# Package 'SC3'

December 2, 2025

```
Type Package
Title Single-Cell Consensus Clustering
Version 1.38.0
Author Vladimir Kiselev
Maintainer Vladimir Kiselev <vladimir.yu.kiselev@gmail.com>
Description A tool for unsupervised clustering and analysis of single cell RNA-Seq data.
License GPL-3
Imports graphics, stats, utils, methods, e1071, parallel, foreach,
      doParallel, doRNG, shiny, ggplot2, pheatmap (>= 1.0.8), ROCR,
      robustbase, rrcov, cluster, WriteXLS, Rcpp (>= 0.11.1),
      SummarizedExperiment, SingleCellExperiment, BiocGenerics,
     S4Vectors
Depends R(>=3.3)
LinkingTo Rcpp, RcppArmadillo
LazyData TRUE
RoxygenNote 6.0.1
Suggests knitr, rmarkdown, mclust, scater, BiocStyle
VignetteBuilder knitr
biocViews ImmunoOncology, SingleCell, Software, Classification,
      Clustering, DimensionReduction, SupportVectorMachine, RNASeq,
      Visualization, Transcriptomics, DataRepresentation, GUI,
      DifferentialExpression, Transcription
NeedsCompilation no
URL https://github.com/hemberg-lab/SC3
BugReports https://support.bioconductor.org/t/sc3/
git_url https://git.bioconductor.org/packages/SC3
git_branch RELEASE_3_22
git_last_commit a9abb4a
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2025-12-01
```

2 Contents

## **Contents**

Index

| ann                        | . 3  |
|----------------------------|------|
| calculate_distance         | . 3  |
| calculate_stability        | . 4  |
| consensus_matrix           | . 4  |
| consmx                     | . 5  |
| ED1                        | . 5  |
| ED2                        | . 5  |
| estkTW                     | . 6  |
| get_auroc                  | . 6  |
| get_biolgy                 | . 7  |
| get_de_genes               | . 7  |
| get_marker_genes           | . 8  |
| get_outl_cells             | . 8  |
| get_processed_dataset      | . 9  |
| markers_for_heatmap        | . 9  |
| norm_laplacian             | . 9  |
| organise_de_genes          | . 10 |
| organise_marker_genes      | . 10 |
| prepare_for_svm            |      |
| reindex_clusters           |      |
| sc3                        |      |
| sc3_calc_biology           | . 13 |
| sc3_calc_consens           |      |
| sc3_calc_dists             |      |
| sc3_calc_transfs           |      |
| sc3_estimate_k             |      |
| sc3_export_results_xls     |      |
| sc3_interactive            |      |
| sc3_kmeans                 |      |
| sc3_plot_cluster_stability |      |
| sc3_plot_consensus         |      |
| sc3_plot_de_genes          |      |
| sc3_plot_expression        |      |
| sc3_plot_markers           |      |
| sc3_plot_silhouette        |      |
| sc3_prepare                |      |
| sc3_run_svm                |      |
| support_vector_machines    |      |
| tmult                      |      |
| transformation             |      |
| yan                        | . 24 |
|                            |      |

25

ann 3

ann Cell type annotations for data extracted from a publication by Yan et al.

## Description

Cell type annotations for data extracted from a publication by Yan et al.

#### Usage

ann

#### **Format**

An object of class data. frame with 90 rows and 1 columns.

#### **Source**

```
http://dx.doi.org/10.1038/nsmb.2660
```

Each row corresponds to a single cell from 'yan' dataset

calculate\_distance Calculate

Calculate a distance matrix

## Description

Distance between the cells, i.e. columns, in the input expression matrix are calculated using the Euclidean, Pearson and Spearman metrics to construct distance matrices.

## Usage

```
calculate_distance(data, method)
```

## **Arguments**

data expression matrix

method one of the distance metrics: 'spearman', 'pearson', 'euclidean'

## Value

distance matrix

4 consensus\_matrix

calculate\_stability

Calculate the stability index of the obtained clusters when changing k

#### **Description**

Stability index shows how stable each cluster is accross the selected range of k. The stability index varies between 0 and 1, where 1 means that the same cluster appears in every solution for different k.

#### Usage

calculate\_stability(consensus, k)

## **Arguments**

consensus item of the sc3 slot of an object of 'SingleCellExperiment' class

k number of clusters k

#### **Details**

Imagine a given cluster is split into N clusters when k is changed (all possible values of k are provided via ks argument in the main sc3 function). In each of the new clusters there are given\_cells of the given cluster and also some extra\_cells from other clusters. Then we define stability as follows:

$$\frac{1}{ks*N^2} \sum_{ks} \sum_{N} \frac{given\_cells}{given\_cells + extra\_cells}$$

Where one N corrects for the number of clusters and the other N is a penalty for splitting the cluster. ks corrects for the range of k.

#### Value

a numeric vector containing a stability index of each cluster

consensus\_matrix

Calculate consensus matrix

## **Description**

Consensus matrix is calculated using the Cluster-based Similarity Partitioning Algorithm (CSPA). For each clustering solution a binary similarity matrix is constructed from the corresponding cell labels: if two cells belong to the same cluster, their similarity is 1, otherwise the similarity is 0. A consensus matrix is calculated by averaging all similarity matrices.

#### Usage

consensus\_matrix(clusts)

consmx 5

#### **Arguments**

clusts

a matrix containing clustering solutions in columns

#### Value

consensus matrix

consmx

Consensus matrix computation

## Description

Computes consensus matrix given cluster labels

## Usage

consmx(dat)

## **Arguments**

dat

a matrix containing clustering solutions in columns

ED1

Compute Euclidean distance matrix by rows

## Description

Used in consmx function

## Usage

ED1(x)

## Arguments

Χ

A numeric matrix.

ED2

Compute Euclidean distance matrix by columns

## Description

Used in sc3-funcs.R distance matrix calculation and within the consensus clustering.

## Usage

ED2(x)

## Arguments

х

A numeric matrix.

get\_auroc

estkTW

Estimate the optimal k for k-means clustering

## Description

The function finds the eigenvalues of the sample covariance matrix. It will then return the number of significant eigenvalues according to the Tracy-Widom test.

#### Usage

```
estkTW(dataset)
```

#### **Arguments**

dataset

processed input expression matrix.

#### Value

an estimated number of clusters k

get\_auroc

Calculate the area under the ROC curve for a given gene.

## **Description**

For a given gene a binary classifier is constructed based on the mean cluster expression values (these are calculated using the cell labels). The classifier prediction is then calculated using the gene expression ranks. The area under the receiver operating characteristic (ROC) curve is used to quantify the accuracy of the prediction. A p-value is assigned to each gene by using the Wilcoxon signed rank test.

## Usage

```
get_auroc(gene, labels)
```

#### **Arguments**

gene expression data of a given gene

labels cell labels corresponning to the expression values of the gene

get\_biolgy 7

| get_ | hi. | ~1 ~~ <i>i</i> |
|------|-----|----------------|
| 261  | DIG | TFA            |
|      |     |                |

Wrapper for calculating biological properties

## Description

Wrapper for calculating biological properties

## Usage

```
get_biolgy(dataset, labels, regime)
```

#### **Arguments**

dataset expression matrix

labels cell labels corresponding clusters

regime defines what biological analysis to perform. "marker" for marker genes, "de" for

differentiall expressed genes and "outl" for outlier cells

#### Value

results of either

 ${\tt get\_de\_genes}$ 

Find differentially expressed genes

#### **Description**

Differential expression is calculated using the non-parametric Kruskal-Wallis test. A significant p-value indicates that gene expression in at least one cluster stochastically dominates one other cluster. Note that the calculation of differential expression after clustering can introduce a bias in the distribution of p-values, and thus we advise to use the p-values for ranking the genes only.

## Usage

```
get\_de\_genes(dataset, labels)
```

## Arguments

dataset expression matrix

labels cell labels corresponding to the columns of the expression matrix

#### Value

a numeric vector containing the differentially expressed genes and correspoding p-values

#### **Examples**

```
\label{eq:degeneral} $d \leftarrow \text{get\_de\_genes(yan[1:10,], as.numeric(ann[,1]))}$ $$ head(d) $$
```

8 get\_outl\_cells

get\_marker\_genes

Calculate marker genes

#### **Description**

Find marker genes in the dataset. The get\_auroc is used to calculate marker values for each gene.

#### Usage

```
get_marker_genes(dataset, labels)
```

#### **Arguments**

dataset expression matrix

labels cell labels corresponding clusters

#### Value

data.frame containing the marker genes, corresponding cluster indexes and adjusted p-values

#### **Examples**

```
d <- get_marker_genes(yan[1:10,], as.numeric(ann[,1]))
d</pre>
```

get\_outl\_cells

Find cell outliers in each cluster.

## Description

Outlier cells in each cluster are detected using robust distances, calculated using the minimum covariance determinant (MCD), namely using covMcd. The outlier score shows how different a cell is from all other cells in the cluster and it is defined as the differences between the square root of the robust distance and the square root of the 99.99

#### Usage

```
get_outl_cells(dataset, labels)
```

## Arguments

dataset expression matrix

labels cell labels corresponding to the columns of the expression matrix

#### Value

a numeric vector containing the cell labels and correspoding outlier scores ordered by the labels

get\_processed\_dataset 9

#### **Examples**

```
\label{eq:def_def} $d \leftarrow \text{get\_outl\_cells(yan[1:10,], as.numeric(ann[,1]))}$ $$ head(d) $$
```

get\_processed\_dataset Get processed dataset used by SC3 clustering

#### **Description**

Takes data from the logcounts slot, removes spike-ins and applies the gene filter.

## Usage

```
get_processed_dataset(object)
```

#### **Arguments**

object

an object of SingleCellExperiment class

markers\_for\_heatmap

Reorder and subset gene markers for plotting on a heatmap

#### **Description**

Reorders the rows of the input data.frame based on the sc3\_k\_markers\_clusts column and also keeps only the top 10 genes for each value of sc3\_k\_markers\_clusts.

#### Usage

```
markers_for_heatmap(markers)
```

#### **Arguments**

markers

a data.frame object with the following colnames: sc3\_k\_markers\_clusts, sc3\_k\_markers\_auroc, sc3\_k\_markers\_padj.

norm\_laplacian

Graph Laplacian calculation

## Description

Calculate graph Laplacian of a symmetrix matrix

#### Usage

```
norm_laplacian(A)
```

## **Arguments**

Α

symmetric matrix

#### **Description**

This functions returns all marker gene columns from the phenoData slot of the input object corresponding to the number of clusters k. Additionally, it rearranges genes by the cluster index and order them by the area under the ROC curve value inside of each cluster.

#### Usage

```
organise_de_genes(object, k, p_val)
```

## Arguments

object an object of SingleCellExperiment class

k number of cluster p\_val p-value threshold

organise\_marker\_genes Get marker genes from an object of SingleCellExperiment class

## Description

This functions returns all marker gene columns from the phenoData slot of the input object corresponding to the number of clusters k. Additionally, it rearranges genes by the cluster index and order them by the area under the ROC curve value inside of each cluster.

#### Usage

```
organise_marker_genes(object, k, p_val, auroc)
```

#### **Arguments**

object an object of SingleCellExperiment class

k number of cluster p\_val p-value threshold

auroc area under the ROC curve threshold

prepare\_for\_svm 11

prepare\_for\_svm

A helper function for the SVM analysis

#### **Description**

Defines train and study cell indeces based on the svm\_num\_cells and svm\_train\_inds input parameters

## Usage

```
prepare_for_svm(N, svm_num_cells = NULL, svm_train_inds = NULL, svm_max)
```

#### **Arguments**

N number of cells in the input dataset

svm\_num\_cells number of random cells to be used for training

svm\_train\_inds indeces of cells to be used for training

svm\_max define the maximum number of cells below which SVM is not run

#### Value

A list of indeces of the train and the study cells

reindex\_clusters

Reindex cluster labels in ascending order

## Description

Given an hclust object and the number of clusters k this function reindex the clusters inferred by cutree(hc, k)[hc\$order], so that they appear in ascending order. This is particularly useful when plotting heatmaps in which the clusters should be numbered from left to right.

## Usage

```
reindex_clusters(hc, k)
```

## **Arguments**

hc an object of class helust

k number of cluster to be inferred from hc

## **Examples**

```
hc <- hclust(dist(USArrests), 'ave')
cutree(hc, 10)[hc$order]
reindex_clusters(hc, 10)[hc$order]</pre>
```

12 sc3

sc3 Run all steps of SC3 in one go

#### **Description**

This function is a wrapper that executes all steps of SC3 analysis in one go.

#### Usage

```
sc3.SingleCellExperiment(object, ks, gene_filter, pct_dropout_min,
    pct_dropout_max, d_region_min, d_region_max, svm_num_cells, svm_train_inds,
    svm_max, n_cores, kmeans_nstart, kmeans_iter_max, k_estimator, biology,
    rand_seed)

## S4 method for signature 'SingleCellExperiment'
sc3(object, ks = NULL, gene_filter = TRUE,
    pct_dropout_min = 10, pct_dropout_max = 90, d_region_min = 0.04,
    d_region_max = 0.07, svm_num_cells = NULL, svm_train_inds = NULL,
    svm_max = 5000, n_cores = NULL, kmeans_nstart = NULL,
    kmeans_iter_max = 1e+09, k_estimator = FALSE, biology = FALSE,
    rand_seed = 1)
```

#### **Arguments**

object

ks a range of the number of clusters k used for SC3 clustering. Can also be a single integer.

gene\_filter a boolen variable which defines whether to perform gene filtering before SC3 clustering.

an object of SingleCellExperiment class.

pct\_dropout\_min

if gene\_filter = TRUE, then genes with percent of dropouts smaller than pct\_dropout\_min are filtered out before clustering.

pct\_dropout\_max

if gene\_filter = TRUE, then genes with percent of dropouts larger than pct\_dropout\_max are filtered out before clustering.

d\_region\_min defines the minimum number of eigenvectors used for kmeans clustering as a

fraction of the total number of cells. Default is 0.04. See SC3 paper for more

details.

d\_region\_max defines the maximum number of eigenvectors used for kmeans clustering as a

fraction of the total number of cells. Default is 0.07. See SC3 paper for more

details.

default is NULL.

svm\_train\_inds a numeric vector defining indeces of training cells that should be used for SVM

training. The default is NULL.

svm\_max define the maximum number of cells below which SVM is not run.

n\_cores defines the number of cores to be used on the user's machine. If not set, 'SC3'

will use all but one cores of your machine.

sc3\_calc\_biology 13

is 1000 for up to 2000 cells and 50 for more than 2000 cells.

kmeans\_iter\_max

iter.max parameter passed to kmeans function.

k\_estimator boolean parameter, defines whether to estimate an optimal number of clusters k.

If user has already defined the ks parameter the estimation does not affect the

user's paramater.

biology boolean parameter, defines whether to compute differentially expressed genes,

marker genes and cell outliers.

rand\_seed sets the seed of the random number generator. SC3 is a stochastic method, so

setting the rand\_seed to a fixed values can be used for reproducibility purposes.

#### Value

an object of SingleCellExperiment class

sc3\_calc\_biology

Calculate DE genes, marker genes and cell outliers.

#### **Description**

This function calculates differentially expressed (DE) genes, marker genes and cell outliers based on the consensus SC3 clusterings.

#### Usage

```
sc3_calc_biology.SingleCellExperiment(object, ks, regime)
## S4 method for signature 'SingleCellExperiment'
sc3_calc_biology(object, ks = NULL,
    regime = NULL)
```

#### **Arguments**

object an object of SingleCellExperiment class

ks a continuous range of integers - the number of clusters k to be used for SC3

clustering. Can also be a single integer.

regime defines what biological analysis to perform. "marker" for marker genes, "de" for

differentiall expressed genes and "outl" for outlier cells

#### **Details**

DE genes are calculated using get\_de\_genes. Results of the DE analysis are saved as new columns in the featureData slot of the input object. The column names correspond to the adjusted p-values of the genes and have the following format: sc3\_k\_de\_padj, where k is the number of clusters.

Marker genes are calculated using get\_marker\_genes. Results of the marker gene analysis are saved as three new columns (for each k) to the featureData slot of the input object. The column

14 sc3\_calc\_consens

names correspond to the SC3 cluster labels, to the adjusted p-values of the genes and to the area under the ROC curve and have the following format: sc3\_k\_markers\_clusts, sc3\_k\_markers\_padj and sc3\_k\_markers\_auroc, where k is the number of clusters.

Outlier cells are calculated using get\_outl\_cells. Results of the cell outlier analysis are saved as new columns in the phenoData slot of the input object. The column names correspond to the log2(outlier\_score) and have the following format: sc3\_k\_log2\_outlier\_score, where k is the number of clusters.

Additionally, biology item is added to the sc3 slot and is set to TRUE indicating that the biological analysis of the dataset has been performed.

#### Value

an object of SingleCellExperiment class

sc3\_calc\_consens

Calculate consensus matrix.

#### **Description**

This function calculates consensus matrices based on the clustering solutions contained in the kmeans item of the sc3 slot of the metadata(object). It then creates and populates the consensus item of the sc3 slot with consensus matrices, their hierarchical clusterings in hclust objects, and Silhouette indeces of the clusters. It also removes the previously calculated kmeans clusterings from the sc3 slot, as they are not needed for further analysis.

#### Usage

```
sc3_calc_consens.SingleCellExperiment(object)
## S4 method for signature 'SingleCellExperiment'
sc3_calc_consens(object)
```

## Arguments

object

an object of SingleCellExperiment class

#### **Details**

Additionally, it also adds new columns to the colData slot of the input object. The column names correspond to the consensus cell labels and have the following format: sc3\_k\_clusters, where k is the number of clusters.

## Value

an object of SingleCellExperiment class

sc3\_calc\_dists

sc3\_calc\_dists

Calculate distances between the cells.

#### **Description**

This function calculates distances between the cells. It creates and populates the following items of the sc3 slot of the metadata(object):

• distances - contains a list of distance matrices corresponding to Euclidean, Pearson and Spearman distances.

#### Usage

```
sc3_calc_dists.SingleCellExperiment(object)
## S4 method for signature 'SingleCellExperiment'
sc3_calc_dists(object)
```

#### **Arguments**

object

an object of SingleCellExperiment class

#### Value

an object of SingleCellExperiment class

sc3\_calc\_transfs

Calculate transformations of the distance matrices.

#### **Description**

This function transforms all distances items of the sc3 slot of the metadata(object) using either principal component analysis (PCA) or by calculating the eigenvectors of the associated graph Laplacian. The columns of the resulting matrices are then sorted in descending order by their corresponding eigenvalues. The first d columns (where d = max(metadata(object)\$sc3\$n\_dim)) of each transformation are then written to the transformations item of the sc3 slot. Additionally, this function also removes the previously calculated distances from the sc3 slot, as they are not needed for further analysis.

#### Usage

```
sc3_calc_transfs.SingleCellExperiment(object)
## S4 method for signature 'SingleCellExperiment'
sc3_calc_transfs(object)
```

#### **Arguments**

object

an object of SingleCellExperiment class

#### Value

an object of SingleCellExperiment class

sc3\_estimate\_k

Estimate the optimal number of cluster k for a scRNA-Seq expression matrix

## **Description**

Uses Tracy-Widom theory on random matrices to estimate the optimal number of clusters k. It creates and populates the k\_estimation item of the sc3 slot of the metadata(object).

## Usage

```
sc3_estimate_k.SingleCellExperiment(object)
## S4 method for signature 'SingleCellExperiment'
sc3_estimate_k(object)
```

## Arguments

object

an object of SingleCellExperiment class

#### Value

an estimated value of k

```
sc3_export_results_xls
```

Write SC3 results to Excel file

## Description

This function writes all SC3 results to an excel file.

#### Usage

```
sc3_export_results_xls.SingleCellExperiment(object, filename)
## S4 method for signature 'SingleCellExperiment'
sc3_export_results_xls(object,
  filename = "sc3_results.xls")
```

## **Arguments**

object an object of SingleCellExperiment class

filename name of the excel file, to which the results will be written

sc3\_interactive 17

sc3\_interactive

Opens SC3 results in an interactive session in a web browser.

#### **Description**

Runs interactive shiny session of SC3 based on precomputed clusterings.

#### Usage

```
sc3_interactive.SingleCellExperiment(object)
## S4 method for signature 'SingleCellExperiment'
sc3_interactive(object)
```

#### Arguments

object

an object of SingleCellExperiment class

#### Value

Opens a browser window with an interactive shiny app and visualize all precomputed clusterings.

sc3\_kmeans

kmeans clustering of cells.

## Description

This function performs kmeans clustering of the matrices contained in the transformations item of the sc3 slot of the metadata(object). It then creates and populates the following items of the sc3 slot:

• kmeans - contains a list of kmeans clusterings.

## Usage

```
sc3_kmeans.SingleCellExperiment(object, ks)
## S4 method for signature 'SingleCellExperiment'
sc3_kmeans(object, ks = NULL)
```

#### **Arguments**

object an object of SingleCellExperiment class

ks a continuous range of integers - the number of clusters k to be used for SC3

clustering. Can also be a single integer.

#### Value

an object of SingleCellExperiment class

18 sc3\_plot\_consensus

#### **Description**

Stability index shows how stable each cluster is accross the selected range of ks. The stability index varies between 0 and 1, where 1 means that the same cluster appears in every solution for different k.

#### Usage

```
sc3_plot_cluster_stability.SingleCellExperiment(object, k)
## S4 method for signature 'SingleCellExperiment'
sc3_plot_cluster_stability(object, k)
```

## Arguments

object an object of 'SingleCellExperiment' class

k number of clusters

## Description

The consensus matrix is a NxN matrix, where N is the number of cells. It represents similarity between the cells based on the averaging of clustering results from all combinations of clustering parameters. Similarity 0 (blue) means that the two cells are always assigned to different clusters. In contrast, similarity 1 (red) means that the two cells are always assigned to the same cluster. The consensus matrix is clustered by hierarchical clustering and has a diagonal-block structure. Intuitively, the perfect clustering is achieved when all diagonal blocks are completely red and all off-diagonal elements are completely blue.

#### Usage

```
sc3_plot_consensus.SingleCellExperiment(object, k, show_pdata)
## S4 method for signature 'SingleCellExperiment'
sc3_plot_consensus(object, k,
    show_pdata = NULL)
```

#### **Arguments**

object an object of 'SingleCellExperiment' class

k number of clusters

show\_pdata a vector of colnames of the pData(object) table. Default is NULL. If not NULL

will add pData annotations to the columns of the output matrix

sc3\_plot\_de\_genes

| sc3_plot_de_genes | ssion of DE genes of the clusters identified by SC3 as a |
|-------------------|----------------------------------------------------------|
|-------------------|----------------------------------------------------------|

#### **Description**

SC3 plots gene expression profiles of the 50 genes with the lowest p-values.

#### Usage

```
sc3_plot_de_genes.SingleCellExperiment(object, k, p.val, show_pdata)
## S4 method for signature 'SingleCellExperiment'
sc3_plot_de_genes(object, k, p.val = 0.01,
    show_pdata = NULL)
```

## **Arguments**

object an object of 'SingleCellExperiment' class

k number of clusters

p.val significance threshold used for the DE genes

show\_pdata a vector of colnames of the pData(object) table. Default is NULL. If not NULL

will add pData annotations to the columns of the output matrix

sc3\_plot\_expression

Plot expression matrix used for SC3 clustering as a heatmap

#### **Description**

The expression panel represents the original input expression matrix (cells in columns and genes in rows) after the gene filter. Genes are clustered by kmeans with k = 100 (dendrogram on the left) and the heatmap represents the expression levels of the gene cluster centers after log2-scaling.

#### Usage

```
sc3_plot_expression.SingleCellExperiment(object, k, show_pdata)
## S4 method for signature 'SingleCellExperiment'
sc3_plot_expression(object, k,
    show_pdata = NULL)
```

#### **Arguments**

object an object of 'SingleCellExperiment' class

k number of clusters

show\_pdata a vector of colnames of the pData(object) table. Default is NULL. If not NULL

will add pData annotations to the columns of the output matrix

20 sc3\_plot\_silhouette

sc3\_plot\_markers

Plot expression of marker genes identified by SC3 as a heatmap.

#### **Description**

By default the genes with the area under the ROC curve (AUROC) > 0.85 and with the p-value < 0.01 are selected and the top 10 marker genes of each cluster are visualized in this heatmap.

#### Usage

```
sc3_plot_markers.SingleCellExperiment(object, k, auroc, p.val, show_pdata)
## S4 method for signature 'SingleCellExperiment'
sc3_plot_markers(object, k, auroc = 0.85,
   p.val = 0.01, show_pdata = NULL)
```

#### **Arguments**

object an object of 'SingleCellExperiment' class

k number of clusters

auroc area under the ROC curve

p.val significance threshold used for the DE genes

show\_pdata a vector of colnames of the pData(object) table. Default is NULL. If not NULL

will add pData annotations to the columns of the output matrix

sc3\_plot\_silhouette

Plot silhouette indexes of the cells

#### **Description**

A silhouette is a quantitative measure of the diagonality of the consensus matrix. An average silhouette width (shown at the bottom left of the silhouette plot) varies from 0 to 1, where 1 represents a perfectly block-diagonal consensus matrix and 0 represents a situation where there is no block-diagonal structure. The best clustering is achieved when the average silhouette width is close to 1.

## Usage

```
sc3_plot_silhouette.SingleCellExperiment(object, k)
## S4 method for signature 'SingleCellExperiment'
sc3_plot_silhouette(object, k)
```

#### **Arguments**

object an object of 'SingleCellExperiment' class

k number of clusters

sc3\_prepare 21

| sc3_prepare | Prepare the SingleCellExperiment object for SC3 clustering. |
|-------------|-------------------------------------------------------------|
|             |                                                             |

#### **Description**

This function prepares an object of SingleCellExperiment class for SC3 clustering. It creates and populates the following items of the sc3 slot of the metadata(object):

- kmeans\_iter\_max the same as the kmeans\_iter\_max argument.
- kmeans\_nstart the same as the kmeans\_nstart argument.
- n\_dim contains numbers of the number of eigenvectors to be used in kmeans clustering.
- rand\_seed the same as the rand\_seed argument.
- svm\_train\_inds if SVM is used this item contains indexes of the training cells to be used for SC3 clustering and further SVM prediction.
- svm\_study\_inds if SVM is used this item contains indexes of the cells to be predicted by SVM.
- n\_cores the same as the n\_cores argument.

#### Usage

```
sc3_prepare.SingleCellExperiment(object, gene_filter, pct_dropout_min,
    pct_dropout_max, d_region_min, d_region_max, svm_num_cells, svm_train_inds,
    svm_max, n_cores, kmeans_nstart, kmeans_iter_max, rand_seed)

## S4 method for signature 'SingleCellExperiment'
sc3_prepare(object, gene_filter = TRUE,
    pct_dropout_min = 10, pct_dropout_max = 90, d_region_min = 0.04,
    d_region_max = 0.07, svm_num_cells = NULL, svm_train_inds = NULL,
    svm_max = 5000, n_cores = NULL, kmeans_nstart = NULL,
    kmeans_iter_max = 1e+09, rand_seed = 1)
```

## **Arguments**

object an object of SingleCellExperiment class. gene\_filter a boolen variable which defines whether to perform gene filtering before SC3 clustering. pct\_dropout\_min if gene\_filter = TRUE, then genes with percent of dropouts smaller than pct\_dropout\_min are filtered out before clustering. pct\_dropout\_max if gene\_filter = TRUE, then genes with percent of dropouts larger than pct\_dropout\_max are filtered out before clustering. defines the minimum number of eigenvectors used for kmeans clustering as a d\_region\_min fraction of the total number of cells. Default is 0.04. See SC3 paper for more d\_region\_max defines the maximum number of eigenvectors used for kmeans clustering as a fraction of the total number of cells. Default is 0.07. See SC3 paper for more details.

22 sc3\_run\_svm

default is NULL.

svm\_train\_inds a numeric vector defining indeces of training cells that should be used for SVM

training. The default is NULL.

svm\_max define the maximum number of cells below which SVM is not run.

n\_cores defines the number of cores to be used on the user's machine. If not set, 'SC3'

will use all but one cores of your machine.

kmeans\_nstart nstart parameter passed to kmeans function. Default is 1000 for up to 2000 cells

and 50 for more than 2000 cells.

kmeans\_iter\_max

iter.max parameter passed to kmeans function. Default is 1e+09.

rand\_seed sets the seed of the random number generator. SC3 is a stochastic method, so

setting the rand\_seed to a fixed values can be used for reproducibility purposes.

#### Value

an object of SingleCellExperiment class

sc3\_run\_svm

Run the hybrid SVM approach.

### **Description**

This method parallelize SVM prediction for each k (the number of clusters). Namely, for each k, support\_vector\_machines function is utilized to predict the labels of study cells. Training cells are selected using svm\_train\_inds item of the sc3 slot of the metadata(object).

#### Usage

```
sc3_run_svm.SingleCellExperiment(object, ks)
## S4 method for signature 'SingleCellExperiment'
sc3_run_svm(object, ks = NULL)
```

#### **Arguments**

object an object of SingleCellExperiment class

ks a continuous range of integers - the number of clusters k to be used for SC3

clustering. Can also be a single integer.

#### **Details**

Results are written to the  $sc3_k\_clusters$  columns to the colData slot of the input object, where k is the number of clusters.

#### Value

an object of  $SingleCellExperiment\ class$ 

support\_vector\_machines

Run support vector machines (SVM) prediction

## Description

Train an SVM classifier on a training dataset (train) and then classify a study dataset (study) using the classifier.

#### Usage

```
support_vector_machines(train, study, kern)
```

## **Arguments**

train training dataset with colnames, corresponding to training labels

study study dataset

kern kernel to be used with SVM

## Value

classification of the study dataset

tmult

Matrix left-multiplied by its transpose

## Description

Given matrix A, the procedure returns A'A.

## Usage

tmult(x)

## Arguments

x Numeric matrix.

24 yan

transformation

Distance matrix transformation

## **Description**

All distance matrices are transformed using either principal component analysis (PCA) or by calculating the eigenvectors of the graph Laplacian (Spectral). The columns of the resulting matrices are then sorted in descending order by their corresponding eigenvalues.

#### Usage

```
transformation(dists, method)
```

#### **Arguments**

distance matrix

method transformation method: either 'pca' or 'laplacian'

#### Value

transformed distance matrix

yan

Single cell RNA-Seq data extracted from a publication by Yan et al.

## Description

Single cell RNA-Seq data extracted from a publication by Yan et al.

## Usage

yan

#### **Format**

An object of class data. frame with 20214 rows and 90 columns.

## Source

```
http://dx.doi.org/10.1038/nsmb.2660
```

Columns represent cells, rows represent genes expression values.

# Index

| datasets                                      | only calle highery CincleCollEymoniment                       |
|-----------------------------------------------|---------------------------------------------------------------|
| * datasets                                    | sc3_calc_biology.SingleCellExperiment                         |
| ann, 3                                        | (sc3_calc_biology), 13                                        |
| yan, 24                                       | sc3_calc_consens, 14                                          |
| ann, 3                                        | sc3_calc_consens, (sc3_calc_consens), 14                      |
|                                               | sc3_calc_consens,SingleCellExperiment-method                  |
| calculate_distance, 3                         | (sc3_calc_consens), 14                                        |
| calculate_stability, 4                        | sc3_calc_consens.SingleCellExperiment                         |
| consensus_matrix, 4                           | (sc3_calc_consens), 14                                        |
| consmx, 5                                     | sc3_calc_dists, 15                                            |
| covMcd, 8                                     | sc3_calc_dists, (sc3_calc_dists), 15                          |
| ,                                             | sc3_calc_dists,SingleCellExperiment-method                    |
| ED1, 5                                        | (sc3_calc_dists), 15                                          |
| ED2, 5                                        | sc3_calc_dists.SingleCellExperiment                           |
| estkTW, 6                                     | (sc3_calc_dists), 15                                          |
|                                               | sc3_calc_transfs, 15                                          |
| $get_auroc, 6, 8$                             | <pre>sc3_calc_transfs, (sc3_calc_transfs), 15</pre>           |
| get_biolgy, 7                                 | sc3_calc_transfs,SingleCellExperiment-method                  |
| get_de_genes, 7, 13                           | (sc3_calc_transfs), 15                                        |
| get_marker_genes, 8, 13                       | sc3_calc_transfs.SingleCellExperiment                         |
| get_outl_cells, 8, 14                         | (sc3_calc_transfs), 15                                        |
| <pre>get_processed_dataset, 9</pre>           | sc3_estimate_k, 16                                            |
| h-14 11                                       | sc3_estimate_k,SingleCellExperiment-method                    |
| hclust, 11                                    | (sc3_estimate_k), 16                                          |
| kmeans, 13, 17, 21, 22                        | sc3_estimate_k.SingleCellExperiment                           |
| Mileuris, 13, 17, 21, 22                      | (sc3_estimate_k), 16                                          |
| markers_for_heatmap, 9                        | sc3_export_results_xls, 16                                    |
|                                               | <pre>sc3_export_results_xls,SingleCellExperiment-method</pre> |
| norm_laplacian,9                              | <pre>(sc3_export_results_xls), 16</pre>                       |
|                                               | <pre>sc3_export_results_xls.SingleCellExperiment</pre>        |
| organise_de_genes, 10                         | <pre>(sc3_export_results_xls), 16</pre>                       |
| organise_marker_genes, 10                     | sc3_interactive, 17                                           |
| 6 11                                          | sc3_interactive, (sc3_interactive), 17                        |
| prepare_for_svm, 11                           | sc3_interactive,SingleCellExperiment-method                   |
| rainday clusters 11                           | (sc3_interactive), 17                                         |
| reindex_clusters, 11                          | sc3_interactive.SingleCellExperiment                          |
| sc3, 12                                       | (sc3_interactive), 17                                         |
| sc3, SingleCellExperiment-method (sc3),       | sc3_kmeans, 17                                                |
| 12                                            | sc3_kmeans, (sc3_kmeans), 17                                  |
| sc3.SingleCellExperiment (sc3), 12            | sc3_kmeans,SingleCellExperiment-method                        |
| sc3_calc_biology, 13                          | (sc3_kmeans), 17                                              |
| sc3_calc_biology, (sc3_calc_biology), 13      | sc3_kmeans.SingleCellExperiment                               |
| sc3_calc_biology, SingleCellExperiment-method |                                                               |
|                                               | d (sc3_kmeans), 17                                            |

26 INDEX

```
sc3_plot_cluster_stability,
                                               sc3_run_svm.SingleCellExperiment
                                                        (sc3_run_svm), 22
        (sc3_plot_cluster_stability),
                                               support_vector_machines, 22, 23
sc3_plot_cluster_stability,SingleCellExperiment-method
                                               tmult, 23
        (sc3_plot_cluster_stability),
                                               transformation, 24
sc3_plot_cluster_stability.SingleCellExperiment
                                               yan, 24
        (sc3_plot_cluster_stability),
sc3_plot_consensus, 18
sc3_plot_consensus,
        (sc3_plot_consensus), 18
\verb|sc3_plot_consensus,SingleCellExperiment-method|\\
        (sc3_plot_consensus), 18
sc3_plot_consensus.SingleCellExperiment
        (sc3_plot_consensus), 18
sc3_plot_de_genes, 19
sc3_plot_de_genes, (sc3_plot_de_genes),
sc3_plot_de_genes,SingleCellExperiment-method
        (sc3_plot_de_genes), 19
sc3_plot_de_genes.SingleCellExperiment
        (sc3_plot_de_genes), 19
sc3_plot_expression, 19
sc3_plot_expression,
        (sc3_plot_expression), 19
sc3_plot_expression,SingleCellExperiment-method
        (sc3_plot_expression), 19
sc3_plot_expression.SingleCellExperiment
        (sc3_plot_expression), 19
sc3_plot_markers, 20
sc3_plot_markers, (sc3_plot_markers), 20
sc3\_plot\_markers, SingleCellExperiment-method
        (sc3_plot_markers), 20
sc3_plot_markers.SingleCellExperiment
        (sc3_plot_markers), 20
sc3_plot_silhouette, 20
sc3_plot_silhouette,
        (sc3_plot_silhouette), 20
sc3_plot_silhouette,SingleCellExperiment-method
        (sc3_plot_silhouette), 20
\verb|sc3_plot_sil| houette. Single Cell Experiment|
        (sc3_plot_silhouette), 20
sc3_prepare, 21
sc3_prepare,SingleCellExperiment-method
        (sc3_prepare), 21
sc3_prepare.SingleCellExperiment
        (sc3_prepare), 21
sc3_run_svm, 22
sc3_run_svm, (sc3_run_svm), 22
sc3_run_svm,SingleCellExperiment-method
        (sc3_run_svm), 22
```