expansion operators, including char-
acter classes, equivalence classes, and collating symbols (see Section 3.5.8 [Filename
Expansion], page 39).

e Bash implements extended pattern matching features when the extglob shell option
is enabled (see Section 3.5.8.1 [Pattern Matching], page 39).

e The globstar shell option extends filename expansion to recursively scan directo-
ries and subdirectories for matching filenames (see Section 3.5.8.1 [Pattern Matching],
page 39).

e It is possible to have a variable and a function with the same name; sh does not separate
the two name spaces.

e Bash functions are permitted to have local variables using the local builtin, and thus
users can write useful recursive functions (see Section 4.2 [Bash Builtins], page 61).

Appendix B: Major Differences From The Bourne Shell 188

e Bash performs filename expansion on filenames specified as operands to input and
output redirection operators (see Section 3.6 [Redirections], page 41).

e Bash contains the ‘<>’ redirection operator, allowing a file to be opened for both read-
ing and writing, and the ‘&>’ redirection operator, for directing standard output and
standard error to the same file (see Section 3.6 [Redirections], page 41).

e Bash includes the ‘<<<’ redirection operator, allowing a string to be used as the standard
input to a command (see Section 3.6 [Redirections], page 41).

e Bash implements the ‘[n]<&word’ and ‘[n]>&word’ redirection operators, which move
one file descriptor to another.

e Bash treats a number of filenames specially when they are used in redirection operators
(see Section 3.6 [Redirections], page 41).

e Bash provides the {var}<word capability to have the shell allocate file descriptors for
redirections and assign them to var (see Section 3.6 [Redirections], page 41). This
works with multiple redirection operators.

e Bash can open network connections to arbitrary machines and services with the redi-
rection operators (see Section 3.6 [Redirections], page 41).

e The noclobber option is available to avoid overwriting existing files with output redi-
rection (see Section 4.3.1 [The Set Builtin], page 74). The ‘>|’ redirection operator
may be used to override noclobber.

e Variable assignments preceding commands affect only that command, even builtins and
functions (see Section 3.7.4 [Environment]|, page 47). In sh, all variable assignments
preceding commands are global unless the command is executed from the file system.

e Bash includes a number of features to support a separate debugger for shell scripts:
variables (BASH_ARGC, BASH_ARGV, BASH_LINENQ, BASH_SOURCE), the DEBUG, RETURN,
and ERR traps, ‘declare -F’, and the caller builtin.

e Bash implements a csh-like directory stack, and provides the pushd, popd, and dirs
builtins to manipulate it (see Section 6.8 [The Directory Stack], page 112). Bash also
makes the directory stack visible as the value of the DIRSTACK shell variable.

e Bash allows a function to override a builtin with the same name, and provides access to
that builtin’s functionality within the function via the builtin and command builtins
(see Section 4.2 [Bash Builtins], page 61).

e Bash includes the caller builtin (see Section 4.2 [Bash Builtins|, page 61), which
displays the context of any active subroutine call (a shell function or a script executed
with the . or source builtins). This supports the Bash debugger.

e The Bash cd and pwd builtins (see Section 4.1 [Bourne Shell Builtins], page 52) each
take -L and -P options to switch between logical and physical modes.

e The command builtin allows selectively skipping shell functions when performing com-
mand lookup (see Section 4.2 [Bash Builtins|, page 61).

e Bash uses the declare builtin to modify the full set of variable and function attributes,
and to assign values to variables.

e The disown builtin can remove a job from the internal shell job table (see Section 7.2
[Job Control Builtins], page 126) or suppress sending SIGHUP to a job when the shell
exits as the result of a SIGHUP.

Appendix B: Major Differences From The Bourne Shell 189

e The enable builtin (see Section 4.2 [Bash Builtins|, page 61) can enable or disable
individual builtins and implements support for dynamically loading builtin commands
from shared objects.

e The Bash exec builtin takes additional options that allow users to control the contents
of the environment passed to the executed command, and what the zeroth argument
to the command is to be (see Section 4.1 [Bourne Shell Builtins|, page 52).

e Shell functions may be exported to children via the environment using export -f (see
Section 3.3 [Shell Functions], page 19).

e The Bash export and readonly builtins (see Section 4.1 [Bourne Shell Builtins],
page 52) can take a —f option to act on shell functions, a —p option to display variables
with various attributes set in a format that can be used as shell input, a -n option to re-
move various variable attributes, and ‘name=value’ arguments to set variable attributes
and values simultaneously.

e The Bash hash builtin allows a name to be associated with an arbitrary filename,
even when that filename cannot be found by searching the $PATH, using ‘hash -p’ (see
Section 4.1 [Bourne Shell Builtins|, page 52).

e Bash includes a help builtin for quick reference to shell facilities (see Section 4.2 [Bash
Builtins], page 61).

e Bash includes the mapfile builtin to quickly read the contents of a file into an indexed
array variable (see Section 4.2 [Bash Builtins]|, page 61).

e The printf builtin is available to display formatted output (see Section 4.2 [Bash
Builtins], page 61), and has additional custom format specifiers and an option to assign
the formatted output directly to a shell variable.

e The Bash read builtin (see Section 4.2 [Bash Builtins], page 61) will read a line ending
in ‘\’ with the -r option, and will use the REPLY variable as a default if no non-option
arguments are supplied.

e The read builtin (see Section 4.2 [Bash Builtins|, page 61) accepts a prompt string
with the -p option and will use Readline to obtain the line when given the -e or -E
options, with the ability to insert text into the line using the -i option. The read
builtin also has additional options to control input: the —s option will turn off echoing
of input characters as they are read, the -t option will allow read to time out if input
does not arrive within a specified number of seconds, the -n option will allow reading
only a specified number of characters rather than a full line, and the -d option will
read until a particular character rather than newline.

e The return builtin may be used to abort execution of scripts executed with the . or
source builtins (see Section 4.1 [Bourne Shell Builtins|, page 52).

e Bash has much more optional behavior controllable with the set builtin (see
Section 4.3.1 [The Set Builtin], page 74).

e The -x (xtrace) option displays commands other than simple commands when per-
forming an execution trace (see Section 4.3.1 [The Set Builtin], page 74).

e Bash includes the shopt builtin, for finer control of shell optional capabilities (see
Section 4.3.2 [The Shopt Builtin], page 78), and allows these options to be set and
unset at shell invocation (see Section 6.1 [Invoking Bash], page 100).

Appendix B: Major Differences From The Bourne Shell 190

The test builtin (see Section 4.1 [Bourne Shell Builtins], page 52) is slightly different,
as it implements the POSIX algorithm, which specifies the behavior based on the number
of arguments.

The trap builtin (see Section 4.1 [Bourne Shell Builtins|, page 52) allows a DEBUG
pseudo-signal specification, similar to EXIT. Commands specified with a DEBUG trap
are executed before every simple command, for command, case command, select
command, every arithmetic for command, and before the first command executes in
a shell function. The DEBUG trap is not inherited by shell functions unless the function
has been given the trace attribute or the functrace option has been enabled using
the shopt builtin. The extdebug shell option has additional effects on the DEBUG trap.

The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 52) allows an ERR pseudo-
signal specification, similar to EXIT and DEBUG. Commands specified with an ERR trap
are executed after a simple command fails, with a few exceptions. The ERR trap is
not inherited by shell functions unless the -o errtrace option to the set builtin is
enabled.

The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 52) allows a RETURN
pseudo-signal specification, similar to EXIT and DEBUG. Commands specified with a
RETURN trap are executed before execution resumes after a shell function or a shell
script executed with . or source returns. The RETURN trap is not inherited by shell
functions unless the function has been given the trace attribute or the functrace
option has been enabled using the shopt builtin.

The Bash type builtin is more extensive and gives more information about the names
it finds (see Section 4.2 [Bash Builtins|, page 61).

The ulimit builtin provides control over many more per-process resources (see
Section 4.2 [Bash Builtins|, page 61).

The Bash umask builtin uses the -p option to display the output in the form of a
umask command that may be reused as input (see Section 4.1 [Bourne Shell Builtins],
page 52).

The Bash wait builtin has a -n option to wait for the next child to exit, possibly
selecting from a list of supplied jobs, and the -p option to store information about a
terminated child process in a shell variable.

The SVR4.2 shell behaves differently when invoked as jsh (it turns on job control).

The SVRA4.2 shell has two privilege-related builtins (mldmode and priv) not present in
Bash.

Bash does not have the stop or newgrp builtins.
Bash does not use the SHACCT variable or perform shell accounting.
The SVR4.2 sh uses a TIMEQUT variable like Bash uses TMOUT.

More features unique to Bash may be found in Chapter 6 [Bash Features|, page 100.

B.1 Implementation Differences From The SVR4.2 Shell

Since Bash is a completely new implementation, it does not suffer from many of the limi-
tations of the SVR4.2 shell. For instance:

Bash does not fork a subshell when redirecting into or out of a shell control structure
such as an if or while statement.

Appendix B: Major Differences From The Bourne Shell 191

e Bash does not allow unbalanced quotes. The SVR4.2 shell will silently insert a needed
closing quote at EOF under certain circumstances. This can be the cause of some hard-
to-find errors.

e The SVR4.2 shell uses a baroque memory management scheme based on trapping
SIGSEGV. If the shell is started from a process with SIGSEGV blocked (e.g., by using
the system() C library function call), it misbehaves badly.

e In a questionable attempt at security, the SVR4.2 shell, when invoked without the -p
option, will alter its real and effective UID and GID if they are less than some magic
threshold value, commonly 100. This can lead to unexpected results.

e The SVR4.2 shell does not allow users to trap SIGSEGV, SIGALRM, or SIGCHLD.

e The SVR4.2 shell does not allow the IFS, MAILCHECK, PATH, PS1, or PS2 variables to
be unset.

e The SVR4.2 shell treats ‘~’ as the undocumented equivalent of ‘|’.

e Bash allows multiple option arguments when it is invoked (-x -v); the SVR4.2 shell

allows only one option argument (-xv). In fact, some versions of the shell dump core
if the second argument begins with a ‘-’.

e The SVRA4.2 shell exits a script if any builtin fails; Bash exits a script only if one of the
POSIX special builtins fails, and only for certain failures, as enumerated in the POSIX
standard.

e If the lastpipe option is enabled, and job control is not active, Bash runs the last
element of a pipeline in the current shell execution environment.

192

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix C: GNU Free Documentation License 193

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 194

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 195

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 196

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 197

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 198

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix C: GNU Free Documentation License 199

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix D Indexes

200

D.1 Index of Shell Builtin Commands

P 52
.. 52
Lo 57
ALlAaS . 61
B
B 126
bind. ... e 61
DreaK . .ot 53
builtin 63
Caller. ... e 63
CA ot 53
COMMANA . o\ vt ettt e et et ettt ee e eeeaannns 63
o311 F 4= « K 161
complete.............. il 161
COMPOPTL « oo v it 165
CONtANUE . ..ot 54
D
deClare .. o.vt 64
QIS . i e 112
AiSOWI . vttt e 128
E
[T o3 o 2P 65
ENAD L. .. e 66
BVAL . e 54
[=Y 2P 54
EXAt .t e 54
EXPOTE ..ttt et e 54
F
false. . oo 55
FC 169

getopts ... 55
H

hash.o 56
help......ooiiiii 67
history.......oooiiiiiiiiiiii 169
JObS . 127
K

Kill. .o o 127
L

det o 67
Jocal. oo 67
1OGOUL . .\ 68
M

mapfile i il 68
POPA. ..o 113
printf... ... 68
pushd....... 113
PWA . 56
read............ 69
TEAJATTAY « o e v ovve ettt 71
readonly L 56
Bt =02 o« PN 57
SeL o 74
shift... 57
shopt.......ooo i 78
SOUTCE. ot vttt 71
suspend ... 128

Appendix D: Indexes

T

== 57
BAMES . oo e 5

trap......o 59
0 =P 60
170 5= S 71
typeset ... 72
U

ulimit. ..o 72
UMAS K . ottt et e 60
UNALIaS .ottt 73
UISEE . ottt e ettt et e e 61

D.2 Index of Shell Reserved Words

!

PP 10
I TP 14
0 S P 14
Lo 18
F 18
C

o= Y= 1T 13
D

O ot e 12
Lo 1 4= S 12
E

elif . e 12
L= =7 TP PP 12

201
WALE . ot e 128
F
5 P 12
B O et 12
functiont 19
I
A 12
5 P 13
SELECE . .ttt 14
T
then . . 12
BAMe . oo 10
UNEEl . 12
While. e 12

Appendix D: Indexes 202

D.3 Parameter and Variable Index

! B
b 24 BASH. ..o 87
BASH_ALTIASES. ... 87
BASH_ARGC 87
BASH_ARGV 88
2 24 BASH_ARGVO ... 88
BASH_CMDSt 88
BASH_COMMAND. ...t 88
$ BASH_COMPAT i 88
P 24 BASH ENV.......ooovviiiii 88
B 24 BASH_EXECUTION_STRINGooonnn. 89
SH 24 BASH_LINENO..........ccoooiiiiiiiiiiiiinnn, 89
B 24 BASH_LOADABLES_PATH...................ooeen. 89
Bk 24 BASH_MONOSECONDScooiiiiiinn. 89
B 24 BASH_REMATCH...... ...t 89
B 24 BASHSOURCE.......................coooooinin. 89
O . 24 BASH_SUBSHELLooiiiiiiiiiinnns 89
. S 87 BASH_TRAPSIG.......coiiiiiiii i 89
A 24 BASH_VERSINFO ..., 89
BASH_VERSION.........ciiiiiiiiiiiiiiii 90
BASH_XTRACEFD 90
* BASHOPTS\t 87
K 24 BASHPID ..o 87
bell-style.................. i 134
bind-tty-special-chars..................... 135
— blink-matching-paren....................... 135
P 24
C
? CDPATH. ..\ttt 86
2P 24 CHILD_MAX ..o 90
colored-completion-prefix.................. 135
colored-statsoiiiiiiiiiii 135
Q COLUMNS © ..ottt 90
0 o4 comment-begin 135
.. COMP_CWORD . .« o e oo 00
COMP_KEY ... 90
COMP_LINEot 91
- COMP_POINT ...\ttt et e e e e, 91
PP 87 COMP_TYPE .« o+ oo oo 91
COMP_WORDBREAKS 91
0 COMP_WORDS i 91
completion-display-width................... 135
O 24 completion-ignore-case..................... 135
completion-map-caseouiinn. 135
f&. completion-prefix-display-length 135
completion-query-items..................... 136
active-region-end-color.................... 134 COMPREPLY................oooiiiiiiiiiiiinnn.. 91
active-region-start-color.................. 134 CONVErt—Meta ...oovuttiteenieeenieennn 136

AULO_TESUME . ..ottt et iie e iee e 129 COPROC. . oo et 91

Appendix D: Indexes

D

DIRSTACK ...t e 91
disable-completion.......................... 136
E

echo-control-characters.................... 136
editing-mode i 136
emacs-mode-string............... o 136
EMACS . . o 92
enable-active-regionThe................... 137
enable-bracketed-paste..................... 137
enable-keypadol 137
enable-meta-key.............l 137
ENV . 92
EPOCHREALTIMEttt 92
EPOCHSECONDS.ot 92
EUID. ... 92
EXECIGNOREt 92
expand-tildel 137
F

FCEDIT. ... i 92
FIGNORE ... 92
force-meta-prefix........... ... 137
FUNCNAME e 92
FUNCNEST s 93
G

GLOBIGNORE........ ..o 93
GLOBSORTottt 93
GROUPS. ... 93
H

histchars............. i 93
HISTCMD ...ttt 94
HISTCONTROL...... ..ot 94
HISTFILE ..o it 94
HISTFILESIZE......... ..ot 94
HISTIGNORE......ot 94
history-preserve-point..................... 138
history-sizel 138
HISTSIZE ... i i 95
HISTTIMEFORMAT i, 95
HOME 86
horizontal-scroll-mode..................... 138
HOSTFILEo 95
HOSTNAME e 95

HOSTTYPE o 95

203
I
TE S 86
IGNOREEQF e 95
input-meta............. ...l 138
INPUTRC . ..ot 95
INSIDE_EMACS. ... o e 95
isearch-terminators 138
K
keymap ... 138
L
N (R 8, 95
LC_ALL. .o 96
LC_COLLATEo e 96
LC_CTYPE i 96
LC_MESSAGES ...t 8, 96
LC_NUMERIC.......oiiiiiiiiiii i 96
LC_TIME e 96
LINENO......ooiii e 96
LINES. . 96
M
MACHTYPE e 96
MAIL ..o 86
MATILCHECKot 96
MATLPATHo 86
MAPFILE ... i e 96
mark-modified-lines 139
mark-symlinked-directories 139
match-hidden-files..................., 139
menu-complete-display-prefix.............. 139
meta-flag.......coiiiiiiiii 138
@)
OLDPWD. ..ot 96
OPTARG. ... 86
OPTERR. ... 96
OPTIND. ...ttt i 86
OSTYPE. ... 96
output-meta.............l 139

Appendix D: Indexes

P

page-completions..............oiiiiiiiiia, 139
PATH. .. 86
PIPESTATUS e 96
POSIXLY_CORRECT, 97
PPID. ... 97
PROMPT_COMMAND 97
PROMPT_DIRTRIMot 97
PSO .. 97
S 86
PS2 . 86
P 97
PS4 . 97
PWD .. 97
R

RANDOM. . ..o 97
READLINE_ARGUMENT, 97
READLINE_LINE 98
READLINE_MARKot 98
READLINE_POINT, 98
REPLY. ... 98
revert-all-at-newline...................... 140
S

search-ignore-case.......................... 140
SECONDS ...\ttt e 98
SHELL . ..o 98
SHELLOPTSo 98
SHLVL . .o 98
show-all-if-ambiguous...................... 140
show-all-if-unmodified..................... 140

D.4 Function Index

A

abort (C-g) ...t 155
accept-line (Newline or Return)............ 148
alias-expand-line () 158
B

backward-char (C-b) 147
backward-delete-char (Rubout) 150
backward-kill-line (C-x Rubout) 152
backward-kill-word (M-DEL) 152

backward-word (M-b) 147

204
show-mode-in-prompt 140
skip-completed-text 140
SRANDOM ...t 98
TEXTDOMAIN . ..o e 8
TEXTDOMAINDIR...... .ot 8
TIMEFORMAT e 98
TMOUT . .o 99
TMPDIR. . ..o 99
UID .. 99
vi-cmd-mode-string................ ... 140
vi-ins-mode-string............. 141
visible-statso ool 141
beginning-of-history (M-<)................. 148
beginning-of-line (C-a) 147
bracketed-paste-begin () 150
call-last-kbd-macro (C-xe) 155
capitalize-word (M-c)..............c.oouu... 151
character-search (C-1) 156
character-search-backward (M-C-]1)......... 156
clear-display (M-C-1)...............oooinn.. 148
clear-screen (C-1)oiiiiiviinnn... 148

Appendix D: Indexes

complete (TAB)ooiiiiiiin.n. 153
complete-command (M-!) 155
complete-filename (M~/) 154
complete-hostname (M-@) 154
complete-into-braces (M-{)................. 155
complete-username (M-") 154
complete-variable (M-$) 154
copy-backward-word ()....................... 152
copy-forward-word () 152
copy-region-as-kill () 152

D

dabbrev-expand () 155
delete-char (C-d)c..oouiinn... 150
delete-char-or-1list ()coiinan. 154
delete-horizontal-space () 152
digit-argument (M-0, M-1, ... M-=)......... 153
display-shell-version (C-x C-v) 158
do-lowercase-version (M-A,

M-B, M=X, ...) i 156
downcase-word (M-1) 151
dump-functions ()l 157
dump-macros ()...........oiiiiiiiiiiiia.. 157
dump-variables () 157
dynamic-complete-history (M-TAB) 155

E

edit-and-execute-command (C-x C-e) 158
end-kbd-macro (C-x)) ..., 155
end-of-file (usually C-d) 150
end-of-history (M->)............ ... 148
end-of-line (C-€) 147
exchange-point-and-mark (C-x C-x) 156
execute-named-command (M-X) 157
export-completions (D....................... 154

F

fetch-history () il 150
forward-backward-delete-char () 150
forward-char (C-f) 147
forward-search-history (C-s) 149
forward-word (M-f) 147

G

glob-complete-word (M-g) 157
glob-expand-word (C-x *) 157
glob-list-expansions (C-x g) 157

205
history-and-alias-expand-line () 158
history-expand-line (M-").................. 157
history-search-backward () 149
history-search-forward () 149
history-substring-search-backward () 149
history-substring-search-forward () 149
insert-comment (M—#)........................ 156
insert-completions (M—*) 153
insert-last-argument (M-. or M-_).......... 158
kill-1line (C=K) ...vvviinnniieinieennn 151
kill-region ().......coiiiiiiiiiiiiiainnn. 152
kill-whole-line ()ooie... 152
kill-word (M=d)coviiiiniinennn... 152
magic-space ()...........oiiiiiiiiiiiiin, 158
menu-complete () 153
menu-complete-backward () 154
next-history (C-n) 148
next-screen-line () 148
non-incremental-forward-
search-history (M-n) 149
non-incremental-reverse-
search-history (M-p) 149
operate-and-get-next (C-o) 150
overwrite-mode ()l 151

Appendix D: Indexes

P

possible-command-completions (C-x !)...... 155
possible-completions (M-7) 153
possible-filename-completions (C-x /)..... 154
possible-hostname-completions (C-x @)..... 155
possible-username-completions (C-x)..... 154
possible-variable-completions (C-x $)..... 154
prefix-meta (ESC)ccoviiiiiiiinnn. 156
previous-history (C-p) 148
previous-screen-line () 148
print-last-kbd-macro () 155
Q

quoted-insert (C-qor C-v).................. 150

R

re-read-init-file (C-x C-r) 155
redraw-current-line () 148
reverse-search-history (C-r) 148
revert-line (M-Tr)cooiiiiii... 156

S

self-insert (a, b, A, 1, !, ...) 150
set-mark (C-@)...........coiiiiiiiinennnnnn.. 156
shell-backward-kill-word () 152
shell-backward-word (M-C-b) 147
shell-expand-line (M-C-e) 157
shell-forward-word (M-C-£f) 147
shell-kill-word (M-C-d) 152
shell-transpose-words (M-C-t) 151

D.5 Concept Index

A

alias expansion oL 109
arithmetic evaluation 107
arithmetic expansion........................... 37
arithmetic operators.......................... 108
arithmetic, shell 107
ATTAYS « o v ettt ettt 110

206
skip-csi-sequence () 156
spell-correct-word (C-xs) 157
start-kbd-macro (C-x (O 155
T
tilde-expand (M=&)coovinnennnn.. 156
transpose-chars (C-t)....................... 151
transpose-words (M-t)....................... 151
undo (C-_or C-x C-u)........................ 156
universal-argument ()....................... 153
unix-filename-rubout () 152
unix-line-discard (C-u) 152
unix-word-rubout (C-w) 152
upcase-word (M-u)l 151
Y
yank (C-y) ..ot 152
yank-last-arg (M-. or M-_).................. 149
yank-nth-arg (M-C-y)t 149
yank-pop (M=y)ooiuiiiiiiiii ... 153
B
background............ .. oo 125
Bash configuration............................ 175
Bash installation.............. ... oL 175
binary arithmetic operators................... 108
bitwise arithmetic operators................... 108
Bourne shell i 5
brace expansion........... ... 25

builtin.......... .. 3

Appendix D: Indexes

C

command editing o oL 131
command execution.............. ... 46
command expansionc.oiiiiio... 45
command history 168
command search................. oo i 46
command substitution 36
command timing......... i, 10
commands, compoundo 11
commands, conditional 12
commands, groupingc.eueeuue.n.. 18
commands, lists......... il 11
commands, looping 12
commands, pipelines....................... ..., 10
commands, shell 9
commands, simpleo 9
comments, shell i 9
Compatibility Level 121
Compatibility Modecovina... 121
completion builtins o oL 161
conditional arithmetic operator 108
configuration i i, 175
control operator.......... ... 3
COPTOCESS .« .« v v et ttee ettt 18

D

directory stack............. . o il 112
dollar-single quote quoting 6

E

editing command lines 131
environment oo 47
evaluation, arithmetic......................... 107
event designatorsooiiiiii.. 172
execution environment o oL 46
exit status....... ... o i 3, 48
EXPANSION .« v vttt 24
expansion, arithmetic.................. 37
expansion, brace............. i 25
expansion, filename oo 39
expansion, parameteroiia... 27
expansion, pathname........................... 39
expansion, tilde............ .. .ol 26
expressions, arithmetic........................ 107

expressions, conditional 105

207
F
field ..o 3
filename 3
filename expansion.............c.ooiiieieiiina.. 39
foreground........... .. .o 125
functions, shell....... oL 19
H
history builtinso 169
history events............. .. ool 172
history expansion............ oo 171
history list........ ... i 168
History, how touse 167
I
identifier...... ... 3
initialization file, readline 133
installationo il 175
interaction, readline........................... 130
interactive shell 102, 104
internationalization 7
internationalized scripts........... 8
JOD 3
jobcontrol....... i 3, 125
K
Kill ring. ..o 132
killing text....... ... o o i 132
L
localization ..., 7
loginshell i 102
M
matching, pattern............... ... o 39
metacharacter........... o il 3

Appendix D: Indexes

0 0 3
native languages ... 7
notation, readline............... 131

@)

operator, shell 3

P

parameter expansion.................oiiiia... 27
parametersl 22
parameters, positional.............. oL 23
parameters, special.......... ... 23
pathname expansioncoouu.. 39
pattern matchingo oL 39
pipeline...... ... 10
POSIX o 3
POSIX description...........coovveininn... 116
POSIX Mode ... 116
PIOCESS GTOUD « vt vvee et e tiiee et 3
process group ID.......o ool 3
process substitution............. ... oL 37
programmable completion..................... 158
Prompting 114
Q

QUOLINE . o vttt 6
quoting, ANST ... 6

R

Readline, how touse.......................... 129
redirection 41
reserved word i 4
reserved WOrdsooi i 9
restricted shell 115
return status........ ... 4

208
shell arithmetic............... ... 107
shell function oL 19
shell script...... ..o i 50
shell variable............. . ..o il 22
shell, interactiveol 104
signal......o.oo i 4
signal handling......... L 49
special builtin.............. .. .o 4, 85
startup files........ .. 102
string translations............ ool 8
suspending jobs........... ... oo 125
T
tilde expansion............. .o il it 26
BOKeN . oo 4
translation, native languages 7
unary arithmetic operators.................... 108
\%
variable, shellol 22
variables, readline............. 134
WOT .« e e ettt 4
word splitting......... ... o 38

Y

yvanking text....... i 132

	Introduction
	What is Bash?
	What is a shell?

	Definitions
	Basic Shell Features
	Shell Syntax
	Shell Operation
	Quoting
	Escape Character
	Single Quotes
	Double Quotes
	ANSI-C Quoting
	Locale-Specific Translation

	Comments

	Shell Commands
	Reserved Words
	Simple Commands
	Pipelines
	Lists of Commands
	Compound Commands
	Looping Constructs
	Conditional Constructs
	Grouping Commands

	Coprocesses
	GNU Parallel

	Shell Functions
	Shell Parameters
	Positional Parameters
	Special Parameters

	Shell Expansions
	Brace Expansion
	Tilde Expansion
	Shell Parameter Expansion
	Command Substitution
	Arithmetic Expansion
	Process Substitution
	Word Splitting
	Filename Expansion
	Pattern Matching

	Quote Removal

	Redirections
	Redirecting Input
	Redirecting Output
	Appending Redirected Output
	Redirecting Standard Output and Standard Error
	Appending Standard Output and Standard Error
	Here Documents
	Here Strings
	Duplicating File Descriptors
	Moving File Descriptors
	Opening File Descriptors for Reading and Writing

	Executing Commands
	Simple Command Expansion
	Command Search and Execution
	Command Execution Environment
	Environment
	Exit Status
	Signals

	Shell Scripts

	Shell Builtin Commands
	Bourne Shell Builtins
	Bash Builtin Commands
	Modifying Shell Behavior
	The Set Builtin
	The Shopt Builtin

	Special Builtins

	Shell Variables
	Bourne Shell Variables
	Bash Variables

	Bash Features
	Invoking Bash
	Bash Startup Files
	Interactive Shells
	What is an Interactive Shell?
	Is this Shell Interactive?
	Interactive Shell Behavior

	Bash Conditional Expressions
	Shell Arithmetic
	Aliases
	Arrays
	The Directory Stack
	Directory Stack Builtins

	Controlling the Prompt
	The Restricted Shell
	Bash and POSIX
	What is POSIX?
	Bash POSIX Mode

	Shell Compatibility Mode

	Job Control
	Job Control Basics
	Job Control Builtins
	Job Control Variables

	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments
	Searching for Commands in the History

	Readline Init File
	Readline Init File Syntax
	Conditional Init Constructs
	Sample Init File

	Bindable Readline Commands
	Commands For Moving
	Commands For Manipulating The History
	Commands For Changing Text
	Killing And Yanking
	Specifying Numeric Arguments
	Letting Readline Type For You
	Keyboard Macros
	Some Miscellaneous Commands

	Readline vi Mode
	Programmable Completion
	Programmable Completion Builtins
	A Programmable Completion Example

	Using History Interactively
	Bash History Facilities
	Bash History Builtins
	History Expansion
	Event Designators
	Word Designators
	Modifiers

	Installing Bash
	Basic Installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation Names
	Specifying the System Type
	Sharing Defaults
	Operation Controls
	Optional Features

	Reporting Bugs
	Major Differences From The Bourne Shell
	Implementation Differences From The SVR4.2 Shell

	GNU Free Documentation License
	Indexes
	Index of Shell Builtin Commands
	Index of Shell Reserved Words
	Parameter and Variable Index
	Function Index
	Concept Index

