
Tutorial for the Next Scripting
Language
Gustaf Neumann <neumann@wu-wien.ac.at>, Stefan Sobernig
<stefan.sobernig@wu.ac.at>
version 2.1.0, December 2016
Written for the Initial Release of the Next Scripting Framework.

Table of Contents

JavaScript must be enabled in your browser to display the table of contents.

1. NX and its Roots
2. Introductory Overview Example: Stack

2.1. Define a Class "Stack"
2.2. Define an Object Named "stack"
2.3. Implementing Features using Mixin Classes
2.4. Define Different Kinds of Stacks
2.5. Define Object Specific Methods on Classes

3. Basic Language Features of NX
3.1. Variables and Properties

3.1.1. Properties: Configurable Instance Variables
3.1.2. Non-configurable Instance Variables

3.2. Method Definitions
3.2.1. Scripted Methods
3.2.2. C-implemented Methods
3.2.3. Method-Aliases

3.3. Method Protection
3.4. Applicability of Methods

3.4.1. Instance Methods
3.4.2. Object Methods
3.4.3. Class Methods

3.5. Ensemble Methods
3.6. Method Resolution
3.7. Parameters

3.7.1. Positional and Non-Positional Parameters
3.7.2. Optional and Required Parameters
3.7.3. Default Values for Parameters
3.7.4. Value Constraints

Built-in Value Constraints
Scripted Value Constraints

3.7.5. Multiplicity
4. Advanced Language Features

4.1. Objects, Classes and Meta-Classes
4.2. Resolution Order and Next-Path
4.3. Details on Method and Configure Parameters

4.3.1. Configure Parameters available for all NX Objects
4.3.2. Configure Parameters available for all NX Classes
4.3.3. User defined Parameter Types
4.3.4. Slot Classes and Slot Objects
4.3.5. Attribute Slots

5. Miscellaneous
5.1. Profiling
5.2. Unknown Handlers

5.2.1. Unknown Handlers for Methods
5.2.2. Unknown Handlers for Objects and Classes

- 1 -

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Abstract

This document provides a tutorial for the Next Scripting Language NX.

The Next Scripting Language (NX) is a highly flexible object oriented scripting language based on Tcl
[Ousterhout 1990]. NX is a successor of XOTcl 1 [Neumann and Zdun 2000a] and was developed
based on 10 years of experience with XOTcl in projects containing several hundred thousand lines of
code. While XOTcl was the first language designed to provide language support for design patterns,
the focus of the Next Scripting Framework and NX is on combining this with Language Oriented
Programming. In many respects, NX was designed to ease the learning of the language for novices (by
using a more mainstream terminology, higher orthogonality of the methods, less predefined methods),
to improve maintainability (remove sources of common errors) and to encourage developers to write
better structured programs (to provide interfaces) especially for large projects, where many developers
are involved.

The Next Scripting Language is based on the Next Scripting Framework (NSF) which was developed
based on the notion of language oriented programming. The Next Scripting Frameworks provides C-
level support for defining and hosting multiple object systems in a single Tcl interpreter. The name
of the Next Scripting Framework is derived from the universal method combinator "next", which was
introduced in XOTcl. The combinator "next" serves as a single instrument for method combination with
filters, per-object and transitive per-class mixin classes, object methods and multiple inheritance.

The definition of NX is fully scripted (e.g. defined in nx.tcl). The Next Scripting Framework is shipped
with three language definitions, containing NX and XOTcl 2. Most of the existing XOTcl 1 programs can
be used without modification in the Next Scripting Framework by using XOTcl 2. The Next Scripting
Framework requires Tcl 8.5 or newer.

1. NX and its Roots

Object oriented extensions of Tcl have quite a long history. Two of the most prominent early Tcl based
OO languages were incr Tcl (abbreviated as itcl) and Object Tcl (OTcl [Wetherall and Lindblad 1995]).
While itcl provides a traditional C++/Java-like object system, OTcl was following the CLOS approach
and supports a dynamic object system, allowing incremental class and object extensions and re-classing
of objects.

Extended Object Tcl (abbreviated as XOTcl [Neumann and Zdun 2000a]) is a successor of OTcl and
was the first language providing language support for design patterns. XOTcl extends OTcl by providing
namespace support, adding assertions, dynamic object aggregations, slots and by introducing per-
object and per-class filters and per-object and per-class mixins.

XOTcl was so far released in more than 30 versions. It is described in its detail in more than 20 papers
and serves as a basis for other object systems like TclOO [Donal ???]. The scripting language NX and
the Next Scripting Framework [Neumann and Sobernig 2009] extend the basic ideas of XOTcl by
providing support for language-oriented programming. The the Next Scripting Framework supports
multiple object systems concurrently. Effectively, every object system has different base classes for
creating objects and classes. Therefore, these object systems can have different interfaces and can
follow different naming conventions for built-in methods. Currently, the Next Scripting Framework is
packaged with three object systems: NX, XOTcl 2.0, and TclCool (the language introduced by TIP#279).

1. NX and its Roots

- 2 -

Figure 1. Language History of the Next Scripting Language

The primary purpose of this document is to introduce NX to beginners. We expect some prior
knowledge of programming languages, and some knowledge about Tcl. In the following sections we
introduce NX by examples. In later sections we introduce the more advanced concepts of the language.
Conceptually, most of the addressed concepts are very similar to XOTcl. Concerning the differences
between NX and XOTcl, please refer to the Migration Guide for the Next Scripting Language.

2. Introductory Overview Example: Stack

A classical programming example is the implementation of a stack, which is most likely familiar to many
readers from many introductory programming courses. A stack is a last-in first-out data structure which

2. Introductory Overview Example: Stack

- 3 -

2.1. Define a Class "Stack"

is manipulated via operations like push (add something to the stack) and pop remove an entry from
the stack. These operations are called methods in the context of object oriented programming systems.
Primary goals of object orientation are encapsulation and abstraction. Therefore, we define a common
unit (a class) that defines and encapsulates the behavior of a stack and provides methods to a user of
the data structure that abstract from the actual implementation.

In our first example, we define a class named Stackwith the methods push and pop. When an instance
of the stack is created (e.g. a concrete stack s1) the stack will contain an instance variable named
things, initialized with the an empty list.

Listing 2: Class Stack

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

nx::Class create Stack {

#
Stack of Things
#

:variable things {}

:public method push {thing} {
set :things [linsert ${:things} 0 $thing]
return $thing

}

:public method pop {} {
set top [lindex ${:things} 0]
set :things [lrange ${:things} 1 end]
return $top

}
}

Typically, classes are defined in NX via nx::Class create, followed by the name of the new class
(here: Stack). The definition of the stack placed between curly braces and contains here just the
method definitions. Methods of the class are defined via :method followed by the name of the method,
an argument list and the body of the method, consisting of Tcl and NX statements.

When an instance of Stack is created, it will contain an instance variable named things. If several
Stack instances are created, each of the instances will have their own (same-named but different)
instance variable. The instance variable things is used in our example as a list for the internal
representation of the stack. We define in a next step the methods to access and modify this list structure.
A user of the stack using the provided methods does not have to have any knowledge about the name or
the structure of the internal representation (the instance variable things).

The method push receives an argument thing which should be placed on the stack. Note that we do
not have to specify the type of the element on the stack, so we can push strings as well as numbers
or other kind of things. When an element is pushed, we add this element as the first element to the
list things. We insert the element using the Tcl command linsert which receives the list as first
element, the position where the element should be added as second and the new element as third
argument. To access the value of the instance variable we use Tcl’s dollar operator followed by the name.
The names of instance variables are preceded with a colon :. Since the name contains a non-plain
character, Tcl requires us to put braces around the name. The command linsert and its arguments
are placed between square brackets. This means that the function linsert is called and a new list is
returned, where the new element is inserted at the first position (index 0) in the list things. The result
of the linsert function is assigned again to the instance variable things, which is updated this way.
Finally the method push returns the pushed thing using the return statement.

2. Introductory Overview Example: Stack

- 4 -

The method pop returns the most recently stacked element and removes it from the stack. Therefore, it
takes the first element from the list (using the Tcl command lindex), assigns it to the method-scoped
variable top, removes the element from the instance variable things (by using the Tcl command
lrange) and returns the value popped element top.

This finishes our first implementation of the stack, more enhanced versions will follow. Note that the
methods push and pop are defined as public; this means that these methods can be used from all
other objects in the system. Therefore, these methods provide an interface to the stack implementation.

Listing 3: Using the Stack

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

#!/usr/bin/env tclsh
package require nx

nx::Class create Stack {

#
Stack of Things
#
....

}

Stack create s1
s1 push a
s1 push b
s1 push c
puts [s1 pop]
puts [s1 pop]
s1 destroy

Now we want to use the stack. The code snippet in Listing 3 shows how to use the class Stack in a script.
Since NX is based on Tcl, the script will be called with the Tcl shell tclsh. In the Tcl shell we have
to require package nx to use the Next Scripting Framework and NX. The next lines contain the
definition of the stack as presented before. Of course, it is as well possible to make the definition of the
stack an own package, such we could simple say package require stack, or to save the definition
of a stack simply in a file and load it via source.

In line 12 we create an instance of the stack, namely the stack object s1. The object s1 is an instance
of Stack and has therefore access to its methods. The methods like push or pop can be invoked via
a command starting with the object name followed by the method name. In lines 13-15 we push on
the stack the values a, then b, and c. In line 16 we output the result of the pop method using the Tcl
command puts. We will see on standard output the value+c+ (the last stacked item). The output of the
line 17 is the value b (the previously stacked item). Finally, in line 18 we destroy the object. This is not
necessary here, but shows the life cycle of an object. In some respects, destroy is the counterpart of
create from line 12.

2. Introductory Overview Example: Stack

- 5 -

2.2. Define an Object Named "stack"

Figure 4. Class and Object Diagram

Figure 4 shows the actual class and object structure of the first Stack example. Note that the common
root class is nx::Object that contains methods for all objects. Since classes are as well objects in
NX, nx::Class is a specialization of nx::Object. nx::Class provides methods for creating objects,
such as the method create which is used to create objects (and classes as well).

The definition of the stack in Listing 2 follows the traditional object oriented approach, found in
practically every object oriented programming language: Define a class with some methods, create
instances from this class, and use the methods defined in the class in the instances of the class.

In our next example, we introduce generic objects and object specific methods. With NX, we can define
generic objects, which are instances of the most generic class nx::Object (sometimes called common
root class). nx::Object is predefined and contains a minimal set of methods applicable to all NX
objects. In this example, we define a generic object named stack and provide methods for this object.
The methods defined above were methods provided by a class for objects. Now we define object specific
methods, which are methods applicable only to the object for which they are defined.

Listing 5: Object stack

1
2
3
4
5
6
7
8
9

nx::Object create stack {

:object variable things {}

:public object method push {thing} {
set :things [linsert ${:things} 0 $thing]
return $thing

}

2. Introductory Overview Example: Stack

- 6 -

10
11
12
13
14
15

:public object method pop {} {
set top [lindex ${:things} 0]
set :things [lrange ${:things} 1 end]
return $top

}
}

The example in Listing 5 defines the object stack in a very similar way as the class Stack. But the
following points are different.

• First, we use nx::Object instead of nx::Class to denote that we want to create a generic
object, not a class.

• We use :object variable to define the variable things just for this single instance (the
object stack).

• The definition for the methods push and pop are the same as before, but here we defined these
with object method. Therefore, these two methods push and pop are object-specific.

In order to use the stack, we can use directly the object stack in the same way as we have used the
object s1 in Listing 3 the class diagram for this the object stack.

Figure 6. Object stack

A reader might wonder when to use a class Stack or rather an object stack. A big difference is
certainly that one can define easily multiple instances of a class, while the object is actually a single,
tailored entity. The concept of the object stack is similar to a module, providing a certain functionality
via a common interface, without providing the functionality to create multiple instances. The reuse of
methods provided by the class to objects is as well a difference. If the methods of the class are updated,
all instances of the class will immediately get the modified behavior. However, this does not mean that
the reuse for the methods of stack is not possible. NX allows for example to copy objects (similar to
prototype based languages) or to reuse methods via e.g. aliases (more about this later).

Note that we use capitalized names for classes and lowercase names for instances. This is not required
and a pure convention making it easier to understand scripts without much analysis.

2. Introductory Overview Example: Stack

- 7 -

2.3. Implementing Features using Mixin Classes

So far, the definition of the stack methods was pretty minimal. Suppose, we want to define "safe stacks"
that protect e.g. against stack under-runs (a stack under-run happens, when more pop than push
operations are issued on a stack). Safety checking can be implemented mostly independent from the
implementation details of the stack (usage of internal data structures). There are as well different
ways of checking the safety. Therefore we say that safety checking is orthogonal to the stack core
implementation.

With NX we can define stack-safety as a separate class using methods with the same names as the
implementations before, and "mix" this behavior into classes or objects. The implementation of Safety
in stack under-runs and to issue error messages, when this happens.

Listing 7: Class Safety

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

nx::Class create Safety {

#
Implement stack safety by defining an additional
instance variable named "count" that keeps track of
the number of stacked elements. The methods of
this class have the same names and argument lists
as the methods of Stack; these methods "shadow"
the methods of class Stack.
#

:variable count 0

:public method push {thing} {
incr :count
next

}

:public method pop {} {
if {${:count} == 0} then { error "Stack empty!" }
incr :count -1
next

}
}

Note that all the methods of the class Safety end with next. This command is a primitive command
of NX, which calls the same-named method with the same argument list as the current invocation.

Assume we save the definition of the class Stack in a file named Stack.tcl and the definition of the
class Safety in a file named Safety.tcl in the current directory. When we load the classes Stack
and Safety into the same script (see the terminal dialog in e.g. a certain stack s2 as a safe stack, while
all other stacks (such as s1) might be still "unsafe". This can be achieved via the option -mixin at the
object creation time (see line 9 in option -mixin mixes the class Safety into the new instance s2.

Listing 8: Using the Class Safety

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

% package require nx
2.0
% source Stack.tcl
::Stack
% source Safety.tcl
::Safety
% Stack create s1
::s1
% Stack create s2 -object-mixin Safety
::s2
% s2 push a
a
% s2 pop
a

2. Introductory Overview Example: Stack

- 8 -

17
18
19
20
21
22

% s2 pop
Stack empty!

% s1 info precedence
::Stack ::nx::Object

% s2 info precedence
::Safety ::Stack ::nx::Object

When the method push of s2 is called, first the method of the mixin class Safety will be invoked that
increments the counter and continues with next to call the shadowed method, here the method push of
the Stack implementation that actually pushes the item. The same happens, when s2 pop is invoked,
first the method of Safety is called, then the method of the Stack. When the stack is empty (the value
of count reaches 0), and pop is invoked, the mixin class Safety generates an error message (raises an
exception), and does not invoke the method of the Stack.

The last two commands in Listing 8 use introspection to query for the objects s1 and s2 in which
order the involved classes are processed. This order is called the precedence order and is obtained
via info precedence. We see that the mixin class Safety is only in use for s2, and takes there
precedence over Stack. The common root class nx::Object is for both s1 and s2 the base class.

Figure 9. Per-object Mixin

Note that in Listing 8, the class Safety is only mixed into a single object (here s2), therefore we refer
to this case as a per-object mixin. Figure 9 shows the class diagram, where the class Safety is used as
a per-object mixin for s2.

The mixin class Safety can be used as well in other ways, such as e.g. for defining classes of safe stacks:

Listing 10: Class SafeStack

1
2
3
4
5

#
Create a safe stack class by using Stack and mixin
Safety
#
nx::Class create SafeStack -superclass Stack -mixin Safety

2. Introductory Overview Example: Stack

- 9 -

2.4. Define Different Kinds of Stacks

6
7 SafeStack create s3

The difference of a per-class mixin and an per-object mixin is that the per-class mixin is applicable to all
instances of the class. Therefore, we call these mixins also sometimes instance mixins. In our example
in Listing 10, Safety is mixed into the definition of SafeStack. Therefore, all instances of the class
SafeStack (here the instance s3) will be using the safety definitions.

Figure 11. Per-class Mixin

Figure 11 shows the class diagram for this definition. Note that we could use Safety as well as a per-
class mixin on Stack. In this case, all stacks would be safe stacks and we could not provide a selective
feature selection (which might be perfectly fine).

The definition of Stack is generic and allows all kind of elements to be stacked. Suppose, we want to
use the generic stack definition, but a certain stack (say, stack s4) should be a stack for integers only.
This behavior can be achieved by the same means as introduced already in Listing 5, namely object-
specific methods.

Listing 12: Object Integer Stack

1
2
3
4
5
6
7

Stack create s4 {

#
Create a stack with a object-specific method
to check the type of entries
#

2. Introductory Overview Example: Stack

- 10 -

2.5. Define Object Specific Methods on Classes

8
9

10
11

:public object method push {thing:integer} {
next

}
}

The program snippet in Listing 12 defines an instance s4 of the class Stack and provides an object
specific method for push to implement an integer stack. The method pull is the same for the integer
stack as for all other stacks, so it will be reused as usual from the class Stack. The object-specific
method push of s4 has a value constraint in its argument list (thing:integer) that makes sure, that
only integers can be stacked. In case the argument is not an integer, an exception will be raised. Of
course, one could perform the value constraint checking as well in the body of the method proc by
accepting an generic argument and by performing the test for the value in the body of the method. In
the case, the passed value is an integer, the push method of Listing 12 calls next, and therefore calls
the shadowed generic definition of push as provided by Stack.

Listing 13: Class IntegerStack

1
2
3
4
5
6
7
8
9

10

nx::Class create IntegerStack -superclass Stack {

#
Create a Stack accepting only integers
#

:public method push {thing:integer} {
next

}
}

An alternative approach is shown in Listing 13, where the class IntegerStack is defined, using the
same method definition as s4, this time on the class level.

In our previous examples we defined methods provided by classes (applicable for their instances) and
object-specific methods (methods defined on objects, which are only applicable for these objects). In
this section, we introduce methods that are defined on the class objects. Such methods are sometimes
called class methods or static methods.

In NX classes are objects, they are specialized objects with additional methods. Methods for classes are
often used for managing the life-cycles of the instances of the classes (we will come to this point in
later sections in more detail). Since classes are objects, we can use exactly the same notation as above
to define class methods by using object method. The methods defined on the class object are in all
respects identical with object specific methods shown in the examples above.

Listing 14: Class Stack2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

nx::Class create Stack2 {

:public object method available_stacks {} {
return [llength [:info instances]]

}

:variable things {}

:public method push {thing} {
set :things [linsert ${:things} 0 $thing]
return $thing

}

:public method pop {} {
set top [lindex ${:things} 0]

2. Introductory Overview Example: Stack

- 11 -

3.1. Variables and Properties

18
19
20
21
22
23
24

set :things [lrange ${:things} 1 end]
return $top

}
}

Stack2 create s1
Stack2 create s2

puts [Stack2 available_stacks]

The class Stack2 in Listing 14 consists of the earlier definition of the class Stack and is extended by
the class-specific method available_stacks, which returns the current number of instances of the
stack. The final command puts (line 26) prints 2 to the console.

Figure 15. Stack2

The class diagram in Figure 15 shows the diagrammatic representation of the class object-specific
method available_stacks. Since every class is a specialization of the common root class
nx::Object, the common root class is often omitted from the class diagrams, so it was omitted here
as well in the diagram.

3. Basic Language Features of NX

In general, NX does not need variable declarations. It allows to create or modify variables on the fly
by using for example the Tcl commands set and unset. Depending on the variable name (or more
precisely, depending on the variable name’s prefix consisting of colons ":") a variable is either local to a
method, or it is an instance variable, or a global variable. The rules are:

• A variable without any colon prefix refers typically to a method scoped variable. Such a variable
is created during the invocation of the method, and it is deleted, when the method ends. In the
example below, the variable a is method scoped.

• A variable with a single colon prefix refers to an instance variable. An instance variable is part
of the object; when the object is destroyed, its instance variables are deleted as well. In the
example below, the variable b is an instance variable.

• A variable with two leading colons refers to a global variable. The lifespan of a globale variable
ends when the variable is explicitly unset or the script terminates. Variables, which are placed
in Tcl namespaces, are also global variables. In the example below, the variable c is a global
variable.

Listing 16: Scopes of Variables

3. Basic Language Features of NX

- 12 -

1
2
3
4
5
6
7
8
9

10
11

nx::Class create Foo {

:method foo args {...}
"a" is a method scoped variable
set a 1
"b" is an Instance variable
set :b 2
"c" is a global variable/namespaced variable
set ::c 3

}
}

Listing 16 shows a method foo of some class Foo referring to differently scoped variables.

3.1.1. Properties: Configurable Instance Variables

As described above, there is no need to declare instance variables in NX. In many cases, a developer
might want to define some value constraints for variables, or to provide defaults, or to make variables
configurable upon object creation. Often, variables are "inherited", meaning that the variables declared
in a general class are also available in a more specialized class. For these purposes NX provides
variable handlers responsible for the management of instance variables. We distinguish in NX between
configurable variables (called property) and variables that are not configurable (called variable).

A property is a definition of a configurable instance variable.

The term configurable means that (a) one can provide at creation time of an instance a value for this
variable, and (b), one can query the value via the accessor function cget and (c), one can change
the value of the variable via configure at runtime. Since the general accessor function cget and
configure are available, an application developer does not have to program own accessor methods.
When value checkers are provided, each time, the value of the variable is to be changed, the constrained
are checked as well.

Figure 17. Classes Person and Student

3. Basic Language Features of NX

- 13 -

The class diagram above defines the classes Person and Student. For both classes, configurable
instance variable are specified by defining these as properties. The listing below shows an
implementation of this conceptual model in NX.

Listing 18: Properties

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#
Define a class Person with properties "name"
and "birthday"
#
nx::Class create Person {

:property name:required
:property birthday

}

#
Define a class Student as specialization of Person
with additional properties
#
nx::Class create Student -superclass Person {

:property matnr:required
:property {oncampus:boolean true}

}

#
Create instances using configure parameters
for the initialization
#
Person create p1 -name Bob
Student create s1 -name Susan -matnr 4711

Access property value via accessor method
puts "The name of s1 is [s1 cget -name]"

By defining name and birthday as properties of Person, NX makes these configurable. When we
create an instance of Person named p1, we can provide a value for e.g. the name by specifying -name
during creation. The properties result in non-positional configure parameters which can be provided
in any order. In our listing, we create an instance of Person using the configure parameter name and
provide the value of Bob to the instance variable name.

The class Student is defined as a specialization of Person with two additional properties: matnr and
oncampus. The property matnr is required (it has to be provided, when an instance of this class is
created), and the property oncampus is boolean, and is per default set to true. Note that the class
Student inherits the properties of Person. So, Student has four properties in total.

The property definitions provide the configure parameters for instance creation. Many other
languages require such parameters to be passed via arguments of a constructor, which is often error
prone, when values are to be passed to superclasses. Also in dynamic languages, the relationships
between classes can be easily changed, and different superclasses might have different requirements in
their constructors. The declarative approach in NX reduces the need for tailored constructor methods
significantly.

Note, that the property matnr of class Student is required. This means, that if we try to create an
instance of Student, a runtime exception will be triggered. The property oncamups is boolean and
contains a default value. Providing a default value means that whenever we create an instance of this
class the object will contain such an instance variable, even when we provide no value via the configure
parameters.

In our listing, we create an instance of Student using the two configure parameters name and matnr.
Finally, we use method cget to obtain the value of the instance variable name of object s1.

3.1.2. Non-configurable Instance Variables

In practice, not all instance variables should be configurable. But still, we want to be able to provide
defaults similar to properties. To define non-configurable instance variables the predefined method

3. Basic Language Features of NX

- 14 -

3.2. Method Definitions

variable can be used. Such instance variables are often used for e.g. keeping the internal state of
an object. The usage of variable is in many respects similar to property. One difference is, that
property uses the same syntax as for method parameters, whereas variable receives the default
value as a separate argument (similar to the variable command in plain Tcl). The introductory Stack
example in Listing 2 uses already the method variable.

Listing 19: Declaring Variables

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

nx::Class create Base {
:variable x 1
...

}

nx::Class create Derived -superclass Base {
:variable y 2
...

}

Create instance of the class Derived
Derived create d1

Object d1 has instance variables
x == 1 and y == 2

Note that the variable definitions are inherited in the same way as properties. The example in Listing 19
shows a class Derived that inherits from Base. When an instance d1 is created, it will contain the two
instance variables x and y. Note that the variable declarations from property and variable are used
to initialize (and to configure) the instances variables of an object.

Listing 20: Setting Variables in the Constructor

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

nx::Class create Base2 {
...
:method init {} {

set :x 1
....

}
}

nx::Class create Derived2 -superclass Base2 {
...
:method init {} {

set :y 2
next
....

}
}

Create instance of the class Derived2
Derived2 create d2

In many other object oriented languages, the instance variables are initialized solely by the constructor
(similar to class Derived2 in Listing 20). This approach is certainly also possible in NX. Note that the
approach using constructors requires an explicit method chaining between the constructors and is less
declarative than the approach in NX using property and variable.

Both, property and variable provide much more functionalities. One can for example declare
public, protected or private accessor methods, or one can define variables to be incremental (for
e.g. adding values to a list of values), or one can define variables specific behavior.

The basic building blocks of an object oriented program are object and classes, which contain named
pieces of code, the methods.

3. Basic Language Features of NX

- 15 -

Methods are subroutines (pieces of code) associated with objects and/or classes. A method has a
name, receives optionally arguments during invocation and returns a value.

Plain Tcl provides subroutines, which are not associated with objects or classes. Tcl distinguishes
between +proc+s (scripted subroutines) and commands (system-languages implemented subroutines).

Methods might have different scopes, defining, on which kind of objects these methods are applicable
to. These are described in more detail later on. For the time being, we deal here with methods defined
on classes, which are applicable for the instance of these classes.

3.2.1. Scripted Methods

Since NX is a scripting language, most methods are most likely scripted methods, in which the method
body contains Tcl code.

Listing 21: Scripted method

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Define a class
nx::Class create Dog {

Define a scripted method for the class
:public method bark {} {

puts "[self] Bark, bark, bark."
}

}

Create an instance of the class
Dog create fido

The following line prints "::fido Bark, bark, bark."
fido bark

In the example above we create a class Dog with a scripted method named bark. The method body
defines the code, which is executed when the method is invoked. In this example, the method bar prints
out a line on the terminal starting with the object name (this is determined by the built in command
self) followed by "Bark, bark, bark.". This method is defined on a class and applicable to instances of
the class (here the instance fido).

3.2.2. C-implemented Methods

Not all of the methods usable in NX are scripted methods; many predefined methods are defined in
the underlying system language, which is typically C. For example, in Listing 21 we used the method
create to create the class Dog and to create the dog instance fido. These methods are implemented
in C in the next scripting framework.

C-implemented methods are not only provided by the underlying framework but might be as well
defined by application developers. This is an advanced topic, not covered here. However, application
developer might reuse some generic C code to define their own C-implemented methods. Such methods
are for example accessors, forwarders and aliases.

An accessor method is a method that accesses instance variables of an object. A call to an accessor
without arguments uses the accessor as a getter, obtaining the actual value of the associated variable.
A call to an accessor with an argument uses it as a setter, setting the value of the associated variable.

NX provides support for C-implemented accessor methods. Accessors have already been mentioned
in the section about properties. When the option -accessor public|protected|private is
provided to a variable or property definition, NX creates automatically a same-named accessors
method.

Listing 22: Accessor Methods

3. Basic Language Features of NX

- 16 -

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

nx::Class create Dog {
:public method bark {} { puts "[self] Bark, bark, bark." }
:method init {} { Tail create [self]::tail}

}

nx::Class create Tail {
:property -accessor public {length:double 5}
:public method wag {} {return Joy}

}

Create an instance of the class
Dog create fido

Use the accessor "length" as a getter, to obtain the value
of a property. The following call returns the length of the
tail of fido
fido::tail length get

Use the accessor "length" as a setter, to alter the value
of a property. The following call changes the length of
the tail of fido
fido::tail length set 10

Proving an invalid values will raise an error
fido::tail length set "Hello"

Listing 22 shows an extended example, where every dog has a tail. The object tail is created as a
subobject of the dog in the constructor init. The subobject can be accessed by providing the full name
of the subobject fido::tail. The method length is an C-implemented accessor, that enforces the
value constraint (here a floating point number, since length uses the value constraint double). Line 25
will therefore raise an exception, since the provided values cannot be converted to a double number.

Listing 23: Forwarder Methods

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

nx::Class create Dog {
:public method bark {} { puts "[self] Bark, bark, bark." }
:method init {} {

Tail create [self]::tail
:public object forward wag [self]::tail wag

}
}

nx::Class create Tail {
:property {length 5}
:public method wag {} {return Joy}

}

Create an instance of the class
Dog create fido

The invocation of "fido wag" is delegated to "fido::tail wag".
Therefore, the following method returns "Joy".
fido wag

Listing 23 again extends the example by adding a forwarder named wag to the object (e.g. fido).
The forwarder redirects all calls of the form fido wag with arbitrary arguments to the subobject
fido::tail.

A forwarder method is a C-implemented method that redirects an invocation for a certain method
to either a method of another object or to some other method of the same object. Forwarding an
invocation of a method to some other object is a means of delegation.

The functionality of the forwarder can just as well be implemented as a scripted method, but for the
most common cases, the forward implementation is more efficient, and the forward method expresses
the intention of the developer.

The method forwarder has several options to change e.g. the order of the arguments, or to substitute
certain patterns in the argument list etc. This will be described in later sections.

3. Basic Language Features of NX

- 17 -

3.3. Method Protection

3.2.3. Method-Aliases

An alias method is a means to register either an existing method, or a Tcl proc, or a Tcl command as
a method with the provided name on a class or object.

In some way, the method alias is a restricted form of a forwarder, though it does not support delegation
to different objects or argument reordering. The advantage of the method alias compared to a forwarder
is that it has close to zero overhead, especially for aliasing c-implemented methods.

Listing 24: Method-Alias

1
2
3
4
5
6
7
8
9

10
11
12
13

nx::Class create Dog {
:public method bark {} { puts "[self] Bark, bark, bark." }

Define a public alias for the method "bark"
:public alias warn [:info method handle bark]
...

}

Create an instance of the class
Dog create fido

The following line prints "::fido Bark, bark, bark."
fido warn

Listing 24 extends the last example by defining an alias for the method bark. The example only shows
the bare mechanism. In general, method aliases are very powerful means for reusing pre-existing
functionality. The full object system of NX and XOTcl2 is built from aliases, reusing functionality
provided by the next scripting framework under different names. Method aliases are as well a means for
implementing traits in NX.

All kinds of methods might have different kind of protections in NX. The call-protection defines
from which calling context methods might be called. The Next Scripting Framework supports as well
redefinition protection for methods.

NX distinguishes between public, protected and private methods, where the default call-
protection is protected.

A public method can be called from every context. A protected method can only be invoked from
the same object. A private method can only be invoked from methods defined on the same entity
(defined on the same class or on the same object) via the invocation with the local flag (i.e. ": -local
foo").

All kind of method protections are applicable for all kind of methods, either scripted or C-implemented.

The distinction between public and protected leads to interfaces for classes and objects. Public methods
are intended for consumers of these entities. Public methods define the intended ways of providing
methods for external usages (usages, from other objects or classes). Protected methods are intended for
the implementor of the class or subclasses and not for public usage. The distinction between protected
and public reduces the coupling between consumers and the implementation, and offers more flexibility
to the developer.

Listing 25: Protected Methods

1
2
3
4

nx::Class create Foo {

Define a public method
:public method foo {} {

3. Basic Language Features of NX

- 18 -

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

....
return [:helper]

}

Define a protected method
:method helper {} {

return 1
}

}

Create an instance of the class:
Foo create f1

The invocation of the public method "foo" returns 1
f1 foo

The invocation of the protected method "helper" raises an error:
f1 helper

The example above uses :protected method helper …. We could have used here as well :method
helper …, since the default method call-protection is already protected.

The method call-protection of private goes one step further and helps to hide implementation details
also for implementors of subclasses. Private methods are a means for avoiding unanticipated name
clashes. Consider the following example:

Listing 26: Private Methods

1
2
3
4
5
6
7
8
9

10
11
12
13
14

nx::Class create Base {
:private method helper {a b} {expr {$a + $b}}
:public method foo {a b} {: -local helper $a $b}

}

nx::Class create Sub -superclass Base {
:public method bar {a b} {: -local helper $a $b}
:private method helper {a b} {expr {$a * $b}}
:create s1

}

s1 foo 3 4 ;# returns 7
s1 bar 3 4 ;# returns 12
s1 helper 3 4 ;# raises error: unable to dispatch method helper

The base class implements a public method foo using the helper method named helper. The derived
class implements a as well a public method bar, which is also using a helper method named helper.
When an instance s1 is created from the derived class, the method foo is invoked which uses in turn
the private method of the base class. Therefore, the invocation s1 foo 3 4 returns its sum. If the
local flag had not beed used in helper, s1 would have tried to call the helper of Sub, which would be
incorrect. For all other purposes, the private methods are "invisible" in all situations, e.g., when mixins
are used, or within the next-path, etc.

By using the -local flag at the call site it is possible to invoke only the local definition of the method. If
we would call the method without this flag, the resolution order would be the standard resolution order,
starting with filters, mixins, object methods and the full intrinsic class hierarchy.

NX supports the modifier private for methods and properties. In all cases private is an instrument
to avoid unanticipated interactions and means actually "accessible for methods defined on the same
entity (object or class)". The main usage for private is to improve locality of the code e.g. for
compositional operations.

In order to improve locality for properties, a private property defines therefore internally a variable
with a different name to avoid unintended interactions. The variable should be accessed via the private
accessor, which can be invoked with the -local flag. In the following example class D introduces a
private property with the same name as a property in the superclass.

Listing 27: Private Properties

3. Basic Language Features of NX

- 19 -

3.4. Applicability of Methods

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#
Define a class C with a property "x" and a public accessor
#
nx::Class create C {

:property -accessor public {x c}
}

#
Define a subclass D with a private property "x"
and a method bar, which is capable of accessing
the private property.
#
nx::Class create D -superclass C {

:property -accessor private {x d}
:public method bar {p} {return [: -local $p get]}

}

#
The private and public (or protected) properties
define internally separate variable that do not
conflict.
#
D create d1
puts [d1 x get] ;# prints "c"
puts [d1 bar x] ;# prints "d"

Without the private definition of the property, the definition of property x in class D would shadow
the definition of the property in the superclass C for its instances (d1 x or set :x would return d
instead of c).

As defined above, a method is a subroutine defined on an object or class. This object (or class) contains
the method. If the object (or class) is deleted, the contained methods will be deleted as well.

3.4.1. Instance Methods

Typically, methods are defined on a class, and the methods defined on the class are applicable to the
instances (direct or indirect) of this class. These methods are called instance methods.

In the following example method, foo is an instance method defined on class C.

Listing 28: Methods applicable for instances

1
2
3
4
5
6
7
8

nx::Class create C {
:public method foo {} {return 1}
:create c1

}

Method "foo" is defined on class "C"
and applicable to the instances of "C"
c1 foo

There are many programming languages that only allow these types of methods. However, NX also
allows methods to be defined on objects.

3.4.2. Object Methods

Methods defined on objects are object methods. Object methods are only applicable on the object,
on which they are defined. Object methods cannot be inherited from other objects.

3. Basic Language Features of NX

- 20 -

The following example defines an object method bar on the instance c1 of class C, and as well as the
object specific method baz defined on the object o1. An object method is defined via object method.

Note that we can define a object method that shadows (redefines) for this object methods provided from
classes.

Listing 29: Object Method

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

nx::Class create C {
:public method foo {} {return 1}
:create c1 {

:public object method foo {} {return 2}
:public object method bar {} {return 3}

}
}

Method "bar" is an object specific method of "c1"
c1 bar

object-specific method "foo" returns 2
c1 foo

Method "baz" is an object specific method of "o1"
nx::Object create o1 {

:public object method baz {} {return 4}
}
o1 baz

3.4.3. Class Methods

A class method is a method defined on a class, which is only applicable to the class object itself. The
class method is actually an object method of the class object.

In NX, all classes are objects. Classes are in NX special kind of objects that have e.g. the ability to create
instances and to provide methods for the instances. Classes manage their instances. The general method
set for classes is defined on the meta-classes (more about this later).

The following example defines a public class method bar on class C. The class method is specified by
using the modifier object in front of method in the method definition command.

Listing 30: Class Methods

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

nx::Class create C {
#
Define a class method "bar" and an instance
method "foo"
#
:public object method bar {} {return 2}
:public method foo {} {return 1}

#
Create an instance of the current class
#
:create c1

}

Method "bar" is a class method of class "C"
therefore applicable on the class object "C"
C bar

Method "foo" is an instance method of "C"
therefore applicable on instance "c1"
c1 foo

When trying to invoke the class method on the
instance, an error will be raised.
c1 bar

In some other object oriented programming languages, class methods are called "static methods".

3. Basic Language Features of NX

- 21 -

3.5. Ensemble Methods

3.6. Method Resolution

NX provides ensemble methods as a means to structure the method name space and to group related
methods. Ensemble methods are similar in concept to Tcl’s ensemble commands.

An ensemble method is a form of a hierarchical method consisting of a container method and sub-
methods. The first argument of the container method is interpreted as a selector (the sub-method).
Every sub-method can be an container method as well.

Ensemble methods provide a means to group related commands together, and they are extensible in
various ways. It is possible to add sub-methods at any time to existing ensembles. Furthermore, it is
possible to extend ensemble methods via mixin classes.

The following example defines an ensemble method for string. An ensemble method is defined when
the provide method name contains a space.

Listing 31: Ensemble Method

1
2
3
4
5
6
7
8
9

10
11
12
13
14

nx::Class create C {

Define an ensemble method "string" with sub-methods
"length", "tolower" and "info"

:public method "string length" {x} {....}
:public method "string tolower" {x} {...}
:public method "string info" {x} {...}
#...
:create c1

}

Invoke the ensemble method
c1 string length "hello world"

When a method is invoked, the applicable method is searched in the following order:

Per-object Mixins -> Per-class Mixins -> Object -> Intrinsic Class Hierarchy

In the case, no mixins are involved, first the object is searched for an object method with the given name,
and then the class hierarchy of the object. The method can be defined multiple times on the search path,
so some of these method definitions might be shadowed by the more specific definitions.

Listing 32: Method Resolution with Intrinsic Classes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

nx::Class create C {
:public method foo {} {

return "C foo: [next]"
}

}

nx::Class create D -superclass C {

:public method foo {} {
return "D foo: [next]"

}

:create d1 {
:public object method foo {} {

return "d1 foo: [next]"
}

}

3. Basic Language Features of NX

- 22 -

20
21
22
23
24
25
26

}

Invoke the method foo
d1 foo
result: "d1 foo: D foo: C foo: "

Query the precedence order from NX via introspection
d1 info precedence
result: "::D ::C ::nx::Object"

Consider the example in Listing 32. When the method foo is invoked on object d1, the object method
has the highest precedence and is therefore invoked. The object methods shadows the same-named
methods in the class hierarchy, namely the method foo of class D and the method foo of class C. The
shadowed methods can be still invoked, either via the primitive next or via method handles (we used
already method handles in the section about method aliases). In the example above, next calls the
shadowed method and add their results to the results of every method. So, the final result contains parts
from d1, D and C. Note, that the topmost next in method foo of class C shadows no method foo and
simply returns empty (and not an error message).

The introspection method info precedence provides information about the order, in which classes
processed during method resolution.

Listing 33: Method Resolution with Mixin Classes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

nx::Class create M1 {
:public method foo {} { return "M1 foo: [next]"}

}
nx::Class create M2 {

:public method foo {} { return "M2 foo: [next]"}
}

#
"d1" is created based on the definitions of the last example
#
Add the methods from "M1" as per-object mixin to "d1"
d1 object mixins add M1

#
Add the methods from "M2" as per-class mixin to class "C"
C mixins add M2

Invoke the method foo
d1 foo
result: "M1 foo: M2 foo: d1 foo: D foo: C foo: "

Query the precedence order from NX via introspection
d1 info precedence
result: "::M1 ::M2 ::D ::C ::nx::Object"

The example in Listing 33 is an extension of the previous example. We define here two additional classes
M1 and M2 which are used as per-object and per-class mixins. Both classes define the method foo,
these methods shadow the definitions of the intrinsic class hierarchy. Therefore an invocation of foo
on object d1 causes first an invocation of method in the per-object mixin.

Listing 34: Method Invocation Flags

1
2
3
4
5
6
7
8
9

10
11
12
13

#
"d1" is created based on the definitions of the last two examples,
the mixins "M1" and "M2" are registered.
#
Define a public object method "bar", which calls the method
"foo" which various invocation options:
#
d1 public object method bar {} {

puts [:foo]
puts [: -local foo]
puts [: -intrinsic foo]
puts [: -system foo]

3. Basic Language Features of NX

- 23 -

3.7. Parameters

14
15
16

}

Invoke the method "bar"
d1 bar

In the first line of the body of method bar, the method foo is called as usual with an implicit receiver,
which defaults to the current object (therefore, the call is equivalent to d1 foo). The next three calls
show how to provide flags that influence the method resolution. The flags can be provided between the
colon and the method name. These flags are used rather seldomly but can be helpful in some situations.

The invocation flag -local means that the method has to be resolved from the same place, where the
current method is defined. Since the current method is defined as a object method, foo is resolved as
a object method. The effect is that the mixin definitions are ignored. The invocation flag -local was
already introduced int the section about method protection, where it was used to call private methods.

The invocation flag -intrinsic means that the method has to be resolved from the intrinsic
definitions, meaning simply without mixins. The effect is here the same as with the invocation flag -
local.

The invocation flag -systemmeans that the method has to be resolved from basic - typically predefined
- classes of the object system. This can be useful, when script overloads system methods, but still want
to call the shadowed methods from the base classes. In our case, we have no definitions of foo on the
base clases, therefore an error message is returned.

The output of Listing 34 is:

M1 foo: M2 foo: d1 foo: D foo: C foo:
d1 foo: D foo: C foo:
d1 foo: D foo: C foo:
::d1: unable to dispatch method 'foo'

NX provides a generalized mechanism for passing values to either methods (we refer to these as method
parameters) or to objects (these are called configure parameters). Both kind of parameters might have
different features, such as:

• Positional and non-positional parameters

• Required and non-required parameters

• Default values for parameters

• Value-checking for parameters

• Multiplicity of parameters

TODO: complete list above and provide a short summary of the section

Before we discuss method and configure parameters in more detail, we describe the parameter features
in the subsequent sections based on method parameters.

3.7.1. Positional and Non-Positional Parameters

If the position of a parameter in the list of formal arguments (e.g. passed to a function) is significant
for its meaning, this is a positional parameter. If the meaning of the parameter is independent of its
position, this is a non-positional parameter. When we call a method with positional parameters, the
meaning of the parameters (the association with the argument in the argument list of the method) is
determined by its position. When we call a method with non-positional parameters, their meaning is
determined via a name passed with the argument during invocation.

3. Basic Language Features of NX

- 24 -

Listing 35: Positional and Non-Positional Method Parameters

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

nx::Object create o1 {

#
Method foo has positional parameters:
#
:public object method foo {x y} {

puts "x=$x y=$y"
}

#
Method bar has non-positional parameters:
#
:public object method bar {-x -y} {

puts "x=$x y=$y"
}

#
Method baz has non-positional and
positional parameters:
#
:public object method baz {-x -y a} {

puts "x? [info exists x] y? [info exists y] a=$a"
}

}

invoke foo (positional parameters)
o1 foo 1 2

invoke bar (non-positional parameters)
o1 bar -y 3 -x 1
o1 bar -x 1 -y 3

invoke baz (positional and non-positional parameters)
o1 baz -x 1 100
o1 baz 200
o1 baz -- -y

Consider the example in Listing 35. The method foo has the argument list x y. This means that the first
argument is passed in an invocation like o1 foo 1 2 to x (here, the value 1), and the second argument
is passed to y (here the value 2). Method bar has in contrary just with non-positional arguments. Here
we pass the names of the parameter together with the values. In the invocation o1 bar -y 3 -x 1 the
names of the parameters are prefixed with a dash ("-"). No matter whether in which order we write the
non-positional parameters in the invocation (see line 30 and 31 in Listing 35) in both cases the variables
x and y in the body of the method bar get the same values assigned (x becomes 1, y becomes 3).

It is certainly possible to combine positional and non-positional arguments. Method baz provides two
non-positional parameter (-y and -y) and one positional parameter (namely a). The invocation in line
34 passes the value of 1 to x and the value of 100 to a. There is no value passed to y, therefore value of
y will be undefined in the body of baz, info exists y checks for the existence of the variable y and
returns 0.

The invocation in line 35 passes only a value to the positional parameter. A more tricky case is in
line 36, where we want to pass -y as a value to the positional parameter a. The case is more tricky
since syntactically the argument parser might consider -y as the name of one of the non-positional
parameter. Therefore we use -- (double dash) to indicate the end of the block of the non-positional
parameters and therefore the value of -y is passed to a.

3.7.2. Optional and Required Parameters

Per default positional parameters are required, and non-positional parameters are optional (they can be
left out). By using parameter options, we can as well define positional parameters, which are optional,
and non-positional parameters, which are required.

Listing 36: Optional and Required Method Parameters

3. Basic Language Features of NX

- 25 -

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

nx::Object create o2 {

#
Method foo has one required and one optional
positional parameter:
#
:public object method foo {x:required y:optional} {

puts "x=$x y? [info exists y]"
}

#
Method bar has one required and one optional
non-positional parameter:
#
:public object method bar {-x:required -y:optional} {

puts "x=$x y? [info exists y]"
}

}

invoke foo (one optional positional parameter is missing)
o2 foo 1

The example in Listing 36 defined method foo with one required and one optional positional
parameter. For this purpose we use the parameter options required and optional. The parameter
options are separated from the parameter name by a colon. If there are multiple parameter options,
these are separated by commas (we show this in later examples).

The parameter definition x:required for method foo is equivalent to x without any parameter
options (see e.g. previous example), since positional parameters are per default required. The
invocation in line 21 of Listing 36 will lead to an undefined variable y in method foo, because no value
us passed to the optional parameter. Note that only trailing positional parameters might be optional. If
we would call method foo of Listing 35 with only one argument, the system would raise an exception.

Similarly, we define method bar in Listing 36 with one required and one optional non-positional
parameter. The parameter definition -y:optional is equivalent to -y, since non-positional parameter
are per default optional. However, the non-positional parameter -x:required is required. If we
invoke bar without it, the system will raise an exception.

3.7.3. Default Values for Parameters

Optional parameters might have a default value, which will be used, when not value is provided for this
parameter. Default values can be specified for positional and non-positional parameters.

Listing 37: Method Parameters with Default Values

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

nx::Object create o3 {

#
Positional parameter with default value:
#
:public object method foo {{x 1} {y 2}} {

puts "x=$x y=$y"
}

#
Non-positional parameter with default value:
#
:public object method bar {{-x 10} {-y 20}} {

puts "x=$x y=$y"
}

}

use default values
o3 foo
o3 bar

3. Basic Language Features of NX

- 26 -

In order to define a default value for a parameter, the parameter specification must be of the form of a
2 element list, where the second argument is the default value. See for an example in Listing 37.

3.7.4. Value Constraints

NX provides value constraints for all kind of parameters. By specifying value constraints a developer can
restrict the permissible values for a parameter and document the expected values in the source code.
Value checking in NX is conditional, it can be turned on or off in general or on a per-usage level (more
about this later). The same mechanisms can be used not only for input value checking, but as well for
return value checking (we will address this point as well later).

Built-in Value Constraints

NX comes with a set of built-in value constraints, which can be extended on the scripting level. The
built-in checkers are either the native checkers provided directly by the Next Scripting Framework (the
most efficient checkers) or the value checkers provided by Tcl through string is …. The built-in
checkers have as well the advantage that they can be used also at any time during bootstrap of an object
system, at a time, when e.g. no objects or methods are defined. The same checkers are used as well for
all C-implemented primitives of NX and the Next Scripting Framework.

Figure 38. General Applicable Value Checkers in NX

Figure 38 shows the built-in general applicable value checkers available in NX, which can be used for
all method and configure parameters. In the next step, we show how to use these value-checkers for
checking permissible values for method parameters. Then we will show, how to provide more detailed
value constraints.

Listing 39: Method Parameters with Value Constraints

1
2
3
4
5

nx::Object create o4 {

#
Positional parameter with value constraints:
#

3. Basic Language Features of NX

- 27 -

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

:public object method foo {x:integer o:object,optional} {
puts "x=$x o? [info exists o]"

}

#
Non-positional parameter with value constraints:
#
:public object method bar {{-x:integer 10} {-verbose:boolean false}} {

puts "x=$x verbose=$verbose"
}

}

The following invocation raises an exception, since the
value "a" for parameter "x" is not an integer
o4 foo a

Value contraints are specified as parameter options in the parameter specifications. The parameter
specification x:integer defines x as a required positional parmeter which value is constraint to an
integer. The parameter specification o:object,optional shows how to combine multiple parameter
options. The parameter o is an optional positional parameter, its value must be an object (see Listing
39). Value constraints are specified exactly the same way for non-positional parameters (see method
bar in Listing 39).

Listing 40: Parameterized Value Constraints

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#
Create classes for Person and Project
#
nx::Class create Person
nx::Class create Project

nx::Object create o5 {
#
Parameterized value constraints
#
:public object method work {

-person:object,type=Person
-project:object,type=Project

} {
...

}
}

#
Create a Person and a Project instance
#
Person create gustaf
Project create nx

#
Use method with value constraints
#
o5 work -person gustaf -project nx

The native checkers object, class, metaclass and baseclass can be further specialized with the
parameter option type to restrict the permissible values to instances of certain classes. We can use
for example the native value constraint object either for testing whether an argument is some object
(without further constraints, as in Listing 37, method foo), or we can constrain the value further to
some type (direct or indirect instance of a class). This is shown by method work in Listing 40 which
requires the parameter -person to be an instance of class Person and the parameter -project to be
an instance of class Project.

Scripted Value Constraints

The set of predefined value checkers can be extended by application programs via defining methods
following certain conventions. The user defined value checkers are defined as methods of the class
nx::Slot or of one of its subclasses or instances. We will address such cases in the next sections. In

3. Basic Language Features of NX

- 28 -

the following example we define two new value checkers on class nx::Slot. The first value checker is
called groupsize, the second one is called choice.

Listing 41: Scripted Value Checker for Method Parameters

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#
Value checker named "groupsize"
#
::nx::Slot method type=groupsize {name value} {

if {$value < 1 || $value > 6} {
error "Value '$value' of parameter $name is not between 1 and 6"

}
}

#
Value checker named "choice" with extra argument
#
::nx::Slot method type=choice {name value arg} {

if {$value ni [split $arg |]} {
error "Value '$value' of parameter $name not in permissible values $arg"

}
}

#
Create an application class D
using the new value checkers
#
nx::Class create D {

:public method foo {a:groupsize} {
...

}
:public method bar {a:choice,arg=red|yellow|green b:choice,arg=good|bad} {

...
}

}

D create d1

testing "groupsize";
the second call (with value 10) will raise an exception:
d1 foo 2
d1 foo 10

testing "choice"
the second call (with value pink for parameter a)
will raise an exception:
d1 bar green good
d1 bar pink bad

In order to define a checker groupsize a method of the name type=groupsize is defined. This
method receives two arguments, name and value. The first argument is the name of the parameter
(mostly used for the error message) and the second parameter is provided value. The value checker
simply tests whether the provided value is between 1 and 3 and raises an exception if this is not the case
(invocation in line 36 in Listing 41).

The checker groupsize has the permissible values defined in its method’s body. It is as well possible
to define more generic checkers that can be parameterized. For this parameterization, one can pass an
argument to the checker method (last argument). The checker choice can be used for restricting the
values to a set of predefined constants. This set is defined in the parameter specification. The parameter
a of method bar in Listing 41 is restricted to the values red, yellow or green, and the parameter
b is restricted to good or bad. Note that the syntax of the permissible values is solely defined by the
definition of the value checker in lines 13 to 17. The invocation in line 39 will be ok, the invocation in
line 40 will raise an exception, since pink is not allowed.

If the same checks are used in many places in the program, defining names for the value checker will be
the better choice since it improves maintainability. For seldomly used kind of checks, the parameterized
value checkers might be more convenient.

3. Basic Language Features of NX

- 29 -

3.7.5. Multiplicity

Multiplicity is used to define whether a parameter should receive single or multiple values.

A multiplicity specification has a lower and an upper bound. A lower bound of 0 means that the value
might be empty. A lower bound of 1 means that the parameter needs at least one value. The upper
bound might be 1 or n (or synonymously *). While the upper bound of 1 states that at most one
value has to be passed, the upper bound of n says that multiple values are permitted. Other kinds of
multiplicity are currently not allowed.

The multiplicity is written as parameter option in the parameter specification in the form lower-
bound..upper-bound. If no multiplicity is defined the default multiplicity is 1..1, which means:
provide exactly one (atomic) value (this was the case in the previous examples).

Listing 42: Method Parameters with Explicit Multiplicity

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

nx::Object create o6 {

#
Positional parameter with an possibly empty
single value
#
:public object method foo {x:integer,0..1} {

puts "x=$x"
}

#
Positional parameter with an possibly empty
list of values value
#
:public object method bar {x:integer,0..n} {

puts "x=$x"
}

#
Positional parameter with a non-empty
list of values
#
:public object method baz {x:integer,1..n} {

puts "x=$x"
}

}

Listing 42 contains three examples for positional parameters with different multiplicities. Multiplicity is
often combined with value constraints. A parameter specification of the form x:integer,0..n means
that the parameter x receives a list of integers, which might be empty. Note that the value constraints
are applied to every single element of the list.

The parameter specification x:integer,0..1 means that x might be an integer or it might be empty.
This is one style of specifying that no explicit value is passed for a certain parameter. Another style is to
use required or optional parameters. NX does not enforce any particular style for handling unspecified
values.

All the examples in Listing 42 are for single positional parameters. Certainly, multiplicity is fully
orthogonal with the other parameter features and can be used as well for multiple parameters, non-
positional parameter, default values, etc.

4. Advanced Language Features

…

4. Advanced Language Features

- 30 -

4.1. Objects, Classes and Meta-Classes

4.2. Resolution Order and Next-Path

4.3. Details on Method and Configure Parameters

…

…

The parameter specifications are used in NX for the following purposes. They are used for

• the specification of input arguments of methods and commands, for

• the specification of return values of methods and commands, and for

• the specification for the initialization of objects.

We refer to the first two as method parameters and the last one as configure parameters. The examples
in the previous sections all parameter specification were specifications of method parameters.

Method parameters specify properties about permissible values passed to methods.

The method parameter specify how methods are invoked, how the actual arguments are passed to local
variables of the invoked method and what kind of checks should be performed on these.

Configure parameters are parameters that specify, how objects can be parameterized upon
creation.

Syntactically, configure parameters and method parameters are the same, although there are certain
differences (e.g. some parameter options are only applicable for objects parameters, the list of object
parameters is computed dynamically from the class structures, object parameters are often used in
combination with special setter methods, etc.). Consider the following example, where we define the
two application classes Person and Student with a few properties.

Listing 43: Configure Parameters

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#
Define a class Person with properties "name"
and "birthday"
#
nx::Class create Person {

:property name:required
:property birthday

}

#
Define a class Student as specialization of Person
with and additional property
#
nx::Class create Student -superclass Person {

:property matnr:required
:property {oncampus:boolean true}

}

4. Advanced Language Features

- 31 -

20
21
22
23
24
25
26
27

#
Create instances using configure parameters
for the initialization
#
Person create p1 -name Bob
Student create s1 -name Susan -matnr 4711

Access property value via "cget" method
puts "The name of s1 is [s1 cget -name]"

The class Person has two properties name and birthday, where the property name is required, the
property birthday is not. The class Student is a subclass of Person with the additional required
property matnr and an optional property oncampus with the default value true (see Listing 43). The
class diagram below visualizes these definitions.

Figure 44. System and Application Classes

In NX, these definitions imply that instances of the class of Person have the properties name and
birthday as non-positional object parameters. Furthermore it implies that instances of Student
will have the configure parameters of Person augmented with the object parameters from Student
(namely matnr and oncampus). Based on these configure parameters, we can create a Person named
Bob and a Student named Susan with the matriculation number 4711 (see line 23 and 24 in <<xmp-
object-parameters, instance variables name, matnr and oncampus (the latter is initialized with the
default value).

4.3.1. Configure Parameters available for all NX Objects

The configure parameters are not limited to the application defined properties, also NX provides some
predefined definitions. Since Person is a subclass of nx::Object also the configure parameters of
nx::Object are inherited. In the introductory stack example, we used -mixins applied to an object

4. Advanced Language Features

- 32 -

to denote per-object mixins (see Listing 8). Since mixins is defined as a parameter on nx::Object it
can be used as an object parameter -mixins for all objects in NX. To put it in other words, every object
can be configured to have per-object mixins. If we would remove this definition, this feature would be
removed as well.

As shown in the introductory examples, every object can be configured via a scripted initialization block
(the optional scripted block specified at object creation as last argument; see Listing 5 or Listing 12).
The scripted block and its meaning are as well defined by the means of configure parameters. However,
this configure parameter is positional (last argument) and optional (it can be omitted). The following
listing shows the configure parameters of Person p1 and Student s1.

Listing 45: Computed Actual Configure Parameter

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Configure parameters for Person p1:
Command:

p1 info lookup syntax configure
Result:

-name /value/ ?-birthday /value/? ?-object-mixins /mixinreg .../?
?-class /class/? ?-object-filters /filterreg .../? ?/__initblock/?

Configure parameter for Student s1:
Command:

s1 info lookup syntax configure
Result:

?-oncampus /boolean/? -matnr /value/ -name /value/
?-birthday /value/? ?-object-mixins /mixinreg .../? ?-class /class/?
?-object-filters /filterreg .../? ?/__initblock/?

The given paramter show, how (a) objects can be configured at runtime or (b) how new instances can
be configured at creation time via the new or create methods. Introspection can be used to obtain the
configuration parameters from an object via p1 info lookup parameters configure (returning
the configure parameters currently applicable for configure or cget) or from a class Person info
lookup parameters create on a class (returning the configure parameters applicable when an
object of this class is created)

The listed configure parameter types mixinreg and filterreg are for converting definitions of filters
and mixins. The last value __initblock says that the content of this variable will be executed in the
context of the object being created (before the constructor init is called). More about the configure
parameter types later.

4.3.2. Configure Parameters available for all NX Classes

Since classes are certain kind of objects, classes are parameterized in the same way as objects. A
typical parameter for a class definition is the relation of the class to its superclass.In our example, we
have specified, that Student has Person as superclass via the non-positional configure parameter -
superclass. If no superclass is specified for a class, the default superclass is nx::Object. Therefore
nx::Object is the default value for the parameter superclass.

Another frequently used parameter for classes is -mixins to denote per-class mixins (see e.g. the
introductory Stack example in Listing 10), which is defined in the same way.

Since Student is an instance of the meta-class nx::Class it inherits the configure parameters from
nx::Class (see class diagram Figure 44). Therefore, one can use e.g. -superclass in the definition
of classes.

Since nx::Class is a subclass of nx::Object, the meta-class nx::Class inherits the parameter
definitions from the most general class nx::Object. Therefore, every class might as well be configured
with a scripted initialization block the same way as objects can be configured. We used actually this
scripted initialization block in most examples for defining the methods of the class. The following listing
shows (simplified) the parameters applicable for Class Student.

Listing 46: Parameters for Classes

4. Advanced Language Features

- 33 -

1
2
3
4
5
6
7

Configure parameter for class nx::Class
Command:

nx::Class info lookup syntax configure
Result:

?-superclass /class .../? ?-mixins /mixinreg .../?
?-filters /filterreg .../? ?-object-mixins /mixinreg .../?
?-class /class/? ?-object-filters /filterreg .../? ?/__initblock/?

4.3.3. User defined Parameter Types

More detailed definition of the configure parameter types comes here.

4.3.4. Slot Classes and Slot Objects

In one of the previous sections, we defined scripted (application defined) checker methods on a class
named nx::Slot. In general NX offers the possibility to define value checkers not only for all usages
of parameters but as well differently for method parameters or configure parameters

4. Advanced Language Features

- 34 -

Figure 47. Slot Classes and Objects

4.3.5. Attribute Slots

Still Missing

• return value checking

• switch

• initcmd …

• subst rules

4. Advanced Language Features

- 35 -

5.1. Profiling

5.2. Unknown Handlers

• converter

• incremental slots

5. Miscellaneous

…

…

NX provides two kinds of unknown handlers:

• Unknown handlers for methods

• Unknown handlers for objects and classes

5.2.1. Unknown Handlers for Methods

Object and classes might be equipped with a method unknown which is called in cases, where an
unknown method is called. The method unknown receives as first argument the called method followed
by the provided arguments

Listing 48: Unknown Method Handler

1
2
3
4
5
6
7
8
9

10

::nx::Object create o {
:object method unknown {called_method args} {

puts "Unknown method '$called_method' called"
}

}

Invoke an unknown method for object o:
o foo 1 2 3

Output will be: "Unknown method 'foo' called"

Without any provision of an unknown method handler, an error will be raised, when an unknown
method is called.

5.2.2. Unknown Handlers for Objects and Classes

The next scripting framework provides in addition to unknown method handlers also a means to
dynamically create objects and classes, when these are referenced. This happens e.g. when superclasses,
mixins, or parent objects are referenced. This mechanism can be used to implement e.g. lazy loading
of these classes. Nsf allows to register multiple unknown handlers, each identified by a key (a unique
name, different from the keys of other unknown handlers).

Listing 49: Unknown Class Handler

1
2
3
4
5

::nx::Class public object method __unknown {name} {
A very simple unknown handler, showing just how
the mechanism works.
puts "***** __unknown called with <$name>"
::nx::Class create $name

5. Miscellaneous

- 36 -

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

}

Register an unknown handler as a method of ::nx::Class
::nsf::object::unknown::add nx {::nx::Class __unknown}

::nx::Object create o {
The class M is unknown at this point

:object mixins add M
The line above has triggered the unknown class handler,
class M is now defined

puts [:info object mixins]
The output will be:
***** __unknown called with <::M>
::M

}

The Next Scripting Framework allows to add, query, delete and list unknown handlers.

Listing 50: Unknown Handler registration

1
2
3
4
5

Interface for unknown handlers:
nsf::object::unknown::add /key/ /handler/
nsf::object::unknown::get /key/
nsf::object::unknown::delete /key/
nsf::object::unknown::keys

References

• U. Zdun, M. Strembeck, G. Neumann: Object-Based and Class-Based Composition of
Transitive Mixins, Information and Software Technology, 49(8) 2007 .

• G. Neumann and U. Zdun: Filters as a language support for design patterns in object-oriented
scripting languages. In Proceedings of COOTS’99, 5th Conference on Object-Oriented
Technologies and Systems, San Diego, May 1999.

• G. Neumann and U. Zdun: Implementing object-specific design patterns using per-object
mixins. In Proc. of NOSA`99, Second Nordic Workshop on Software Architecture, Ronneby,
Sweden, August 1999.

• G. Neumann and U. Zdun: Enhancing object-based system composition through per-object
mixins. In Proceedings of Asia-Pacific Software Engineering Conference (APSEC), Takamatsu,
Japan, December 1999.

• G. Neumann and U. Zdun: XOTCL, an object-oriented scripting language. In Proceedings of
Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, February 2000.

• G. Neumann and U. Zdun: Towards the Usage of Dynamic Object Aggregations as a Form of
Composition In: Proceedings of Symposium of Applied Computing (SAC’00), Como, Italy, Mar
19-21, 2000.

• G. Neumann, S. Sobernig: XOTcl 2.0 - A Ten-Year Retrospective and Outlook, in: Proceedings
of the Sixteenth Annual Tcl/Tk Conference, Portland, Oregon, October, 2009.

• J. K. Ousterhout: Tcl: An embeddable command language. In Proc. of the 1990 Winter
USENIX Conference, January 1990.

• J. K. Ousterhout: Scripting: Higher Level Programming for the 21st Century, IEEE Computer
31(3), March 1998.

• D. Wetherall and C. J. Lindblad: Extending Tcl for Dynamic Object-Oriented Programming.
Proc. of the Tcl/Tk Workshop '95, July 1995.

5. Miscellaneous

- 37 -

Version 2.1.0
Last updated 2016-12-27 18:25:27 CET

5. Miscellaneous

- 38 -

	Tutorial for the Next Scripting Language
	1. NX and its Roots
	2. Introductory Overview Example: Stack
	2.1. Define a Class "Stack"
	2.2. Define an Object Named "stack"
	2.3. Implementing Features using Mixin Classes
	2.4. Define Different Kinds of Stacks
	2.5. Define Object Specific Methods on Classes

	3. Basic Language Features of NX
	3.1. Variables and Properties
	3.1.1. Properties: Configurable Instance Variables
	3.1.2. Non-configurable Instance Variables

	3.2. Method Definitions
	3.2.1. Scripted Methods
	3.2.2. C-implemented Methods
	3.2.3. Method-Aliases

	3.3. Method Protection
	3.4. Applicability of Methods
	3.4.1. Instance Methods
	3.4.2. Object Methods
	3.4.3. Class Methods

	3.5. Ensemble Methods
	3.6. Method Resolution
	3.7. Parameters
	3.7.1. Positional and Non-Positional Parameters
	3.7.2. Optional and Required Parameters
	3.7.3. Default Values for Parameters
	3.7.4. Value Constraints
	Built-in Value Constraints
	Scripted Value Constraints

	3.7.5. Multiplicity

	4. Advanced Language Features
	4.1. Objects, Classes and Meta-Classes
	4.2. Resolution Order and Next-Path
	4.3. Details on Method and Configure Parameters
	4.3.1. Configure Parameters available for all NX Objects
	4.3.2. Configure Parameters available for all NX Classes
	4.3.3. User defined Parameter Types
	4.3.4. Slot Classes and Slot Objects
	4.3.5. Attribute Slots

	5. Miscellaneous
	5.1. Profiling
	5.2. Unknown Handlers
	5.2.1. Unknown Handlers for Methods
	5.2.2. Unknown Handlers for Objects and Classes

