Next: Additional Functions, Previous: Options Controlling Simplification, Up: Functions and Variables for Trigonometric [Contents][Index]
Expands trigonometric and hyperbolic functions of
sums of angles and of multiple angles occurring in expr. For best
results, expr should be expanded. To enhance user control of
simplification, this function expands only one level at a time,
expanding sums of angles or multiple angles. To obtain full expansion
into sines and cosines immediately, set the switch trigexpand: true.
trigexpand is governed by the following global flags:
trigexpandIf true causes expansion of all
expressions containing sin’s and cos’s occurring subsequently.
halfanglesIf true causes half-angles to be simplified
away.
trigexpandplusControls the "sum" rule for trigexpand,
expansion of sums (e.g. sin(x + y)) will take place only if
trigexpandplus is true.
trigexpandtimesControls the "product" rule for trigexpand,
expansion of products (e.g. sin(2 x)) will take place only if
trigexpandtimes is true.
Examples:
(%i1) x+sin(3*x)/sin(x),trigexpand=true,expand;
2 2
(%o1) (- sin (x)) + 3 cos (x) + x
(%i2) trigexpand(sin(10*x+y)); (%o2) cos(10 x) sin(y) + sin(10 x) cos(y)
Default value: true
trigexpandplus controls the "sum" rule for
trigexpand. Thus, when the trigexpand command is used or the
trigexpand switch set to true, expansion of sums
(e.g. sin(x+y)) will take place only if trigexpandplus is
true.
Default value: true
trigexpandtimes controls the "product" rule for trigexpand.
Thus, when the trigexpand command is used or the trigexpand
switch set to true, expansion of products (e.g. sin(2*x))
will take place only if trigexpandtimes is true.
Default value: true
triginverses controls the simplification of the
composition of trigonometric and hyperbolic functions with their inverse
functions.
If all, both e.g. atan(tan(x))
and tan(atan(x)) simplify to x.
If true, the arcfun(fun(x))
simplification is turned off.
If false, both the
arcfun(fun(x)) and
fun(arcfun(x))
simplifications are turned off.
Combines products and powers of trigonometric and hyperbolic sin’s and cos’s of x into those of multiples of x. It also tries to eliminate these functions when they occur in denominators. If x is omitted then all variables in expr are used.
See also poissimp.
(%i1) trigreduce(-sin(x)^2+3*cos(x)^2+x);
cos(2 x) cos(2 x) 1 1
(%o1) -------- + 3 (-------- + -) + x - -
2 2 2 2
Employs the identities
\(\sin\left(x\right)^2 + \cos\left(x\right)^2 = 1\) and
\(\cosh\left(x\right)^2 - \sinh\left(x\right)^2 = 1\) to
simplify expressions containing tan, sec,
etc., to sin, cos, sinh, cosh.
trigreduce, ratsimp, and radcan may be
able to further simplify the result.
demo ("trgsmp.dem") displays some examples of trigsimp.
Gives a canonical simplified quasilinear form of a trigonometrical expression;
expr is a rational fraction of several sin, cos or
tan, the arguments of them are linear forms in some variables (or
kernels) and %pi/n (n integer) with integer coefficients.
The result is a simplified fraction with numerator and denominator linear in
sin and cos. Thus trigrat linearize always when it is
possible.
(%i1) trigrat(sin(3*a)/sin(a+%pi/3)); (%o1) sqrt(3) sin(2 a) + cos(2 a) - 1
The following example is taken from Davenport, Siret, and Tournier, Calcul Formel, Masson (or in English, Addison-Wesley), section 1.5.5, Morley theorem.
(%i1) c : %pi/3 - a - b$
(%i2) bc : sin(a)*sin(3*c)/sin(a+b);
%pi
sin(a) sin(3 ((- b) - a + ---))
3
(%o2) -------------------------------
sin(b + a)
(%i3) ba : bc, c=a, a=c;
%pi
sin(3 a) sin(b + a - ---)
3
(%o3) -------------------------
%pi
sin(a - ---)
3
(%i4) ac2 : ba^2 + bc^2 - 2*bc*ba*cos(b);
2 2 %pi
sin (3 a) sin (b + a - ---)
3
(%o4) ---------------------------
2 %pi
sin (a - ---)
3
%pi
- (2 sin(a) sin(3 a) sin(3 ((- b) - a + ---)) cos(b)
3
%pi %pi
sin(b + a - ---))/(sin(a - ---) sin(b + a))
3 3
2 2 %pi
sin (a) sin (3 ((- b) - a + ---))
3
+ ---------------------------------
2
sin (b + a)
(%i5) trigrat (ac2); (%o5) - (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a) - 2 sqrt(3) sin(4 b + 2 a) + 2 cos(4 b + 2 a) - 2 sqrt(3) sin(2 b + 4 a) + 2 cos(2 b + 4 a) + 4 sqrt(3) sin(2 b + 2 a) - 8 cos(2 b + 2 a) - 4 cos(2 b - 2 a) + sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b) + sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a) - 9)/4
Next: Additional Functions, Previous: Options Controlling Simplification, Up: Functions and Variables for Trigonometric [Contents][Index]