Package 'aracne.networks'

December 4, 2025								
Type Package								
Title ARACNe-inferred gene networks from TCGA tumor datasets								
Version 1.36.0								
Author Federico M. Giorgi								
Maintainer Federico M. Giorgi < federico.giorgi@gmail.com>, Mariano Alvarez < reef103@gmail.com>								
Description This package contains ARACNe-inferred networks from TCGA tumor datasets. It also contains a function to export them into plain-text format.								
License file LICENSE								
LazyData TRUE								
biocViews ExperimentData, Genome, Homo_sapiens_Data, CancerData								
NeedsCompilation no								
Depends R ($>= 3.3$), viper								
git_url https://git.bioconductor.org/packages/aracne.networks								
git_branch RELEASE_3_22								
git_last_commit f3c9ed6								
git_last_commit_date 2025-10-29								
Repository Bioconductor 3.22								
Date/Publication 2025-12-04								
Date/Publication 2023-12-04								
Contents								
aracne.networks-package								
regulonblca								
regulonbrea								
reguloncesc								
regulonesca								
regulongbm								
regulonhnsc								
regulonkirc								
regulonkirp								
regulonlaml 9								

regulonlihc																							10
regulonluad																							10
regulonlusc																							11
regulonnet .																							12
regulonov .																							12
regulon paad																							13
regulonpcpg																							14
regulonprad																							14
regulonread																							15
regulonsarc																							16
regulonstad																							16
regulontgct																							17
regulonthca																							18
regulon thym																							18
regulonucec																							19
write.regulor	1	•		•			 •			•		•	•	•		•				•	•		20
																							22

aracne.networks-package

ARACNe-inferred gene networks from TCGA tumor datasets

Description

Index

This package contains ARACNe-inferred networks from TCGA tumor datasets and functions to import new ones and export them into text form.

Details

Package: aracne.networks

Type: Package License: LGPL-3 LazyLoad: yes

Author(s)

Federico M. Giorgi

Maintainer: Federico M. Giorgi <federico.giorgi@gmail.com>

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics 2016 Alvarez, M.J. et al. (2016) Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nature Genetics 2016

regulonblca 3

Examples

```
### Create a random regulon with two hubs
# The first hub will have 100 targets
# The second hub will have 67 targets
regulon<-list()
regulon[["hub1"]]<-list(</pre>
    tfmode=setNames(runif(100,-1,1),paste0("target",sample(1:1000,100))),
    likelihood=runif(100,0,1)
)
regulon[["hub2"]]<-list(</pre>
    tfmode=setNames(runif(67,-1,1),paste0("target",sample(1:1000,67))),
    likelihood=runif(67,0,1)
class(regulon)<-"regulon"</pre>
write.regulon(regulon,file="network.txt")
### Print a the Prostate Adenocarcinoma (prad) network to standard output
# The gene ids are in Entrez format
data(regulonprad)
write.regulon(regulonblca,file="",n=10)
```

regulonblca

Human Bladder Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Bladder Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonblca)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonblca)
write.regulon(regulonblca,n=10)
```

4 reguloncesc

regulonbrca

Human Breast Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Breast Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonbrca)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonbrca)
write.regulon(regulonbrca, n=10)

reguloncesc

Human Cervical Squamous Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Cervical Squamous Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(reguloncesc)

Value

reguloncoad 5

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(reguloncesc)
write.regulon(reguloncesc,n=10)

reguloncoad

Human Colon Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Colon Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(reguloncoad)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(reguloncoad)
write.regulon(reguloncoad, n=10)

6 regulongbm

regulonesca

Human Esophageal Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Esophageal Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonesca)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonesca)
write.regulon(regulonesca, n=10)

regulongbm

Human Glioblastoma context-specific ARACNe interactome

Description

The interactome is a human Glioblastoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulongbm)

Value

regulonhnsc 7

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulongbm)
write.regulon(regulongbm, n=10)

regulonhnsc

Human Head and Neck Squamous Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Head and Neck Squamous Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonhnsc)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonhnsc)
write.regulon(regulonhnsc,n=10)

8 regulonkirp

regulonkirc	Human Kidney Renal Clear Cell Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Kidney Renal Clear Cell Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonkirc)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonkirc)
write.regulon(regulonkirc,n=10)
```

regulonkirp	Human Kidney Papillary Carcinoma context-specific ARACNe inter-
	actome

Description

The interactome is a human Kidney Papillary Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonkirp)
```

regulonlaml 9

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonkirp)
write.regulon(regulonkirp,n=10)
```

regulonlaml Human Acute Myeloid Leukemia context-specific ARACNe interactome

Description

The interactome is a human Acute Myeloid Leukemia context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonlaml)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonlaml)
write.regulon(regulonlaml, n=10)
```

10 regulonluad

regulonlihc	Human Liver Hepatocellular Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Liver Hepatocellular Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonlihc)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonlihc)
write.regulon(regulonlihc,n=10)

regulonluad

Human Lung Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Lung Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonluad)

Value

regulonlusc 11

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonluad)
write.regulon(regulonluad, n=10)

regulonlusc

Human Lung Squamous Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Lung Squamous Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonlusc)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonlusc)
write.regulon(regulonlusc,n=10)

12 regulonov

regulonnet

Human Neuroendocrine tumor context-specific ARACNe interactome

Description

The interactome is a human Neuroendocrine tumor context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonnet)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonnet)
write.regulon(regulonnet, n=10)
```

regulonov

Human Ovarian Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Ovarian Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonov)
```

Value

regulonpaad 13

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonov)
write.regulon(regulonov,n=10)

regulonpaad

Human Pancreas Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Pancreas Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonpaad)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonpaad)
write.regulon(regulonpaad,n=10)

14 regulonprad

regulonpcpg Human Pheochromocytoma and Paraganglioma co ARACNe interactome	context-specific
---	------------------

Description

The interactome is a human Pheochromocytoma and Paraganglioma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonpcpg)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonpcpg)
write.regulon(regulonpcpg, n=10)

regulonprad

Human Prostate Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Prostate Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonprad)

Value

regulonread 15

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonprad)
write.regulon(regulonprad,n=10)

regulonread

Human Rectal Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Rectal Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonread)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonread)
write.regulon(regulonread, n=10)

16 regulonstad

regul	onsarc
, cgui	onsui c

Human Sarcoma context-specific ARACNe interactome

Description

The interactome is a human Sarcoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonsarc)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonsarc)
write.regulon(regulonsarc,n=10)
```

regulonstad

Human Stomach Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Stomach Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonstad)

Value

regulontgct 17

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonstad)
write.regulon(regulonstad,n=10)

regulontgct

Human Testicular Cancer context-specific ARACNe interactome

Description

The interactome is a human Testicular Cancer context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulontgct)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulontgct)
write.regulon(regulontgct,n=10)

18 regulonthym

regulonthca

Human Thyroid Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Thyroid Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonthca)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonthca)
write.regulon(regulonthca, n=10)

regulonthym

Human Thymoma context-specific ARACNe interactome

Description

The interactome is a human Thymoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonthym)

Value

regulonucec 19

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonthym)
write.regulon(regulonthym, n=10)

regulonucec

Human Utherine Corpus Endometroid Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Utherine Corpus Endometroid Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonucec)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonucec)
write.regulon(regulonucec,n=10)

20 write.regulon

write.regulon

Print a regulon object into a text file

Description

This function will print the network into an output stream. Four columns will be printed: the Regulator id, the Target id, the Mode of Action (MoA, based on Spearman correlation that indicates the sign of the connection and ranges between -1 and +1), the Likelihood (essentially an edge weight that indicates how strong the mutual information for an edge is when compared to the maximum observed MI in the network, it ranges between 0 and 1).

Usage

```
write.regulon(
    regulon,
    file="",
    sep="\t",
    header=TRUE,
    n=Inf,
    regulator=NULL
)
```

Arguments

regulon	An object of class regulon
file	File name where the network will be printed
sep	String, a separator for the fields (default = "\t")
header	Logical. If a header should be printed. Default is TRUE
n	Numeric. How many interactions to print. Default is Inf
regulator	String. A particular regulator. Default is NULL

Value

Text output containing the network in tabular format.

Examples

```
### Create a random regulon with two hubs
# The first hub will have 100 targets
# The second hub will have 67 targets
regulon<-list()
regulon[["hub1"]]<-list(
    tfmode=setNames(runif(100,-1,1),paste0("target",sample(1:1000,100))),
    likelihood=runif(100,0,1)
)
regulon[["hub2"]]<-list(
    tfmode=setNames(runif(67,-1,1),paste0("target",sample(1:1000,67))),
    likelihood=runif(67,0,1)
)
class(regulon)<-"regulon"
write.regulon(regulon,file="network.txt")</pre>
```

write.regulon 21

Print a the Prostate Adenocarcinoma (prad) network to standard output
The gene ids are in Entrez format
data(regulonprad)
write.regulon(regulonprad,file="",n=10)

Index

* datasets	regulonlusc, 11
regulonblca, 3	regulonnet, 12
regulonbrca, 4	regulonov, 12
reguloncesc, 4	regulonpaad, 13
reguloncoad, 5	regulonpcpg, 14
regulonesca, 6	regulonprad, 14
regulongbm, 6	regulonread, 15
regulonhnsc, 7	regulonsarc, 16
regulonkirc,8	regulonstad, 16
regulonkirp,8	regulontgct, 17
regulonlaml, 9	regulonthca, 18
regulonlihc, 10	regulonthym, 18
regulonluad, 10	regulonucec, 19
regulonlusc, 11	
regulonnet, 12	write.regulon, 20
regulonov, 12	
regulonpaad, 13	
regulonpcpg, 14	
regulonprad, 14	
regulonread, 15	
regulonsarc, 16	
regulonstad, 16	
regulontgct, 17	
regulonthca, 18	
regulonthym, 18	
regulonucec, 19	
aracne.networks	
(aracne.networks-package), 2	
aracne.networks-package, 2	
regulon-class, 3–19	
regulonblca, 3	
regulonbrca, 4	
reguloncesc, 4	
reguloncoad, 5	
regulonesca, 6	
regulongbm, 6	
regulonhosc, 7	
regulonkirc, 8	
regulonkirp, 8	
regulonlaml, 9	
regulonlihc, 10	
regulonluad, 10	