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Fruit of a long maturing process, freefem, in its last avatar, FreeFem++, is a high level
integrated development environment (IDE) for numerically solving partial differential equa-
tions (PDE) in dimension 2 and 3. It is the ideal tool for teaching the finite element method
but it is also perfect for research to quickly test new ideas or multi-physics and complex
applications.

FreeFem++ has an advanced automatic mesh generator, capable of a posteriori mesh adap-
tation; it has a general purpose elliptic solver interfaced with fast algorithms such as the
multi-frontal method UMFPACK, SuperLLU . Hyperbolic and parabolic problems are solved
by iterative algorithms prescribed by the user with the high level language of FreeFem++.
It has several triangular finite elements, including discontinuous elements. Finally every-
thing is there in FreeFem++ to prepare research quality reports: color display online with
zooming and other features and postscript printouts.

This manual is meant for students at Master level, for researchers at any level, and for
engineers (including financial engineering) with some understanding of variational methods
for partial differential equations.
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Chapter 1

Introduction

A partial differential equation is a relation between a function of several variables and its
(partial) derivatives. Many problems in physics, engineering, mathematics and even banking
are modeled by one or several partial differential equations.

FreeFem++ is a software to solve these equations numerically. As its name implies, it is
a free software (see the copyrights for full detail) based on the Finite Element Method; it
is not a package, it is an integrated product with its own high level programming language.
This software runs on all UNIX OS (with g++ 3.3 or later, and OpenGL) , on Window XP,
Vista and 7 and on MacOS 10 (powerpc, intel)

Moreover FreeFem++ is highly adaptive. Many phenomena involve several coupled sys-
tems, for example: fluid-structure interactions, Lorentz forces for aluminium casting and
ocean-atmosphere problems are three such systems. These require different finite element
approximations and polynomial degrees, possibly on different meshes. Some algorithms like
Schwarz’ domain decomposition method also require data interpolation on multiple meshes
within one program. FreeFem++ can handle these difficulties, i.e. arbitrary finite element
spaces on arbitrary unstructured and adapted bi-dimensional meshes.

The characteristics of FreeFem++ are:

e Problem description (real or complex valued) by their variational formulations, with
access to the internal vectors and matrices if needed.

e Multi-variables, multi-equations, bi-dimensional and three-dimensional static or time
dependent, linear or nonlinear coupled systems; however the user is required to describe
the iterative procedures which reduce the problem to a set of linear problems.

e Easy geometric input by analytic description of boundaries by pieces; however this
part is not a CAD system; for instance when two boundaries intersect, the user must
specify the intersection points.

e Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the inner point
density is proportional to the density of points on the boundaries [7].

1



2 CHAPTER 1. INTRODUCTION

e Metric-based anisotropic mesh adaptation. The metric can be computed automatically
from the Hessian of any FreeFem++ function [9].

e High level user friendly typed input language with an algebra of analytic and finite
element functions.

e Multiple finite element meshes within one application with automatic interpolation of
data on different meshes and possible storage of the interpolation matrices.

e A large variety of triangular finite elements : linear, quadratic Lagrangian elements
and more, discontinuous P1 and Raviart-Thomas elements, elements of a non-scalar
type, the mini-element,... (but no quadrangles).

e Tools to define discontinuous Galerkin finite element formulations PO, P1dc, P2dc
and keywords: jump, mean, intalledges.

e A large variety of linear direct and iterative solvers (LU, Cholesky, Crout, CG, GM-
RES, UMFPACK, MUMPS, SuperLU, ...) and eigenvalue and eigenvector solvers
(ARPARK) .

e Near optimal execution speed (compared with compiled C++ implementations pro-
grammed directly).

e Online graphics, generation of , .txt, .eps, .gnu, mesh files for further manipu-
lations of input and output data.

e Many examples and tutorials: elliptic, parabolic and hyperbolic problems, Navier-
Stokes flows, elasticity, Fluid structure interactions, Schwarz’s domain decomposition
method, eigenvalue problem, residual error indicator, ...

A parallel version using mpi

1.1 Installation

1.1.1 For everyone:

First open the following web page
http://www.freefem.org/ff++/

And choose your platform: Linux, Windows, MacOS X, or go to the end of the page to get
the full list of downloads.

Remark 1 : Binaries are available for Microsoft Windows, Apple Mac OS X and some Linux
systems.

Install by double click on the appropriate file, under linux and MacOS the install file are re-
spectively in directory /usr/local/bin, /usr/local/share/freefem++, /usr/local/lib/:


http://www.freefem.org/ff++/
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Windows binaries install First download the windows installation executable, then double
click it. to install FreeFem++. In most cases just answer yes (or typr return) to all questions.
Otherwise in the Additional Task windows, check the box ” Add application directory to your
system path your system path .” This is required otherwise the program ffglut.exe will
not be found.

By now you should have two new icons on your desktop:

e FreeFem++ (VERSION) .exe the FreeFem++ application.
e FreeFem++ (VERSION) Examples a link to the FreeFem++ folder of examples.

where (VERSION) is the version of the files (for example 3.3-0-P4).
By default, the installed files are in

C:\Programs Files\FreeFem++

In this directory, you have all the .d11 files and other applications: FreeFem++-nw.exe,ffglut.ex
... the FreeFem++ application without graphic windows.

The syntax for the command-line tools are the same as those of FreeFem.exe.

MacOS X binaries install Download the MacOS X binary version file, extract all the files
with a double click on the icon of the file, go the the directory and put the FreeFem+. app
application in the /Applications directory. If you want a terminal access to FreeFem++
just copy the file FreeFem++ in a directory of your $SPATH shell environment variable.

If you want to automatically launch the FreeFem++. app, double click on a .edp file icon.
Under the finder pick a .edp in directory examples++-tutorial for example, select
menu File —-> Get Infoan change Open with: (choose FreeFem++.app) and click
on button change All....

Where to go from here An integrated environment called FreeFem++-cs, written by An-
toine Le Hyaric, is provided with FreeFem++ . Unless you wish to profile now your own de-
velopment environment, you may proceed to the next paragraph ”How to use FreeFem-++".

1.1.2 For the pros: Installation from sources
This section is for those who for some reason do not wish to use the binaries and hence need

to recompile FreeFem++ or install it from the source code:

The documentation archive : The documentation is also open source; to regenerate it you
need a IXTEX environment capable of compiling a CVS archive; under MS-Windows you will
have to use mingw/msys

http://www.mingw.orqg

and under MacOS X we have used Apple’s Developer Tools ” Xcode” and BIEX from http:
//www.ctan.org/system/mac/texmacl


http://www.mingw.org
http://www.ctan.org/system/mac/texmac
http://www.ctan.org/system/mac/texmac
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The C++ archive : FreeFem++ must be compiled from the source archive, as indicated
in

http://www.freefem.org/ff++/index.htm

To extract files from the compressed archive freefem++—- (VERSION) .tar.gz to a direc-
tory called

freefem++- (VERSION)

enter the following commands in a shell window :

tar zxvf freefem++- (VERSION) .tar.gz
cd freefem++- (VERSION)

To compile and install FreeFem++ | just follow the INSTALL and README files. The
following programs are produced, depending on the system you are running :

1. FreeFem++, standard version, with a graphical interface based on GLUT/OpenGL
(use ffglut visualization tool) or not just add -nw parameter.

2. ffglut the visualization tools through a pipe of freefem++ (remark: if [fglut is not
in the system path, you will have no plot)

3. FreeFem++—-nw, postscript plot output only and ffmedit (batch version, no graphics
windows via £fglut )

4. FreeFem++-mpi, parallel version, postscript output only

5. /Applications/FreeFem++.app, the Drag and Drop CoCoa MacOSX Applica-
tion

6. bamg , the bamg mesh generator

7. cvmsh2 , a mesh file convertor

8. drawbdmesh , a mesh file viewer

9. ffmedit the freefem++ version of medit software (thanks to P. Frey)

The syntax of tools FreeFem++,FreeFem++-nw,FreeFem++-mpi, on the command-line
are

® FreeFem++ [-?] [-v nn] [—-fglut filel] [-glut file2] [-f] edpfilepath where
the

e or FreeFemt++-nw -7 [-v nn] [-fglut filel] [-glut file2] [-f] edpfilepath wh
the

-7 show the usage.

—-fglut filename to store all the data for graphic in file filename, and to replay do
ffglut filename.

-glut ffglutprogam to change the visualisator program’s.


http://www.freefem.org/ff++/index.htm
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—-nw no call to ffglut and medit

—-v nn set the level of verbosity to nn before execution of the script.
—-ne no edp script output

-wait wait an return in text window before closing FreeFem++
-nowait wait an return in text window before closing FreeFem++
—-ne no edp script output

—cd Change directory to script dir (the script path must by global)

if no file path then you get a dialog box to choose the edp file on windows systeme.

The notation [] means "optional”.

Remark 2 In most cases you can set the level of output (verbosity) to value nn by adding
the parameters —v nn on the command line.

As an installation test, under unix: go into the directory examples++-tutorial and run
FreeFem++ on the example script LaplaceP1.edp with the command :

FreeFemt+ LaplacePl.edp

If you are using nedit as your text editor, do one time nedit —-import edp.nedit to
have coloring syntax for your .edp files.

Link with other text editors

notepad++ at http://notepad-plus.sourceforge.net/uk/site.htm

e Open Notepad++ and Enter F5
e In the new window enter the command 1aunchff++ "$ (FULL_CURRENT_PATH) "

e (lick on Save, and enter FreeFem++ in the box "Name”, now choose the short
cut key to launch directly FreeFem++ (for example alt+shift+R)

e To add Color Syntax Compatible with FreeFem++ In Notepad++,

— In Menu "Parameters"->"Configuration of the Color Syntax"
proceed as follows:

— In the list "Language" select C++
— Add "edp” in the field "add ext"

— Select "INSTRUCTION WORD" in the list "Description™ and in the field
"supple mentary key word", cut and past the following list:
PO P1 P2 P3 P4 P5 Pldc P2dc P3dc P4dc P5dec RTO RT1 RT2 RT3 RT4
RT5 macro plot int1d int2d solve movemesh adaptmesh trunc checkmovemesh
on func buildmesh square Eigenvalue min max imag exec LinearCG NLCG
Newton BFGS LinearGMRES catch try intalledges jump average mean load
savemesh convect abs sin cos tan atan asin acos cotan sinh cosh tanh cotanh
atanh asinh acosh pow exp log logl0 sqrt dx dy endl cout


http://notepad-plus.sourceforge.net/uk/site.htm
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— Select "TYPE WORD?” in the list ”Description” and ... 7 ”supplementary
key word”, cut and past the following list
mesh real fespace varf matrix problem string border complex ifstream of-
stream

— Click on Save & Close. Now nodepad++ is configured.

Crimson Editor availble at http://www.crimsoneditor.com/ and adapted as follows:

e Go to the Tools/Preferences/File association menu and add the .edp ex-
tension set

e In the same panel in Tools/User Tools, add a FreeFem++ item (Ist line)
with the path to freefem++.exe on the second line and $ (FilePath) and
$(FileDir) on third and fourth lines. Tick the 8.3 box.

e for color syntax, extract file from crimson-freefem.zip and put files in the
corresponding sub-folder of Crimson folder (C: \Program Files\Crimson Editor

).
winedt for Windows : this is the best but it could be tricky to set up. Download it from

http://www.winedt.com

this is a multipurpose text editor with advanced features such as syntax coloring; a
macro is available on www . freefem. org to localize winedt to FreeFem++ without
disturbing the winedt functional mode for LateX, TeX, C, etc. However winedt is not
free after the trial period.

TeXnicCenter for Windows: this is the easiest and will be the best once we find a volunteer
to program the color syntax. Download it from

http://www.texniccenter.org/

It is also an editor for TeX/LaTeX. It has a ”‘tool”” menu which can be configured to
launch FreeFem++ programs as in:

e Select the Tools/Customize item which will bring up a dialog box.

e Select the Tools tab and create a new item: call it freefem.

e in the 3 lines below,

1. search for FreeFem++.exe

2. select Main file with further option then Full path and click also on the 8.3
box

3. select main file full directory path with 8.3

nedit on the Mac OS, Cygwin/Xfree and linux, to import the color syntax do

nedit —-import edp.nedit


http://www.crimsoneditor.com/
http://www.winedt.com
www.freefem.org
http://www.texniccenter.org/
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Smultron on the Mac, available at http://smultron.sourceforge.net. It comes
ready with color syntax for .edp file. To teach it to launch FreeFem++ files, do a
”command B” (i.e. the menu Tools/Handle Command/new command) and create a
command which does

/usr/local/bin/FreeFem++-CoCoa %%p

M Click mouse to continue | .exampl tutorialiadapt: —|of = | x|
' File Edit Search Wiew Document Project Tools Macros ‘window Help 18]

D@Le O 8RR s2@a|o - 2 |a8 s gl wei e
% zalveedp | & borderedp I & pioblemedp I & meshedp @ adaphedp |
i Sl rhorder a(t=0,1.0) {x=t; v=0: label=1:}:// comment

border b(t=0,0.5){==1; v=t: lakel=2;}:

‘border c(t=0,0.58) {x=1-t; v=0.5;1lakbel=3:}:

dborder d(t=0.5,1){x=0.5; wv=t; lakel=4:}:

order e (t=0.5,1){x=1-t; y=1; lakel=5;}:
|border f(t=0.0,1){==0; v=1-t:label=6;:};
‘mesh Th = buildmesh (a(6) + bi4) + o(d) +d(d) + e(4) + £(6)):
isavemesh (Th, "th.msh") ;
ffespace Vh(Th,FP1):
Vh ou,v;
real error=0.01;
problem Probeml (u,wv, o r=Ui,eps=1.0e-6) =

[»

barderedp
mesh.edp
problem.ed|
salve.edp

int2d | Th, gforder=2) { u*v*1.0e-10+ dxiu) *dx(v) + dy(u) *dy(s
+ int2d(Th,gforder=2) [ (%-¥)*v): e
jint i;

R for (i=0;i< 4;i++)
i

Probeml;

cout << u[].min << " " << u[].max << nd 1
plotiu, w =1}z
Th=adaptmesh (Th, u,err=error) ;

plot (Th, s =1}z

u=u;

Error = error/i;

Rl 1] |
——— ) | -
% &mdoq!bl '

Ln1, Ch2 |28 | ASCILUNES |2

= T i
=] 31

Nh of DF
— Solve -B.116868 max B.113293
—8.116868 113293
— mesh Wb of Triangles = 242, Wb of Vertices 144
MHb of edges on Morta a
Hb of edges on Boundar: 44, neb = 44
Nbh Of Modes = 144
Hb of DF = 144
—— Solue : min -8.120132 max B.116518
—-8.128132 B.116518
—— mesh: HNbh of Triangl = 547. Nb of Uertices 389
Hb of edges on Mortars 2]
-3 gggﬂoundarg 6%7. nebh = 69

— Solue = min —B.128988 max B.117362
B.126968 B.117362
— mesh: Hb of Triangles = 1899, Mb of Vertices 681
Hb of edges on Morta a
Hb of edg [ 181, neb = 181
Hb Of Modes = 1
Hh of DF = 681
— Solue : min —@.121289 max B.117744
—8.12128% B.117744

Figure 1.1: Integrated environment for FreeFem++ development with Windows

1.2 How to use FreeFem++


http://smultron.sourceforge.net
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Under MacOS X with Graphic Interfaces To test an .edp file, just drag and drop the file
icon on the MacOS application icon FreeFem++.app. You can also launch this application
and use the menu: File — Open.

One of the best ways however on the Mac is to use a text editor like Smultron.app (see
above).

[ ‘ mi File Edit Find Option Jump Window Help
006 Vi Run 3R
“/Brochet/Users/hecht/wark/freefem=~/examples——tutorialvl-adap.ed,
EWF’%% R”“Iol//&n{.‘ao

361 matrix Mevhi(vh,Un);
271 Ths = (B,Uh,tav=tov);
25! real[int] Aii(n),Aiin{n},Ahi{n},bin};

Cument - edp) 2006/3/27 23:11:16
—

40} AliA.diog; // get the diogonal of the matrix
415 Aloout << " A= " << Al << endl;
42} 4h =8;
43} uhp=8;
441 Yh hed;
a5 ink kedapt=8,kkadapt=0;
46 for(int iter=p;iter<ld;rsiter)
{

a9} 4/ solve the problem plot{uh); // to see the result

50 b = rhs;

St/ add new lock condition on &/ if (Ah[\] =1 )

521 ahl- L.j AL -= AR[]; /¢ ARL

53 b= ah[] K unox[]; b *= tgv; h = APl ¥ rhs;
s4i Aiin = B[] * tov: Alin += ARl ¥ ALL;

55:  A.diog = Aling

s6i set(h, sulver EG) /¢ important, to change precordicanning
57 h[] -

ssi  Ih[] - M * uh[]

53t R[] += ths;

i 4 plobdlhpwaitel);

et ah = { Ih + cob unax- uhY) < 8.3

63] // plot(Ah, wait=l,cmu=" lock " value=1 3;
64 plotuh,uait=1,cum="L"");

&5  real[int] d(n),Md(n};

66 o= uh[]-Uhp[];

670 Md = Mg

cai  real err = sqrtMd'ha);

62 rkhhn[);

0 Ahl=1.

T real \ntuh = (#hl’ *Md) /¢ int uh;

2 cout << " err norm L2 " << 61T << L

73 << " int uh = " << intuh

74 <c " kkadapt =" <c kkadapt <esndl;
5 res = intuh;

76 if{err< eps 8& kkadapt ) break.

771 bool odapt = errs eps || (\ter?ﬁ =4)
Kl if{ndapt.)

79 i

a0 kadapt+s;

a1 Th=adaptmesh(Th,uh,err=tol};

a2 kkadopt = tol == tolmin; /¢ we reacht the bound

a3 tol = nax(tol/2,bolnin);

o4 oot << " e ol = " s tol we 7 <k kadapt << * 7 << Kkadapt <<endl;

[ine 64126 [S)
e graphics display mu: lower i
There are other ways to have an inte |
usually an editor installed: if it is wing |
Tex Input: be programmed 1o handle the edit-ru|

Figure 1.2: The 3 panels of the integrated environment built with the fraise Editor
with FreeFem++ in action. The Tools menu has an item to launch FreeFem++ by a
Ctrl4+1 command.

In Terminal mode Choose the type of application from FreeFem++, FreeFem++—-nw,
FreeFem++-mpi, ...according to your needs. Add at least the path name; for example

FreeFem++ your-edp-file-path

1.3 Environment variables, and the init file

FreeFem++ reads a user’s init file named freefem++.pref to initialize global variables:
verbosity, includepath, loadpath.

Remark 3 The variable verbosity changes the level of internal printing (0, nothing (un-
less there are syntax errors), 1 few, 10 lots, etc. ...), the default value is 2.

The include files are searched from the includepath list and the load files are searched
from loadpath list.
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The syntax of the file is:

verbosity= 5

loadpath += "/Library/FreeFem++/1ib"

loadpath += "/Users/hecht/Library/FreeFem++/1ib"
includepath += "/Library/FreeFem++/edp"

includepath += "/Users/hecht/Library/FreeFem++/edp"
# comment

load += "funcTemplate"

load += "myfunction"

load += "MUMPS_seq"

The possible paths for this file are

e under unix and MacOs

/etc/freefem++.pref
$ (HOME) /. freefem++.pref
freefem++.pref

e under windows
freefem++.pref

We can also use shell environment variable to change verbosity and the search rule before
the init files.

export FF_VERBOSITY=50
export FF_INCLUDEPATH="dir;;dir2"
export FF_LOADPATH="dir;;dir3""

9,9 9.9

Remark: the separator between directories must be ”;” and not ”:” because ”:” is used under
Windows.
Remark, to show the list of init of freefem++, do

export FF_VERBOSITY=100; ./FreeFem++-nw
-— verbosity is set to 100
insert init-files /etc/freefem++.pref $

1.4 History

The project has evolved from MacFem, PCfem, written in Pascal. The first C version lead
to freefem 3.4; it offered mesh adaptativity on a single mesh only.

A thorough rewriting in C++ led to freefem+ (freefem+ 1.2.10 was its last release),
which included interpolation over multiple meshes (functions defined on one mesh can be
used on any other mesh); this software is no longer maintained but still in use because it
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handles a problem description using the strong form of the PDEs. Implementing the inter-
polation from one unstructured mesh to another was not easy because it had to be fast and
non-diffusive; for each point, one had to find the containing triangle. This is one of the basic
problems of computational geometry (see Preparata & Shamos[I8] for example). Doing it
in a minimum number of operations was the challenge. Our implementation is O(nlogn)
and based on a quadtree. This version also grew out of hand because of the evolution of the
template syntax in C++.

We have been working for a few years now on FreeFem++ , entirely re-written again in
C++ with a thorough usage of template and generic programming for coupled systems of
unknown size at compile time. Like all versions of freefem it has a high level user friendly
input language which is not too far from the mathematical writing of the problems.

The freefem language allows for a quick specification of any partial differential system of
equations. The language syntax of FreeFem++ is the result of a new design which makes
use of the STL [26], templates and bison for its implementation; more detail can be found
n [I2]. The outcome is a versatile software in which any new finite element can be included
in a few hours; but a recompilation is then necessary. Therefore the library of finite elements
available in FreeFem++ will grow with the version number and with the number of users
who program more new elements. So far we have discontinuous F; elements,linear P, and
quadratic P, Lagrangian elements, discontinuous P; and Raviart-Thomas elements and a
few others like bubble elements.



Chapter 2

Getting Started

To illustrate with an example, let us explain how FreeFem++ solves Poisson’s equation:
for a given function f(x,y), find a function u(z,y) satisfying

—Au(z,y) = f(z,y) forall (z,y) € :
u(z,y) = 0 forall (x,y) on 09, . (2.2)

Here 052 is the boundary of the bounded open set  C R? and Au = % + g%”;.

The following is a FreeFem++ program which computes u when f(x,y) = zy and € is the
unit disk. The boundary C' = 02 is

C = {(z,y)| © = cos(t), y = sin(t), 0 < ¢t < 27}

Note that in FreeFem++ the domain 2 is assumed to described by its boundary that is on
the left side of its boundary oriented by the parameter. As illustrated in Fig. [2.2] we can
see the isovalue of u by using plot (see line 13 below).

Figure 2.1: mesh Th by build (C(50)) Figure 2.2: isovalue by plot (u)

Example 2.1

// defining the boundary
1: border C(t=0,2xpi) {x=cos(t); y=sin(t);}

11
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// the triangulated domain Th is on the left side of its boundary

2: mesh Th = buildmesh (C(50));

// the finite element space defined over Th is called here Vh
3; fespace Vh(Th,P1);
4: Vh u,v; // defines u and v as piecewise-Pl continuous functions
5: func f= xx*y; // definition of a called f function
6: real cpu=clock(); // get the clock in second
7: solve Poisson(u,v,solver=LU) = // defines the PDE
8: int2d (Th) (dx (u) *dx (v) + dy (u) xdy (v)) // bilinear part
9: - int2d (Th) ( f*v) // right hand side
10: + on(C,u=0) ; // Dirichlet boundary condition
11: plot (u);
12: cout << " CPU time = " << clock()-cpu << endl;

Note that the qualifier solver=LU is not required and by default a multi-frontal LU would
have been used. Note also that the lines containing clock are equally not required. Finally
note how close to the mathematics FreeFem++ input language is. Line 8 and 9 correspond
to the mathematical variational equation
/ Ooudv  Oudv
Th

(%% + a—y@—y)dxdy = - fodxdy

for all v which are in the finite element space V), and zero on the boundary C'.

Exercise : Change P1 into P2 and run the program.

2.0.1 FEM by FreeFem++ : how does it work?

This first example shows how FreeFem++ executes with no effort all the usual steps re-
quired by the finite element method (FEM). Let us go through them one by one.

1st line: the boundary I' is described analytically by a parametric equation for z and for y.
When I' = ijo I'; then each curve I';, must be specified and crossings of I'; are not allowed
except at end points .

The keyword “label” can be added to define a group of boundaries for later use (boundary
conditions for instance). Hence the circle could also have been described as two half circle
with the same label:

border Gammal (t=0,pi) {x=cos(t); y=sin(t); label=C}
border Gamma2 (t=pi, 2*pi) {x=cos(t); y=sin(t); label=C}

Boundaries can be referred to either by name ( Gammal for example) or by label ( C here)
or even by its internal number here 1 for the first half circle and 2 for the second (more
examples are in Section [5.8]).

2nd line: the triangulation 7, of ) is automatically generated by buildmesh (C (50)) using
50 points on C as in Fig. 2.0]

The domain is assumed to be on the left side of the boundary which is implicitly oriented
by the parametrization. So an elliptic hole can be added by
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border C(t=2xpi, 0) {%x=0.14+0.3xcos(t); y=0.5*sin(t);}

If by mistake one had written

border C(t=0,2xpi) {%x=0.14+0.3xcos(t); y=0.5*sin(t);}

then the inside of the ellipse would be triangulated as well as the outside.

Automatic mesh generation is based on the Delaunay-Voronoi algorithm. Refinement of the
mesh are done by increasing the number of points on I, for example, buildmesh (C (100) ),
because inner vertices are determined by the density of points on the boundary. Mesh
adaptation can be performed also against a given function f by calling adaptmesh (Th, f).
Now the name 7j, (Th in FreeFem++ ) refers to the family {7} }x=1.... », of triangles shown
in figure 2.1, Traditionally A refers to the mesh size, n; to the number of triangles in 7, and
n, to the number of vertices, but it is seldom that we will have to use them explicitly. If € is
not a polygonal domain, a “skin” remains between the exact domain €2 and its approximation
Qy, = UL, Ty,. However, we notice that all corners of I'y, = €2, are on I'.

3rd line: A finite element space is, usually, a space of polynomial functions on elements,
triangles here only, with certain matching properties at edges, vertices etc. Here fespace
Vh (Th,P1) defines V}, to be the space of continuous functions which are affine in =,y on
each triangle of Tj,. As it is a linear vector space of finite dimension, basis can be found.
The canonical basis is made of functions, called the hat functions ¢ which are continuous
piecewise affine and are equal to 1 on one vertex and 0 on all others. A typical hat function

is shown on figure E| Then

Vi(Th, P1) = {w(x,y)

M
w(z,y) = Z wrdr(T,y), wy are real numbers} (2.3)

k=1

where M is the dimension of V},, i.e. the number of vertices. The wy, are called the degree of
freedom of w and M the number of the degree of freedom.
It is said also that the nodes of this finite element method are the vertices.
Currently FreeFem++ implements the following elements in 2d, (see section @
for the full description)
PO piecewise constant,
P1 continuous piecewise linear,
P2 continuous piecewise quadratic,
P3 continuous piecewise cubic, (need load "Element_ P3")
P4 continuous piecewise quartic,(need load "Element_P4")
RTO Raviart-Thomas piecewise constant,

! The easiest way to define ¢, is by making use of the barycentric coordinates \;(z,y), i = 1,2,3 of a
point ¢ = (x,y) € T, defined by
dai=1 Y Ng'=q
i i

where ¢’, i = 1,2,3 are the 3 vertices of 7. Then it is easy to see that the restriction of ¢ on T is precisely
Ak-
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g 3 7

Figure 2.3: mesh Th Figure 2.4: Graph of ¢; (left) and ¢g

RT1 Raviart-Thomas degree 1 piecewise constant (need load "Element_Mixte")

BDM1 Brezzi-Douglas-Marini degree 1 piecewise constant (need load "Element_Mixte")
RTOOrtho Nedelec type 1 degree 0 piecewise constant

RT10rtho Nedelec type 1 degree 1 piecewise constant (need load "Element Mixte™")
BDM10Ortho Brezzi-Douglas-Marini degree 1 piecewise constant (need load "Element_Mixte")
P1lnc piecewise linear non-conforming,

P1ldc piecewise linear discontinuous,

P2dc piecewise quadratic discontinuous,

P2h quadratic homogene continuous (without P1)

P3dc piecewise cubic discontinuous,(need load "Element_P3dc")

P4dc piecewise quartic discontinuous,(need load "Element_P4dc")

P1b piecewise linear continuous plus bubble,

P2b piecewise quadratic continuous plus bubble.

Morley Morley finite element (need load "Morley")

P2BR P2 Bernardi-Raugel finite element (need 1oad "BernadiRaugel.cpp")

POedge a finite element constant per edge

Pledge to P5edge a finite element polynomial on edge (need load "Element_PkEdge")

Currently FreeFem++ implements the following elements in 3d, (see section |§| for the full
description)

P03d piecewise constant,

P13d continuous piecewise linear,

P23d continuous piecewise quadratic,

RT03d Raviart-Thomas piecewise constant,

Edge03d The Nedelec Edge element

P1b3d piecewise linear continuous plus bubble,

To get the full list, in a unix terminal, in directory examples++-tutorial do

FreeFemt+ dumptable.edp
grep TypeOfFE lestables

Note that other elements can be added fairly easily.



15

Step3: Setting the problem
4th line: Vh u, v declares that v and v are approximated as above, namely

u(w ) = (o y) = 3 wdn(,y) (2.4

5th line: the right hand side f is defined analytically using the keyword func.
7th-9th lines: defines the bilinear form of equation ({2.1)) and its Dirichlet boundary condi-

tions (12.2)).

This variational formulation is derived by multiplying (2.1)) by v(z,y) and integrating the

result over €
—/UAudxdy = / vf dxdy
Q )

Then, by Green’s formula, the problem is converted into finding u such that
a(u,v) = €(f,v) =0 Yo satisfying v = 0 on 0f. (2.5)
with a(u,v) = / Vu-Vodzdy, £(f,v)= / fodady (2.6)
Q Q
In FreeFem++ the Poisson problem can be declared only as in

Vh u,v; problem Poisson (u,v) =

and solved later as in

Poisson; // the problem is solved here

or declared and solved at the same time as in
Vh u,vVv; solve Poisson (u,v) =int (...
and (22.5)) is written with dx(u) = du/dz, dy(u) = Ju/dy and
/Vu-Vvd:cdy —— int2d (Th) ( dx(u) *xdx (v) + dy(u) *dy (v) )
Q
/ fvdaxdy — int2d (Th) ( f*v ) (Notice here, u is unused)
Q
In FreeFem++ bilinear terms and linear terms should not be under the same integral,;
indeed to construct the linear systems FreeFem++ finds out which integral contributes to
the bilinear form by checking if both terms , the unknown (here u) and test functions (here
v) are present.

Step4: Solution and visualization

6th line: The current time in seconds is stored into the real-valued variable cpu.
7th line The problem is solved.
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11th line: The visualization is done as illustrated in Fig. (see Section for zoom,
postscript and other commands).

12th line: The computing time (not counting graphics) is written on the console Notice the
C++-like syntax; the user needs not study C++ for using FreeFem++ , but it helps to
guess what is allowed in the language.

Access to matrices and vectors
Internally FreeFem++ will solve a linear system of the type

ZAUUJ F,=0, i=0,--,M—1; E-:/qubidxdy (2.7)

which is found by using and replacing v by ¢; in . And the Dirichlet conditions are
implemented by penalty, namely by setting A; = 10% and F; = 103" x 0 if ¢ is a boundary
degree of freedom. Note, that the number 100 is called tgv (trés grande valeur) and it is
generally possible to change this value , see the index item solve!tgv=.

The matrix A = (A;;) is called stiffness matriz .
If the user wants to access A directly he can do so by using (see section [6.12] page [171] for
details)

varf a(u,v) = int2d(Th) ( dx(u)*xdx(v) + dy(u) *dy (v))
+ on (C,u=0) ;
matrix A=a (Vh,Vh); // stiffness matrix,

The vector F' in (2.7 can also be constructed manually

varf 1 (unused,v) = int2d(Th) (fxv)+on (C,unused=0) ;
Vh F; F[] = 1(0,Vh); // F[] is the vector associated to the function F

The problem can then be solved by

ul[]=A"-1xF[]; // ul[] is the vector associated to the function u

Note 2.1 Here u and F are finite element function, and u[] and F[] give the array of
value associated ( u[]= (u;)izo,. m-1 and F[]= (F})izo,. . m-1). So we have

M—

g

u gbl T y F(ZE,y) = F[][Z]gbz(xvy)

=0 i

Il
=)

where ¢;,1 = 0...,, M — 1 are the basis functions of Vh like in equation , and M =
Vh.ndof is the number of degree of freedom (i.e. the dimension of the space Vh).

The linear system ([2.7)) is solved by UMFPACK unless another option is mentioned specifically
as in

Vh u,v; problem Poisson (u, Vv, solver=CG) = int2d(...

meaning that Poisson is declared only here and when it is called (by simply writing
Poisson; ) then (2.7) will be solved by the Conjugate Gradient method.
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2.0.2 Some Features of FreeFem++

The language of FreeFem++ is typed, polymorphic and reentrant with macro generation
(see . Every variable must be typed and declared in a statement each statement sepa-
rated from the next by a semicolon ”;”. The syntax is that of C++ by default augmented
with something that is more akin to TEX. For the specialist, one key guideline is that
FreeFem++ rarely generates an internal finite element array; this was adopted for speed
and consequently FreeFem++ could be hard to beat in terms of execution speed, except
for the time lost in the interpretation of the language (which can be reduced by a systematic
usage of varf and matrices instead of problem.

2.1 The Development Cycle: Edit—-Run/Visualize-Revise

An integrated environment is provided with FreeFem++ by A. Le Hyaric; Many examples
and tutorials are also given along with this documentation and it is best to study them and
learn by example. Explanations for some of these examples are given in this documentation
in the next chapter. If you are a FEM beginner, you may also have to read a book on
variational formulations.

The development cycle will have the following steps:

Modeling: From strong forms of PDE to weak forms, one must know the variational for-
mulation to use FreeFem++ ; one should also have an eye on the reusability of the
variational formulation so as to keep the same internal matrices; a typical example is
the time dependent heat equation with an implicit time scheme: the internal matrix
can be factorized only once and FreeFem++ can be taught to do so.

Programming: Write the code in FreeFem++ language using a text editor such as the one
provided in the integrated environment.

Run: Run the code (here written in file mycode.edp). note that this can also be done in
terminal mode by :

[

% FreeFem++ mycode.edp

Visualization: Use the keyword plot to display functions while FreeFem++ is running.
Use the plot-parameter wait=1 to stop the program at each plot. Use the plot-
parameter ps="toto.eps" to generate a postscript file to archive the results.

Debugging: A global variable ”"debug” (for example) can help as in wait=true to wait=false.

bool debug = true;
border a (t=0,2xpi){ x=cos(t); y=sin(t);label=1;}
border b (t=0,2+pi){ x=0.8+0.3xcos(t); y=0.3*xsin(t);label=2;}

plot (a (50) +b (-30) ,wait=debug) ; // plot the borders to see the intersection
// (so change (0.8 in 0.3 in b) then needs a mouse click

mesh Th = buildmesh (a (50)+b(-30));

plot (Th, wait=debug) ; // plot Th then needs a mouse click

fespace Vh (Th,P2);
Vh f = sin(pixx)*cos (pix*y);
plot (f,wait=debug); // plot the function f
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Vh g = sin(pi*x + cos(pix*y));
plot (g, wait=debug) ; // plot the function g

Changing debug to false will make the plots flow continuously; watching the flow of
graphs on the screen (while drinking coffee) can then become a pleasant experience.

Error messages are displayed in the console window. They are not always very explicit
because of the template structure of the C++ code, (we did our best)! Nevertheless
they are displayed at the right place. For example, if you forget parenthesis as in

bool debug = true;
mesh Th = square(10,10;
plot (Th);

then you will get the following message from FreeFem++,

2 : mesh Th = square(10,10;
Error line number 2, in file bb.edp, before token ;
parse error
current line = 2
Compile error : parse error
line number :2, ;
error Compile error : parse error
line number :2, ;
code =1

If you use the same symbol twice as in

real aaa =1;
real aaa;

then you will get the message

2 : real aaa; The identifier aaa exists
the existing type is <Pd>
the new type is <Pd>

If you find that the program isn’t doing what you want you may also use cout to
display in text format on the console window the value of variables, just as you would
do in C++.

The following example works:

-7

fespace Vh...; Vh u;...

cout<<u; ...
matrix A=a(Vh,Vh); ...
cout<<Aa;

Another trick is to comment in and out by using the“ //” as in C4++. For example

real aaa =1;
// real aaa;



Chapter 3

Learning by Examples

This chapter is for those, like us, who don’t like to read manuals. A number of simple
examples cover a good deal of the capacity of FreeFem++ and are self-explanatory. For the
modeling part this chapter continues at Chapter 9 where some PDEes of physics, engineering
and finance are studied in greater depth.

3.1 Membranes

Summary Here we shall learn how to solve a Dirichlet and/or mized Dirichlet Neumann
problem for the Laplace operator with application to the equilibrium of a membrane under
load. We shall also check the accuracy of the method and interface with other graphics pack-
ages.

An elastic membrane 2 is attached to a planar rigid support I', and a force f(x)dx is
exerted on each surface element dz = dxridzy. The vertical membrane displacement, ¢(z),
is obtained by solving Laplace’s equation:

—Ap=f in Q.
As the membrane is fixed to its planar support, one has:

¢lr = 0.

If the support wasn’t planar but at an elevation z(zq,z3) then the boundary conditions
would be of non-homogeneous Dirichlet type.

olr = z.

If a part 'y of the membrane border I' is not fixed to the support but is left hanging, then
due to the membrane’s rigidity the angle with the normal vector n is zero; thus the boundary
conditions are
., 9
90|F1 =% %|F2 =0

where I'y = I' — I'y; recall that g—i = V- n. Let us recall also that the Laplace operator A
is defined by:
Ap = 82—('0 82_g0

ozt Or3

19
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With such "mixed boundary conditions” the problem has a unique solution (see (1987),
Dautray-Lions (1988), Strang (1986) and Raviart-Thomas (1983)); the easiest proof is to
notice that ¢ is the state of least energy, i.e.

E(¢) = min E(v), with FE(v)= /Q(%|VU|2—fU)

p—z€V

and where V is the subspace of the Sobolev space H'(Q) of functions which have zero trace
on I';. Recall that (x € R?, d = 2 here)

HY(Q) ={uec L*(Q) : Vuc (L*(Q)%}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form
of the PDE or its variational formulation (also known here as the theorem of virtual work)

/Vg& Vw—/fw Yw eV

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE
when second derivatives exist.

WARNING Unlike freefem+ which had both weak and strong forms, FreeFem++ im-
plements only weak formulations. It is not possible to go further in using this software if you
don’t know the weak form (i.e. variational formulation) of your problem: either you read a
book, or ask help form a colleague or drop the matter. Now if you want to solve a system
of PDE like A(u,v) =0, B(u,v) =0 don’t close this manual, because in weak form it is

/(A(u,v)w1 + B(u,v)ws) =0 Ywy, ws...
Q

Example Let an ellipse have the length of the semimajor axis a = 2, and unitary the
semiminor axis Let the surface force be f = 1. Programming this case with FreeFem++
gives:

Example 3.1 (membrane.edp) // file membrane.edp
real theta=4.*pi/3.;

real a=2.,b=1.; // the length of the semimajor axis and semiminor axis
func z=x;

border Gammal (t=0, theta) { x = a x cos(t); y = bxsin(t); }

border GammaZ2 (t=theta,2+pi) { x = a % cos(t); y = bxsin(t); }

mesh Th=buildmesh (Gammal (100) +GammaZ2 (50)) ;

fespace Vh(Th,P2); // P2 conforming triangular FEM
Vh phi,w, f=1

solve Laplace (phi,w)=int2d (Th) (dx (phi) *dx (w) + dy (phi)*dy (w))

- int2d(Th) (f*w) + on(Gammal,phi=z);
plot (phi,wait=true, ps="membrane.eps"); // Plot phi
plot (Th,wait=true, ps="membraneTh.eps"); // Plot Th

savemesh (Th, "Th.msh") ;
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A triangulation is built by the keyword buildmesh. This keyword calls a triangulation
subroutine based on the Delaunay test, which first triangulates with only the boundary
points, then adds internal points by subdividing the edges. How fine the triangulation
becomes is controlled by the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the
triangulation; as was briefly indicated in the previous chapter, a linear system is derived
from the discrete formulation whose size is the number of vertices plus the number of mid-
edges in the triangulation. The system is solved by a multi-frontal Gauss LU factorization
implemented in the package UMFPACK. The keyword plot will display both T}, and ¢ (remove
Th if ¢ only is desired) and the qualifier £i1l=true replaces the default option (colored
level lines) by a full color display. Results are on figure .

plot (phi,wait=true, fill=true); // Plot phi with full color display

Next we would like to check the results!
One simple way is to adjust the parameters so as to know the solutions. For instance on the
unit circle a=1 ; ¢, = sin(2? + y? — 1) solves the problem when

z=0, f=—4(cos(x® +y* — 1) — (2° + 9*)sin(2* + y*> — 1))

except that on I'y 0,0 = 2 instead of zero. So we will consider a non-homogeneous Neumann

condition and solve
/(V@-Vw:/fw—i—/ 2w YweV
Q Q I

We will do that with two triangulations, compute the L? error:

ez/w—m?
Q

and print the error in both cases as well as the log of their ratio an indication of the rate of

convergernce.

Example 3.2 Onenﬂnanerronedp) // file membranerror.edp
verbosity =0; // to remove all default output
real theta=4.+pi/3.;

real a=1.,b=1.; // the length of the semimajor axis and semiminor axis
border Gammal (t=0, theta) { x = a % cos(t); y = bxsin(t); }

border GammaZ2 (t=theta,2+pi) { x = a » cos(t); y = b*xsin(t); }

func f=-4x(cos(x"2+y"2-1) —(xX"2+y " 2)*sin(x"2+y~2-1));

func phiexact=sin(x"2+y~2-1);

real[int] L2error(2); // an array two values
for (int n=0;n<2;n++)
{
mesh Th=buildmesh (Gammal (20* (n+1) ) +Gamma2 (10* (n+1)));
fespace Vh (Th,P2);
Vh phi,w;

solve laplace (phi,w)=int2d(Th) (dx (phi) *dx (w) + dy (phi)*dy (w))
— int2d(Th) (f*w) - intld(Th,GammaZ2) (2*w)+ on (Gammal,phi=0);
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plot (Th,phi,wait=true, ps="membrane.eps"); // Plot Th and phi

L2error[n]= sqrt (int2d(Th) ( (phi-phiexact) "2));
}

for (int n=0;n<2;n++)
cout << " L2error " << n << " = "<< L2error[n] <<endl;

cout <<" convergence rate = "<< log(L2error[0]/L2error[l])/log(2.) <<endl;

the output is

L2error 0 = 0.00462991
L2error 1 = 0.00117128
convergence rate = 1.9829
times: compile 0.02s, execution 6.94s

We find a rate of 1.93591, which is not close enough to the 3 predicted by the theory. The
Geometry is always a polygon so we lose one order due to the geometry approximation in
O(h?)

Now if you are not satisfied with the .eps plot generated by FreeFem++ and you want to
use other graphic facilities, then you must store the solution in a file very much like in C++.
It will be useless if you don’t save the triangulation as well, consequently you must do

{
ofstream ff ("phi.txt");
ff << phil];
}

savemesh (Th, "Th.msh") ;

For the triangulation the name is important: it is the extension that determines the format.

Still that may not take you where you want. Here is an interface with gnuplot to produce
the right part of figure |3.2

// to build a gnuplot data file
{ ofstream ff ("graph.txt");
for (int i=0;i<Th.nt;i++)
{ for (int 3j=0; J <3; J++)
ff<<Th[i][j].x << " "<< Th[i][Jj].y<< " "<<phi[][Vh (i, j)]<<endl;
ff<<Th[1i][0].x << " "<< Th[i][0].y<< " "<<phi[][Vh(i,0)]1<<"\n\n\n"

}
}
We use the finite element numbering, where Wh (i, j) is the global index of j7" degrees of
freedom of triangle number <.
Then open gnuplot and do

set palette rgbformulae 30,31,32
splot "graph.txt" w 1 pal

This works with P2 and P1, but not with P1nc because the 3 first degrees of freedom of
P2 or P2 are on vertices and not with Plnc.
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3.2 Heat Exchanger

Summary Here we shall learn more about geometry input and triangulation files, as well
as read and write operations.

The problem Let {C;}; 2, be 2 thermal conductors within an enclosure Cy. The first one is
held at a constant temperature u; the other one has a given thermal conductivity ko 5 times
larger than the one of C\y. We assume that the border of enclosure Cj is held at temperature
20°C" and that we have waited long enough for thermal equilibrium.

In order to know wu(z) at any point = of the domain 2, we must solve

V- (kVu)=0 in Q, wur=g

where € is the interior of Cy minus the conductors C; and I" is the boundary of €2, that is
Co U4 Here g is any function of x equal to u; on C;. The second equation is a reduced form
for:

u=wu;on C;, 1=0,1.

The variational formulation for this problem is in the subspace H}(Q) C H'(Q) of functions
which have zero traces on I'.

u—g€ Hy() : /Vqu:() Vv € Hy ()
Q

Let us assume that Cj is a circle of radius 5 centered at the origin, C; are rectangles, C
being at the constant temperature u; = 60°C.

Example 3.3 (heatex.edp) // file heatex.edp
int C1=99, C2=98; // could be anything such that #0 and C1# C2
border CO (t=0,2+pi) {x=5%cos(t); y=5*sin(t);}

border C11 (t=0,1){ x=1+t; vy=3; label=C1;}
border C12 (t=0,1){ x=2; y=3-6*t; label=C1l;}
border C13(t=0,1){ x=2-t; vy=-3; label=C1;}
border C14 (t=0,1){ x=1; y=-3+6*xt; label=Cl;}
border C21 (t=0,1){ x=-2+t; vy=3; label=C2;}
border C22 (t=0,1){ x=-1; y=3-6%*t; label=C2;}
border C23(t=0,1){ x=-1-t; y=-3; label=C2;}
border C24 (t=0,1){ x=-2; y=-3+6xt; label=C2;}
plot ( C0(50) // to see the border of the domain

+ Cl1(5)+C12(20)+C13(5)+C14(20)
+ C21(=5)+C22(-20)+C23(=-5)+C24 (-20),
wait=true, ps="heatexb.eps");

mesh Th=buildmesh ( 0(5
+ Cll

0)
5)+C12 (20)+C13(5)+C14 (20)
+ C21(-5)

+C22 (=20)+C23 (=5)+C24 (-20)) ;
plot (Th,wait=1);
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fespace Vh (Th,P1l); Vh u,v;

Vh kappa=1+2x (x<-=1) * (x>=2) % (y<3) x (y>-3);

solve a(u,v)= int2d(Th) (kappax* (dx (u) *dx (v) +dy (u) *dy (v) ) )
+on (CO,u=20)+on (Cl,u=60) ;

plot (u,wait=true, value=true, fill=true, ps="heatex.eps");

Note the following:

e CO0 is oriented counterclockwise by ¢, while C1 is oriented clockwise and C2 is oriented
counterclockwise. This is why C1 is viewed as a hole by buildmesh.

e C1 and C2 are built by joining pieces of straight lines. To group them in the same
logical unit to input the boundary conditions in a readable way we assigned a label
on the boundaries. As said earlier, borders have an internal number corresponding
to their order in the program (check it by adding a cout<<C22; above). This is
essential to understand how a mesh can be output to a file and re-read (see below).

e As usual the mesh density is controlled by the number of vertices assigned to each
boundary. It is not possible to change the (uniform) distribution of vertices but a
piece of boundary can always be cut in two or more parts, for instance C12 could be
replaced by C121+C122:

// border Cl12(t=0,1) x=2; y=3-6+t; label=Cl;

border C121 (t=0,0.7){ x=2; y=3-6*t; label=Cl;}
border C122 (t=0.7,1){ x=2; y=3-6*t; label=Cl;}
. buildmesh(.../* C12(20) x/ + C121(12)+Cl122(8)+...);
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Figure 3.2: The heat exchanger

Exercise Use the symmetry of the problem with respect to the axes; triangulate only one
half of the domain, and set Dirichlet conditions on the vertical axis, and Neumann conditions
on the horizontal axis.
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Writing and reading triangulation files Suppose that at the end of the previous program
we added the line

savemesh (Th, "condensor.msh") ;

and then later on we write a similar program but we wish to read the mesh from that file.
Then this is how the condenser should be computed:

mesh Sh=readmesh ("condensor.msh");

fespace Wh(Sh,P1l); Wh us,vs;

solve b (us,vs)= int2d(Sh) (dx (us) *dx (vs) +dy (us) *dy (vs) )
+on(1,us=0)+on(99,us=1)+on (98, us=-1);

plot (us);

Note that the names of the boundaries are lost but either their internal number (in the case
of C0) or their label number (for C1 and C2) are kept.

3.3 Acoustics

Summary Here we go to grip with ill posed problems and eigenvalue problems
Pressure variations in air at rest are governed by the wave equation:

Pu

— —c*Au=0.

ot?
When the solution wave is monochromatic (and that depend on the boundary and initial
conditions), u is of the form u(z,t) = Re(v(x)e™) where v is a solution of Helmholtz’s
equation:

Ev+cAAv=0 in

v

—Ilr=g. 3.1
e =g (31)

where g is the source. Note the “4” sign in front of the Laplace operator and that k£ > 0 is
real. This sign may make the problem ill posed for some values of 7, a phenomenon called
“resonance”.

At resonance there are non-zero solutions even when g = 0. So the following program may
or may not work:

Example 3.4 (sound.edp) // file sound.edp
real kc2=1;
func g=y* (1-y);

border a0
border al
border a2

(t=0,1) x= 5; y= 1+2*xt ;}
(t=0,1)
(t=0,1)
border a3 (t=0,1)
(t=0,1)
(t=0,1)
(t=0,1)

x=5-2xt; y= 3 ;}

x= 3-2xt; y=3-2xt ;}
1-t; y=1 3}

x= 0; y= 1-t ;}
x=t; y= 0 ;}

x= 1+4xt; y=t ;}

border a4
border a5
border a6

ﬁﬁﬁﬁﬁﬁﬁ
i
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mesh Th=buildmesh( a0 (20) + al(20) + a2 (20)

+ a3(20) + a4(20) + a5(20) + a6(20));
fespace Vh (Th,P1);
Vh u,v;

solve sound(u,v)=int2d (Th) (uxv * kc2 - dx(u)+*dx(v) - dy(u)*dy(v))
- intld(Th, a4) (g*Vv);
plot (u, wait=1, ps="sound.eps");

Results are on Figure 3.3l But when kc2 is an eigenvalue of the problem, then the solution
is not unique: if u, # 0 is an eigen state, then for any given solution u + u. is another a
solution. To find all the u, one can do the following

real sigma = 20; // value of the shift

// OP = A - sigma B ; // the shifted matrix
varf op(ul,u2)= int2d(Th) ( dx(ul)xdx(u2) + dy(ul)xdy(u2) - sigmax ulxu2 );
varf b ([ul], [u2]) = int2d(Th) ( ul*u2 ) ; // no Boundary condition see note
1

matrix OP= op (Vh,Vh, solver=Crout, factorize=1);
matrix B= b (Vh,Vh,solver=CG, eps=1e-20);

int nev=2; // number of requested eigenvalues near sigma
real[int] ev (nev); // to store the nev eigenvalue
Vh[int] eV (nev); // to store the nev eigenvector

int k=EigenValue (OP, B, sym=true, sigma=sigma,value=ev, vector=eV,
tol=1le-10,maxit=0,ncv=0);

cout<<ev (0)<<" 2 eigen values "<<ev (l)<<endl;

v=eV[0];

plot (v, wait=1,ps="eigen.eps");

3.4 Thermal Conduction

Summary  Here we shall learn how to deal with a time dependent parabolic problem. We
shall also show how to treat an axisymmetric problem and show also how to deal with a
nonlinear problem.

How air cools a plate We seek the temperature distribution in a plate (0, Lz) x (0, Ly) x
(0, Lz) of rectangular cross section 2 = (0,6) x (0,1); the plate is surrounded by air at
temperature u. and initially at temperature v = wug + Fu;. In the plane perpendicular
to the plate at z = Lz/2, the temperature varies little with the coordinate z; as a first
approximation the problem is 2D.

We must solve the temperature equation in 2 in a time interval (0,T).
Ou—V - (kVu) =01in Q x (0,7),
u(z,y,0) = ug + zuy

/ﬁ% +a(u—u.)=0o0nT x(0,7). (3.2)
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Figure 3.3: Left: Amplitude of an acoustic signal coming from the left vertical wall. Right:
first eigen state (A = (k/c)* = 19.4256) close to 20 of eigenvalue problem :—Ap = A\p and

% —0onT
n

Here the diffusion x will take two values, one below the middle horizontal line and ten times
less above, so as to simulate a thermostat. The term «(u — u.) accounts for the loss of
temperature by convection in air. Mathematically this boundary condition is of Fourier (or
Robin, or mixed) type.

The variational formulation is in L*(0,7; H'(€)); in loose terms and after applying an

implicit Euler finite difference approximation in time; we shall seek u™(z, y) satisfying for all
w e HY(Q):

u — un—l
/(—w + kVu"Vw) + / a(u" —ue)w =0
0 ot r

func u0 =10+90*x/6;
func k = 1.8%(y<0.5)+0.2;
real ue = 25, alpha=0.25, T=5, dt=0.1 ;

mesh Th=square (30,5, [6*x,V]);
fespace Vh (Th,P1);
Vh u=u0,v,uold;

problem thermic (u,v)= int2d(Th) (u*xv/dt + k*(dx(u) * dx(v) + dy(u) * dy(v)))

(
+ intld(Th, 1, 3) (alphaxux*v)
- intld(Th, 1, 3) (alpha*uex*v)
- int2d(Th) (uoldxv/dt) + on(2,4,u=ul);

ofstream ff ("thermic.dat");

for (real t=0;t<T;t+=dt) {
uold=u; // uold =u" ' =u" =u
thermic; // here solve the thermic problem
ff<<u(3,0.5)<<endl;
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plot (u);
}

Notice that we must separate by hand the bilinear part from the linear one.

Notice also that the way we store the temperature at point (3,0.5) for all times in file
thermic.dat. Should a one dimensional plot be required, the same procedure can be
used. For instance to print « — g—;(x, 0.9) one would do

for (int i1=0;1i<20;i++) cout<<dy(u) (6.0%x1/20.0,0.9)<<endl;

Results are shown on Figure
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Figure 3.4: Temperature at T=4.9. Right: decay of temperature versus time at x=3, y=0.5

3.4.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take x = 1.
In cylindrical coordinates, the Laplace operator becomes (r is the distance to the axis, z is
the distance along the axis,; f polar angle in a fixed plane perpendicular to the axis):

1 1
Ay = ;&(r&«u) + ﬁﬁggu +02,.

Symmetry implies that we loose the dependence with respect to #; so the domain €2 is again
a rectangle |0, R[x]0, |[ . We take the convention of numbering of the edges as in square ()
(1 for the bottom horizontal ...); the problem is now:

royu — O.(ro.u) — 0,(rd,u) = 0 in €,
u(t = 0) = up + — (uy — u)

L,
ou
U‘F4 = Uy, 'LL|F2 = Uiy, Od('LL — ue) —+ a_n’FIUFS = 0. (33)
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Note that the PDE has been multiplied by r.
After discretization in time with an implicit scheme, with time steps dt, in the FreeFem++
syntax r becomes x and z becomes y and the problem is:

problem thermaxi (u,v)=int2d(Th) ((uxv/dt + dx(u)*dx(v) + dy(u)*dy(v)) *x)

+ intld(Th, 3) (alphaxxxuxv) - intld(Th, 3) (alphaxxxuex*v)

— int2d(Th) (uold*vxx/dt) + on(2,4,u=ul);
Notice that the bilinear form degenerates at x = 0. Still one can prove existence and
uniqueness for u and because of this degeneracy no boundary conditions need to be imposed
on I'y.

3.4.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth
power (Stefan’s Law). This adds to the loss by convection and gives the following boundary
condition:

m% + alu — ue) + c[(u 4+ 273)* — (ue +273)*] =0

The problem is nonlinear, and must be solved iteratively. If m denotes the iteration index,
a semi-linearization of the radiation condition gives

aum+1

on

because we have the identity a* — b* = (a — b)(a + b)(a® + b*). The iterative process will
work with v = u — u,.

(@™ = ug) + (@™ — ug) (W™ e + 546) (1 + 273)% + (ue + 273)2) = 0,

fespace Vh(Th,P1l); // finite element space
real rad=le-8, uek=ue+273; // def of the physical constants
Vh vold,w,v=ulO-ue, b;
problem thermradia (v, w)
= int2d(Th) (vxw/dt + kx (dx(v) » dx(w) + dy(v) * dy(w)))
+ intld(Th, 1, 3) (b*vw)
- int2d(Th) (vold*w/dt) + on(2,4,v=ul-ue);

for (real t=0;t<T;t+=dt) {
vold=v;
for (int m=0;m<5;m++) {
b= alpha + rad x (v + 2xuek) x ((v+tuek)” 2 + uek’2);
thermradia;
}

}
vold=v+ue; plot (vold);

3.5 Irrotational Fan Blade Flow and Thermal effects

Summary Here we will learn how to deal with a multi-physics system of PDEs on a Complex
geometry, with multiple meshes within one problem. We also learn how to manipulate the
region indicator and see how smooth is the projection operator from one mesh to another.
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Incompressible flow Without viscosity and vorticity incompressible flows have a velocity
given by:

oY

u= ( 8%%) , where 1 is solution of Ay =0
T om

This equation expresses both incompressibility (V-u = 0) and absence of vortex (V xu = 0).

As the fluid slips along the walls, normal velocity is zero, which means that 1) satisfies:

1 constant on the walls.

One can also prescribe the normal velocity at an artificial boundary, and this translates into
non constant Dirichlet data for .

Airfoil Let us consider a wing profile S in a uniform flow. Infinity will be represented by
a large circle C' where the flow is assumed to be of uniform velocity; one way to model this
problem is to write

Adj =0 in Qa 7/)|S - 07 ¢|C = UoY, (34)
where 00 =C U S

The NACA0012 Airfoil An equation for the upper surface of a NACA0012 (this is a clas-
sical wing profile in aerodynamics) is:

y = 0.17735v/z — 0.075597x — 0.21283622 4+ 0.173632> — 0.06254x".

Example 3.5 (potential.edp) // file potential.edp

real S=99;
border C(t=0,2xpi) { x=b%cos(t); vy=5xsin(t);}
border Splus(t=0,1){ x = t; y = 0.17735%xsqgrt(t)-0.075597xt
- 0.212836%x(£t72)+0.17363%(£t"3)-0.06254%(t"4); label=S;}
border Sminus (t=1,0){ x =t; y= —(0.17735%sqgrt(t)-0.075597+t
—0.212836x(t"2)+0.17363%(£"3)-0.06254%x(t"4)); label=S;}
mesh Th= buildmesh (C (50) +Splus (70) +Sminus (70)) ;
fespace Vh (Th,P2); Vh psi,w;

solve potential (psi,w)=int2d (Th) (dx (psi) »dx (w) +dy (psi) »dy (w) ) +
on(C,psi = y) + on(S,psi=0);

plot (psi,wait=1);

A zoom of the streamlines are shown on Figure [3.5]



32 CHAPTER 3. LEARNING BY EXAMPLES

\\\\\\\\

Figure 3.5: Zoom around the NACA0012 airfoil showing the streamlines (curve ¢ = con-
stant). To obtain such a plot use the interactive graphic command: “+” and p. Right:
temperature distribution at time T=25 (now the maximum is at 90 instead of 120). Note
that an incidence angle has been added here (see Chapter 9).

3.5.1 Heat Convection around the airfoil

Now let us assume that the airfoil is hot and that air is there to cool it. Much like in the
previous section the heat equation for the temperature v is

0
O —V - (kVv) +u-Vo =0, v(t=0)=uw, £|C:0

But now the domain is outside AND inside S and « takes a different value in air and in steel.
Furthermore there is convection of heat by the flow, hence the term u - Vv above. Consider
the following, to be plugged at the end of the previous program:

border D (t=0,2) {x=1+t;y=0;} // added to have a fine mesh at trail
mesh Sh = buildmesh (C (25) +Splus (-90)+Sminus (-90)+D (200));
fespace Wh(Sh,P1l); Wh v,vv;
int steel=Sh(0.5,0).region, air=Sh(-1,0) .region;
fespace WO (Sh,PO0) ;
WO k=0.01% (region==air)+0.1l* (region==steel);
WO ul=dy (psi) » (region==air), u2=-dx(psi)* (region==air);
Wh vold = 120« (region==steel) ;
real dt=0.05, nbT=50;
int i;
problem thermic (v,vv,init=i,solver=LU)= int2d(Sh) (vxvv/dt
+ kx(dx(v) x dx(vv) + dy(v) x dy(vv))
+ 10% (ulxdx (v)+u2+dy (v) ) xvv) - int2d (Sh) (voldxvv/dt);
for (i=0; i<nbT; i++) {
v=vold; thermic;
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plot (v);
}

Notice here

e how steel and air are identified by the mesh parameter region which is defined when
buildmesh is called and takes an integer value corresponding to each connected com-
ponent of €2;

e how the convection terms are added without upwinding. Upwinding is necessary when
the Pecley number |u|L/k is large (here is a typical length scale), The factor 10 in
front of the convection terms is a quick way of multiplying the velocity by 10 (else it
is too slow to see something).

e The solver is Gauss’ LU factorization and when init# 0 the LU decomposition is
reused so it is much faster after the first iteration.

3.6 Pure Convection : The Rotating Hill

Summary  Here we will present two methods for upwinding for the simplest convection
problem. We will learn about Characteristics-Galerkin and Discontinuous-Galerkin Finite
Element Methods.

Let €2 be the unit disk centered at 0; consider the rotation vector field

u = [ul, u2|, Uy =1y, Uy = —1I.
Pure convection by w is
dc+uVe=0in Qx(0,T) ct=0)=c in Q.
The exact solution c(xy,t) at time ¢ en point z; is given by
c(xs,t) = (z,0)
where z; is the particle path in the flow starting at point x at time 0. So z; are solutions of

d(t — ZEt)
dt

iy =u(xy), , x40 =x, where z =

The ODE are reversible and we want the solution at point x at time ¢ ( not at point x;) the
initial point is x_;, and we have

c(z,t) = " (x_4,0)

The game consists in solving the equation until 7" = 27, that is for a full revolution and to
compare the final solution with the initial one; they should be equal.
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Solution by a Characteristics-Galerkin Method InFreeFem++ thereis an operator called
convect ([ul,u2],dt, c) which compute co X with X is the convect field defined by
X(x) = x4 and where x, is particule path in the steady state velocity field u = [ul, u2]
starting at point = at time 7 = 0, so x, is solution of the following ODE:

T =u(x;), Tr—o==1x.

When wu is piecewise constant; this is possible because z, is then a polygonal curve which
can be computed exactly and the solution exists always when u is divergence free; convect
returns c(zq) = C o X.

Example 3.6 (convects.edp) // file convects.edp

border C(t=0, 2+pi) { x=cos(t); y=sin(t); };
mesh Th = buildmesh (C(100));

fespace Uh (Th,P1);

Uh cold, ¢ = exp(-10*((x-0.3)"2 +(y-0.3)"72));

real dt = 0.17,t=0;

Uh ul =y, u2 = -x;
for (int m=0; m<2*pi/dt ; m++) {
t += dt; cold=c;

c=convect ([ul,u2],-dt,cold);
plot (¢, cm=" t="+t + ", min=" + c[].min + ", max=" + c[].max);

Remark 4 3D plots can be done by adding the qualifyer dim=38" to the plot instruction.

The method is very powerful but has two limitations: a/ it is not conservative, b/ it may
diverge in rare cases when |u| is too small due to quadrature error.

Solution by Discontinuous-Galerkin FEM Discontinuous Galerkin methods take advantage
of the discontinuities of ¢ at the edges to build upwinding. There are may formulations
possible. We shall implement here the so-called dual-PP¢ formulation (see Ern[L1]):

Mt — en 1
/(—+u-Vc)w—|—/(a|n-u|——n-u)[c]w:/ In - ulcw Yw
0 ot 2 B

E r

where E is the set of inner edges and Er is the set of boundary edges where u-n < 0 (in our
case there is no such edges). Finally [c] is the jump of ¢ across an edge with the convention
that ¢ refers to the value on the right of the oriented edge.

Example 3.7 (convects_end.edp) // file convects.edp
fespace Vh (Th,Pldc);

Vh w, ccold, vl =y, v2 = -x, cc = exp(-10*((x-0.3)"2 +(y-0.3)"72));
real u, al=0.5; dt = 0.05;
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macro n() (N.x*xvI+N.y=*v2) // Macro without parameter
problem Adual (cc,w) =
int2d (Th) ((cc/dt+ (vl+dx (cc)+v2+dy (cc))) *w)
+ intalledges (Th) ( (1-nTonEdge) *wx (alxabs (n)-n/2) »jump (cc) )
// — intld(Th,C) ( (n<0) xabs (n) xcc*w) // unused because cc=0 on 0~
— int2d (Th) (ccoldxw/dt);

for ( t=0; t< 2xpi ; t+=dt)
{

ccold=cc; Adual;

plot (cc, fill=1,cmm="t="+t + ", min=" + cc[].min + ", max=" + «cc[].max);
}i
real [int] wviso=[-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.11;
plot (c,wait=1,£fill=1,ps="convectCG.eps",viso=viso);
plot (c,wait=1,£fill=1,ps="convectDG.eps",viso=viso);

Notice the new keywords, intalledges to integrate on all edges of all triangles

intalledges(Th) = Z/ (3.5)
oT

T€ETh

(so all internal edges are see two times ), n'TonEdge which is one if the triangle has a boundary
edge and zero otherwise, jump to implement [¢]. Results of both methods are shown on
Figure [3.6] with identical levels for the level line; this is done with the plot-modifier viso.
Notice also the macro where the parameter u is not used (but the syntax needs one) and
which ends with a //; it simply replaces the name n by (N.x*v1+N.y*v2). As easily
guessed N.x,N.y is the normal to the edge.

uuuuuuuuuuuuuuuu

Figure 3.6: The rotated hill after one revolution, left with Characteristics-Galerkin, on the
right with Discontinuous P; Galerkin FEM.

Now if you think that DG is too slow try this
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// the same DG very much faster
varf aadual (cc,w) = int2d(Th) ((cc/dt+ (vlixdx(cc)+v2xdy(cc))) *w)
+ intalledges (Th) ( (1-nTonEdge) *wx (al*xabs (n) -n/2) «jump (cc) ) ;

varf bbdual (ccold,w) = - int2d(Th) (ccold*w/dt);
matrix AA= aadual (Vh,Vh);
matrix BB = bbdual (Vh,Vh);
set (AA,init=t,solver=sparsesolver);
Vh rhs=0;
for ( t=0; t< 2¥pi ; t+=dt)
{

ccold=cc;

rhs[] = BBx ccold[];

cc[] = AA"-1xrhs[];

plot (cc, £i11=0, cmm="t="+t + ", min=" + cc[].min + ", max=" + cc[].max);

}i

Notice the new keyword set to specify a solver in this framework; the modifier init is used
to tel the solver that the matrix has not changed (init=true), and the name parameter are
the same that in problem definition (see. :

Finite Volume Methods can also be handled with FreeFem++ but it requires program-
ming. For instance the Py — P, Finite Volume Method of Dervieux et al associates to each
Py function ¢! a Py function ¢® with constant value around each vertex ¢* equal to ¢!(¢*) on
the cell o; made by all the medians of all triangles having ¢* as vertex. Then upwinding is
done by taking left or right values at the median:

1 n n — .
/&(01 +1—cl)~|—/8 w-nc- =0 Vi

It can be programmed as

load "mat_dervieux"; // external module in C++ must be loaded
border a(t=0, 2+pi){ x = cos(t); y = sin(t); }
mesh th = buildmesh (a (100));

fespace Vh (th,P1l);

Vh vh,vold,ul =y, u2 = -x;
Vh v = exp (=10 ((x-0.3)"2 +(y-0.3)72)), vWall=0, rhs =0;

real dt = 0.025;

// qgflpTlump means mass lumping is used
problem FVM(v,vh) = int2d(th,gft=gflpTlump) (v+vh/dt)
- int2d (th,gft=gqflpTlump) (vold*vh/dt)
+ intld(th,a) (((Ul*N.x+u2*N.y)<0) » (Ul*N.x+u2+N.y) »viWall+vh)

+ rhs[] ;

matrix A;
MatUpWindO (A, th,vold, [ul,u2]);

for ( int t=0; t< 2xpi ; t+=dt) {
vold=v;
rhs[] = A x vold[] ; FVM;
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plot (v, wait=0);
}i

the mass lumping parameter forces a quadrature formula with Gauss points at the vertices
so as to make the mass matrix diagonal; the linear system solved by a conjugate gradient
method for instance will then converge in one or two iterations.

The right hand side rhs is computed by an external C++ function MatUpWindO (. . .)
which is programmed as

// computes matrix a on a triangle for the Dervieux FVM
int fvmP1P0 (double g[3][2], // the 3 vertices of a triangle T
double ul2], // convection velocity on T
double c[3], // the P1 function on T
double a[3][3], // output matrix
double where[3] ) // where>0 means we’re on the boundary
{
for (int 1=0;1i<3;1i++) for(int j=0; j<3; j++) alil[]j]1=0;
for (int i=0;i<3;1i++) {
int ip = (i+1)%3, ipp =(ip+l)%3;
double unl =-((q[ip] [1]1+q[i][1]-2xglipp][1])*ul0]
—(qlip] [01+gq[i] [0]-2*q[ipp] [0])*ull])/6;
if (unlL>0) { ali]l[i] += unLl; alip][i]-=unL;}
else{ al[i][ip] += unl; alip] [ip]l—-=unkl;}
if (where[i]&&where[ip]) { // this is a boundary edge
unL=((q[ip] [1]-q[i][1])*ul[0] —(gl[ip]l[01-g[i][0])=*ull])/2;

if (unL>0) { a[il[i]+=unL; alip] [ip]+=unl;}

}

return 1;

}

It must be inserted into a larger .cpp file, shown in Appendix A, which is the load module
linked to FreeFem++ .

3.7 The System of elasticity

Elasticity Solid objects deform under the action of applied forces: a point in the solid,
originally at (x,y, z) will come to (X,Y, Z) after some time; the vector u = (uy, us, uz) =
(X —2,Y —y, Z — z) is called the displacement. When the displacement is small and the
solid is elastic, Hooke’s law gives a relationship between the stress tensor o(u) = (0;;(u))
and the strain tensor e(u) = €;;(u)

0ij(u) = Adi; V.u + 2pei;(u),
where the Kronecker symbol d;; = 1 if ¢ = j, 0 otherwise, with

1,0u; Ou;
eij(u) = (5~ + 5 ),
j €



38 CHAPTER 3. LEARNING BY EXAMPLES

and where A, 4 are two constants that describe the mechanical properties of the solid, and
are themselves related to the better known constants E, Young’s modulus, and v, Poisson’s
ratio:

B FE N Ev
oo+ T 0+v)d-20)

Lamé’s system Let us consider a beam with axis Oz and with perpendicular section 2. The
components along z and y of the strain u(z) in a section €2 subject to forces f perpendicular
to the axis are governed by

—pAu— (p+AN)V(Vaa)=f in Q,

where A\, i are the Lamé coefficients introduced above.
Remark, we do not used this equation because the associated variationnal form does not
give the right boundary condition, we simply use

—div(oc) =f inQ

where the corresponding variationnal form is:

/Qa(u):e(v)da:—/ﬂvfdx:();

where : denote the tensor scalar product, i.e. a : b = ZU aijbij.
So the variationnal form can be written as :

/ AV.uV.o +2ue(u) : e(v) de — / vfdr=0;
Q

Q

Example Consider elastic plate with the undeformed rectangle shape [0,20] x [—1,1]. The
body force is the gravity force f and the boundary force g is zero on lower, upper and right
sides. The left vertical sides of the beam is fixed. The boundary conditions are

on = g:O on Fl,F4,F3,

u = 0 on I'y
Here u = (u,v) has two components.

The above two equations are strongly coupled by their mixed derivatives, and thus any

)

iterative solution on each of the components is risky. One should rather use FreeFem++ s
system approach and write:

Example 3.8 (lame.edp) // file lame.edp
mesh Th=square (10,10, [20%x,2%y-1]);

fespace Vh (Th,P2);

Vh u,v,uu,vv;

real sqrt2=sqrt(2.);

macro epsilon (ul,u2) [dx (ul),dy (u2), (dy (ul)+dx (u2))/sqrt2] // EOM
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// the sqrt2 is because we want: epsilon(ul,u2)’* epsilon(vl,vZ2)

==¢(u) : ¢(v)

macro div(u,v) ( dx(u)+dy(v) ) // EOM

real E = 21e5, nu = 0.28, mu= E/ (2% (1+nu));
real lambda = Exnu/ ((l+nu)*(1-2%nu)), £ = -1; //

solve lame([u,v], [uu,vv])= int2d(Th) (
lambda*div (u, v) xdiv (uu, vv)
+2.+xmux* ( epsilon(u,v)’+epsilon (uu,vv) ) )
- int2d(Th) (f*xvv)
+ on(4,u=0,v=0);

real coef=100;

plot ([u,v],wait=1,ps="lamevect.eps", coef=coef);

mesh thl = movemesh (Th, [xt+tuxcoef, y+tv*coefl]);
plot (thl,wait=1,ps="lamedeform.eps");

real dxmin = ul].min;

real dymin = v[].min;

cout << " - dep. max x = "<< dxmin<< " y=" << dymin << endl;
cout << " dep. (20,0) =" << u(20,0) << " " << v(20,0) << endl;

The numerical results are shown on figure [3.7] and the output is:

—-— square mesh : nb vertices =121 , nb triangles = 200 , nb boundary edges 40
-— Solve : min -0.00174137 max 0.00174105
min -0.0263154 max 1.47016e-29
- dep. max x = -0.00174137 y=-0.0263154
dep. (20,0) = -1.8096e-07 -0.0263154

times: compile 0.010219s, execution 1.5827s

3.8 The System of Stokes for Fluids

In the case of a flow invariant with respect to the third coordinate (two-dimensional flow),
flows at low Reynolds number (for instance micro-organisms) satisfy,

—Au+Vp=0
V-u=0

where uw = (u1, ug) is the fluid velocity and p its pressure.

The driven cavity is a standard test. It is a box full of liquid with its lid moving horizontally
at speed one. The pressure and the velocity must be discretized in compatible fintie element
spaces for the LBB conditions to be satisfied:

\Y
sup (4, Vp) > Blul Yu € U,
peP, |p|

// file stokes.edp
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Figure 3.7: Solution of Lamé’s equations for elasticity for a 2D beam deflected by its own
weight and clamped by its left vertical side; result are shown with a amplification factor
equal to 100. Remark: the size of the arrow is automatically bound, but the color gives the
real length

int n=3;
mesh Th=square (10xn,10*n);
fespace Uh(Th,P1lb); Uh u,v,uu,vv;
fespace Ph(Th,P1l); Ph p,pp;
solve stokes ([u,v,pl, [uu,vv,ppl) =
int2d (Th) (dx (u) *dx (uu) +dy (u) *dy (uu) + dx(v) xdx(vv)+ dy (v) xdy (vv)
+ dx (p) *uu + dy(p)*vv + pp* (dx(u)+dy(v))
- 1le-10*p*pp)
+ on(l,2,4,u=0,v=0) + on(3,u=1,v=0);
plot ([u,Vv],p,wait=1);

Remark, we add a stabilization term -10e-10*p*pp to fixe the constant part of the pressure.

Results are shown on figure |3.8

3.9 A Projection Algorithm for the Navier-Stokes equations

Summary Fluid flows require good algorithms and good triangultions. We show here an
example of a complex algorithm and or first example of mesh adaptation.

An incompressible viscous fluid satisfies:
ou+u-Vu+Vp—vAu=0, V-u=0 1in Qx]0,T],

uli—o = u°, ulp = ur.
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Figure 3.8: Solution of Stokes’ equations for the driven cavity problem, showing the velocity

field and the pressure level lines.

A possible algorithm, proposed by Chorin, is

1
ﬁ[um+1 —umo X" + Vp™" —vAu™ = 0,

—Ap"tt = -V . umoX™, 9,p" =0,

where uwoX (z) = u(z — u(x)dt) since dyu + u - Vu is approximated by the method of charac-

teristics, as in the previous section.

An improvement over Chorin’s algorithm, given by Rannacher, is to compute a correction,

q, to the pressure (the overline denotes the mean over )
—Aqg=V-u—-V-u

and define

u"th =a+Vgdt, prtt=p" —q-p"—¢

where @ is the (u™*! v™*1) of Chorin’s algorithm.

The backward facing step The geometry is that of a channel with a backward facing step
so that the inflow section is smaller than the outflow section. This geometry produces a fluid

recirculation zone that must be captured correctly.

This can only be done if the triangulation is sufficiently fine, or well adapted to the flow.

Remark (FH), The are a technical difficulty is the example, the discret flow flux must be 0

and in the previous version this is not the case, the correction is not so simple.

Example 3.9 (NSprojection.edp)

/7

file NSprojection.edp
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border a0 (t=1,0){ x=0; y=t; label=1;}

border al (t=0,1){ x=2xt; y=0; label=2;}

border a2 (t=0,1){ x=2; y=-t/2; label=2;}

border a3 (t=0,1){ x=2+18%t"1.2; vy=-0.5; label=2;}

border a4 (t=0,1){ x=20; y=-0.5+1.5%t; label=3;}

border a5 (t=1,0){ x=20+t; y=1; label=4;}

int n=1;

mesh Th= buildmesh (a0 (3xn)+al (20*n)+a2 (10*n)+a3 (150*n)+ad (5xn)+a5(100*n));
plot (Th);

fespace Vh (Th,P1);

real nu = 0.0025, dt = 0.2; // Reynolds=200
func uBCin = 4xy*x (1l-y)*(y>0)*(x<2) ;

func uBCout = 4./1. 5*(y+0 5)*(1- ) * (x>19);

Vh w,u = uBCin, v =0, p = 0, g=0;

real area= int2d(Th) (1.);

Vh ubc = uBCin + uBCout;
real influx0 = intld(Th,1l) (ubc*N.x), // FH add
outflux0 = intld(Th,3) (ubcxN.x); // FH add

verbosity=1;
for (int n=0;n<300;n++) {

Vh uvold = u, vold = v, pold=p;
Vh f=convect ([uold,vold],-dt,uold);

real outflux = intld(Th,3) (£*N.x); // FH add
f = £ - (influxO+outflux) /outflux0 x uBCout; // FH add
outflux = intld(Th,3) (£xN.x); // FH add
assert ( abs (influxO+outflux) < le-10); // WARNING the flux must be 0

solve pb4du(u,w,init=n, solver=LU)

=int2d( h) (usw/dt +nux (dx (u) *dx (w) +dy (u) *dy (w) ) )
—-int2d (Th) ( (convect ([uold, vold], —-dt,uold) /dt-dx (p)) *w)
+ on(l,u = 4xy*(l-y)) + on(2,4,u = 0) + on(3,u=f);

plot (u);

solve pb4dv(v,w,init=n, solver=LU)
= int2d(Th) (v+w/dt +nux (dx (v) *dx (w) +dy (v) xdy (w) ) )
-int2d(Th) ( (convect ([uold, vold],-dt,vold) /dt-dy (p)) *w)
+ton(l1,2,3,4,v = 0);

real meandiv = int2d(Th) (dx (u)+dy (v)) /area;

solve pbidp(q,w,init=n, solver=LU)= int2d(Th) (dx (q) *dx (w) +dy (q) *dy (w) )
- int2d(Th) ((dx (u)+ dy(v)-meandiv)*w/dt)+ on(3,g=0);

real meanpq = int2d(Th) (pold - q)/area;
f (n%$50==49) {
Th = adaptmesh (Th, [u,Vv],g,err=0.04,nbvx=100000) ;
plot (Th, wait=true);

ubc = uBCin + uBCout; // reinterpolate B.C.
influx0 = intld(Th, 1) (ubc*N.x); // FH add
outflux0 = intl1ld(Th, 3) (ubc*N.x); // FH add

= pold-g-meanpqg;
= u + dx(q)=*dt;
= v + dy(q)=*dt;

< € T -«
|
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real err = sqrt (int2d(Th) (square (u-uold)+square (v-vold))/Th.area) ;
cout << " diter " << n << " Err L2 = " << err << endl;

if (err < 1le-3) break;

}

plot (p,wait=1,ps="NSprojP.eps");

plot (u,wait=1,ps="NSprojU.eps");

Figure 3.9: Rannacher’s projection algorithm: result on an adapted mesh (top) showing
the pressure (middle) and the horizontal velocity u at Reynolds 400.

We show in figure [3.9) the numerical results obtained for a Reynolds number of 400 where
mesh adaptation is done after 50 iterations on the first mesh.

3.10 Newton Method for the Steady Navier-Stokes equations

The problem is find the velocity field w = (u;)%, and the pressure p of a Flow satisfying in
the domain  C R¥(d = 2, 3):

(u-V)u—vAu+Vp = 0,

where v is the viscosity of the fluid, V = (9;)%,, the dot product is -, and A = V - V with
the some boundary conditions ( w is given on I')

The weak form is find u, p such than for Vv (zero on I'), and Vg

/((u-V)u).v+qu:Vv—pV~v—qV-u-O (3.6)
Q
The Newton Algorithm to solve nonlinear Problem is
Find u € V such that F'(u) =0 where F': V — V.
1. choose ug € R™ | ;
2. for (i =054 jniter; i =i+ 1)

(a) solve DF(u;)w; = F(u;);

(b> U1 = U; — Wy,
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break ||w;|| < e.

Where DF(u) is the differential of F' at point u, this is a linear application such that:

F(u+9) = F(u)+ DF(u)d + o(9)
For Navier Stokes, F' and DF are :

F(u,p):/Q (u-V)u)v+vVu:Vo—pV-v—qV-u

DF(u,p)(du,dp) = /Q ((6u-V)u)v+ ((u-V)du).v
+ vVéu: Vv —pV-v—q¢V-du

So the Newton algorithm become

Example 3.10 (NSNewton.edp)
for( n=0;n< 15;n++)
{ solve Oseen([dul,duz,dp]l, [Vvl,Vv2,q]) =

int2d (Th) ( nux (Grad(dul,du2)’*Grad(vl,v2) )
UgradV (dul,duz2, ul, u2)’x[vl,v2]
Ugradv( ul, uz2,dul,du2)’x[vl,v2]
— div(dul,du2)xg - div(vl,v2)*dp

+ +

- le-8+dpxqg // stabilization term

)
- int2d(Th) ( nu*(Grad(ul,u2)’*Grad(vl,v2) )
+ Ugradv(ul,u2, ul, u2)’*[vl,v2]
- div(ul,u2)*gqg - div(vl,v2)x*p
)
+ on(l,dul=0,du2=0) ;
ull[] -= dull]l; w2[] -= du2l]l; pl]l -=dpll;
err= dul[].linfty + du2[].linfty + dpl[].linfty;
if (err < eps) break;

if( n>3 && err > 10.) break; // blowup 2???

}
With the operator:

macro Grad(ul,u2) [ dx(ul),dy(ul) , dx(u2),dy(u2) 1]
macro UgradV(ul,u2,vl,v2) [ [ul,u2]’x[dx(v]l),dy(v1)] ,

[ul,u2]’ *[dx(v2),dy(v2)] ]
macro div (ul,u?2) (dx (ul) +dy (u2))

We build a computation mesh the exterior of a 2d cylinder.

real R = 5,L=15;

border cc (t=0,2+pi){ x=cos(t)/2;y=sin(t)/2;label=1;}

border ce (t=pi/2,3*pi/2) { x=cos(t)*R;y=sin(t)*R; label=1;}

border beb (tt=0,1) { real t=tt"1.2; x= txL; y= —-R; label = 1;}
border beu(tt=1,0) { real t=tt"1.2; x= t«L; y= R; label = 1;}
border beo (t=-R,R) { x= L; y= t; label = 0;}

border bei (t=-R/4,R/4) { x= L/2; y= t; label = 0;}

mesh Th=buildmesh (cc (-50)+ce (30)+beb (20)+beu(20) +beo (10)+bei (10));
plot (Th);

/7

/7
/7
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// bounding box for the plot
func bb=[[-1,-21,14,21];

/ FE Space Taylor Hood

fespace Xh(Th,P2); // for volicity
fespace Mh (Th,P1); // for pressure
Xh ul,u2,vl,v2,dul,du2,ulp,ulp;

Mh p,q,dp, pp;

// intial guess with B.C.
ul = ( x"2+y"2) > 2;

Finally we use trick to make continuation on the viscosity v, because the Newton method
blowup owe start with the final viscosity v

// Physical parameter
real nu= 1./50, nufinal=1/200. ,cnu=0.5;
// stop test for Newton
real eps=le-6;
verbosity=0;
while (1) // Loop on viscosity
{ int n;
real err=0; // err on Newton algo
put the new the Newton algo here
if (err < eps)
{ // converge decrease v (more difficult)
plot ([ul,u2],p,wait=1,cmm=" rey = " + 1./nu , coef=0.3,bb=bb);
if( nu == nufinal) Dbreak;
if( n < 4) cnu=cnu”1l.5; // fast converge => change faster
nu = max (nufinal, nux cnu); // new vicosity
ulp=ul; u2p=u2; pPp=p; // save correct solution
}
else
{ // blowup increase v (more simple)
assert (cnu< 0.95); // the method finally blowup
nu = nu/cnu; // get previous value of viscosity
cnu= cnu” (1./1.5); // no conv. => change lower
nu = nu* cnu; // new viscosity
cout << " restart nu = " << nu << " Rey= "<< l./nu << " (cnu = " << cnu <<
) \n";
// restore a correct solution
ul=ulp;
uz2=uzp;

pP=pp;
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Figure 3.10: Mesh and the velocity and pressure at Reynolds 200

3.11 A Large Fluid Problem

A friend of one of us in Auroville-India was building a ramp to access an air conditioned
room. As I was visiting the construction site he told me that he expected to cool air escaping
by the door to the room to slide down the ramp and refrigerate the feet of the coming visitors.
I told him "no way” and decided to check numerically. The results are on the front page of
this book.

The fluid velocity and pressure are solution of the Navier-Stokes equations with varying
density function of the temperature.

The geometry is trapezoidal with prescribed inflow made of cool air at the bottom and
warm air above and so are the initial conditions; there is free outflow, slip velocity at the top
(artificial) boundary and no-slip at the bottom. However the Navier-Stokes cum temperature
equations have a RANS £k — € model and a Boussinesq approximation for the buoyancy. This
comes to

9,0 +uVO —V - (k}VO) =0

Ou+ uVu —V - (urVu) + Vp+e(d —6y)es, V-u=0
2

Hr = Cu =y FT = RET

Ok +uVk + e — V- (urVk) = %T\Vu + VT
2
Oe + uVe + 02% — S—EV (urVe) = %k:|Vu +Vu' > =0 (3.7)
m
We use a time discretization which preserves positivity and uses the method of characteristics
(X™(x) =z —u™(z)dt)

9m+1 o Hm o Xm) . V . (K?Veerl) =0

w
3
=

BT o X 4 k:mHZ—m V. (VETY) = ’%mm VT2
Ce

gmtl o em OXm) + 62€m+1€_ _ Le (,anfVEerl) _ ﬁkm|vum + VumT‘2

(

(W™ — o X™) = V- (WEVU™T) + Vp ™t 4 e(0™ — O)ey, V-u™ =0
(

( k™ ¢, 2

|~ -S| %] -
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km+&2
m+1 m+1 __ m+1
Pr' =G KT = klg (3.8)

In variational form and with appropriated boundary conditions the problem is:

real 1L=6;

border a(t=0,1) {x=t; y=0 ;}

border bb (t=0,14) {x=1+t; y= - 0.1%t ;}
border c(t=-1.4,1L) {x=15; y=t ;}
border dd (t=15,0){x=t ; yv = L;}
border ee (t=L,0.5){ x=0; y=t ;}
border ff (t=0.5,0){ x=0; y=t ;}

int n—8,

mesh Th=buildmesh (aa (n)+bb (9*n) + cc(4*n) + dd(1l0*n)+ee(6*n) + f£f(n));
real sO=clock();

fespace Vh2 (Th,P1b); // velocity space
fespace Vh(Th,P1l); // pressure space
fespace VOh (Th,PO) ; // for gradients
Vh2 u2,v2,upl=0,up2=0;

Vh2 ul,vl;

Vh ulx=0,uly,u2x,uly, vv;

real reylnods=500;
// cout << " Enter the reynolds number :"; cin >> reylnods;
assert (reylnods>1 && reylnods < 100000);
upl=0;
up2=0;
func g=(x)* (1-x) *4; // inflow
Vh p=0,q, templ, temp=35, k=0.001,k1,ep=0.0001,epl;
VOh muT=1,prodk,prode, kappa=0.25e-4, stress;
real alpha=0, eee=9.81/303, clm = 1.3/0.09 ;
real nu=1, numu=nu/sqgrt( 0.09), nuep=pow(nu,1.5)/4.1;
int i=0,iter=0;

real dt=0;
problem TEMPER (temp,q) = // temperature equation
int2d (Th) (
alphaxtempxg + kappa *» ( dx(temp)*dx(q) + dy(temp)*dy(q) ))
// + intld(Th,aa,bb) (temp+g* 0.1)

+ int2d(Th) ( —-alphaxconvect ([upl,up2],-dt,templ)*xq )

+ on(ff, temp=25)

+ on (aa,bb,temp=35) ;
problem kine (k,q)= // get the kinetic turbulent energy

int2d (Th) (
(epl/kl+alpha) *kxgq + muT » ( dx(k)=*dx(qg) + dy(k)=*dy(g) ))
// + intld(Th,aa,bb) (temp+g+0.1)
+ int2d(Th) ( prodkxg-alphaxconvect ([upl,up2],-dt,kl)*qg )
+ on(ff,k=0.0001) + on(aa,bb, k=numuxstress) ;

problem viscturb (ep, q)= // get the rate of turbulent viscous energy
int2d (Th) (
(1.92xepl/kl+alpha) xep*gq + clmxmuT *» ( dx(ep)*dx(qg) + dy(ep)*dy(q)
))
// + intld(Th,aa,bb) (temp+g+0.1)
+ int2d(Th) ( prodexg-alphaxconvect ([upl,up2],-dt,epl)*qg )
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+ on(ff,ep= 0.0001) + on(aa,bb,ep=nuepx*pow(stress,1.5)) ;

solve NS ([ul,u2,p],I[Vvl,v2,9]) = // Navier-Stokes k—-epsilon and Boussinesqg
int2d (Th) (
alphax* ( ulxvl + u2xv2)
+ muT * (dx(ul)*dx(vl)+dy(ul)*xdy(vl)+dx (u2) xdx (v2)+dy (u2) xdy (v2))
// 2xdx (ul) »dx (vl) + 2xdy(u2) xdy (v2)+(dy (ul)+dx (u2)) (dy (vl)+dx(vZ2)))
+ pxg* (0.000001)
- pxdx(vl) - pxdy(v2)
- dx (ul)xg - dy(u2)xq

)

+ intld(Th, aa,bb,dd) (ul*vl* 0.1)

+ int2d(T

h)

(eeex (temp—-35) *vl —alphaxconvect ([upl,up2],-dt,upl)*vl

—alphaxconvect ([upl,up2], -dt,up2) xv2 )

+ on(ff,ul=3,u2=0)

+ on(ee,ul=0,u2=0)

+ on(aa,dd,u2=0)

+ on(bb,u2= -upl*N.x/N.y)

+ on(cc,u2=0) ;
plot (coef=0.2,cmm=" [ul,u2] et p ",p,[ul,u2],ps="StokesP2Pl.eps",value=1l,wait=1);

{

real[int]

xx (21)

Yy (21) ,pp(21);

for (int i=0;i<21;i++)

{

yylil=

i/20.;

xx[1]=ul(0.5,1/20.);
pplil=p(i/20.,0.999);

}

cout

dt = 0.05;
int nbiter

real coefdt

<< " " << yy << endl;

:3;

= 0.25"

// plot ([xx,yy],wait=1,cmm="ul x=0.5 cup");
// plot ([yy,ppl,wait=1,cmm="pressure y=0.999 cup");

(1./nbiter);

real coefcut = 0.25" (1./nbiter) , cut=0.01;
real tol=0.5,coeftol = 0.57 (1./nbiter);
nu=1./reylnods;

for (iter=1l;iter<=nbiter;iter++)

{

cout << "

{

dt = " << dt << " mmmmmmm " << endl;
alpha=1/dt;
for (i=0;1i<=500;i++)

upl=ul;
up2=uz;
templ=max (temp, 25) ;

templ=min (templ, 35);

kl=k;

epl=ep;

muT=0.09+k«*k/ep;

NS; plot ([ul,u2],wait=1); // Solves Navier—-Stokes
prode =0.126+k=* (pow (2+dx (ul),2)+pow (2*dy (u2),2)+2+xpow (dx (u2) +dy (ul),2))/2;
prodk= prodexk/ep*0.09/0.126;
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kappa=muT/0.41;
stress=abs (dy (ul));

kine; plot (k,wait=1);
viscturb; plot (ep,wait=1);

TEMPER; // solves temperature equation
if (! (1 % 5)){
plot (temp,value=1, fill=true,ps="temp_"+iter+"_"+i+".ps");
plot (coef=0.2,cmm=" [ul,u2] et p ",p,[ul,u2],ps="plotNS_"+iter+"_"+i+".ps");
}
cout << "CPU " << clock()-s0 << "s " << endl;

}

if (iter>= nbiter) break;
Th=adaptmesh (Th, [dx (ul),dy(ul),dx(ul),dy (u2)], splitpbedge=1,
abserror=0, cutoff=cut,err=tol, inquire=0,ratio=1.5,hmin=1./1000);
plot (Th, ps="ThNS.eps");
dt = dtxcoefdt;
tol = tol xcoeftol;
cut = cut =*coefcut;

}
cout << "CPU " <<eclock()-s0 << "s " << endl;

3.12 An Example with Complex Numbers

In a microwave oven heat comes from molecular excitation by an electromagnetic field. For
a plane monochromatic wave, amplitude is given by Helmholtz’s equation:

Bv+ Av = 0.

We consider a rectangular oven where the wave is emitted by part of the upper wall. So the
boundary of the domain is made up of a part I'; where v = 0 and of another part T's = [¢, d]
where for instance v = sin(72=5).

Within an object to be cooked, denoted by B, the heat source is proportional to v?. At

equilibrium, one has

—Af = U2[B, 91’* =0

where Ip is 1 in the object and 0 elsewhere.
Results are shown on figure [3.11
In the program below § = 1/(1 — I/2) in the air and 2/(1 — I/2) in the object (i = v/—1):

Example 3.11 (muwave.edp) // file muwave.edp
real a=20, b=20, c=15, d=8, e=2, 1=12, f=2, g=2;

border a0 (t=0,1) {x=axt; y=0;label=1;}

border al (t=1,2) {x=a; y= bx(t-1);label=1;}

)
( )
border a2 (t=2,3) { x=a=*(3-t);y=b;label=1;}
border a3 (t=3,4) {x=0;y=b-(b-c)* (t-3);label=1;}
border a4 (t=4,5) {x=0;y=c—-(c—-d) * (t—-4); label=2;}
border a5 (t=5,6){ x=0; y= dx(6-t);label=1;}
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Figure 3.11: A microwave oven: real (left) and imaginary (middle) parts of wave and tem-
perature (right).

border b0 (t=0,1) {x=a-f+ex(t-1);y=g; label=3;}

border bl (t=1,4) {x=a-f; y=g+lx(t-1)/3; label=3;}
border b2 (t=4,5) {x=a-f-ex(t-4); y=1l+g; label=3;}
border b3 (t=5,8) {x=a-e-f; y= 1l+g-1*(t-5)/3; label=3;}
int n=2;

mesh Th = buildmesh (a0 (10%n)+al (10+xn)+a2 (10*n)+a3 (10xn)

+a4 (10%n)+a5 (10%n) +b0 (5xn) +bl (10xn) +b2 (5%n) +b3 (10*n) ) ;
plot (Th,wait=1);
fespace Vh (Th,P1l);
real meat = Th(a-f-e/2,g+1/2).region, air= Th(0.01,0.01).region;
Vh R=(region-air)/ (meat-air);

Vh<complex> v, w;
solve muwave (v,w) = int2d(Th) (v+w=* (1+R)
—(dx (v) xdx (w) +dy (v) xdy (w) ) » (1-0.51))
+ on(l,v=0) + on(2, v=sin(pi*(y-c)/(c-d)));
Vh vr=real (v), vi=imag(v);
plot (vr,wait=1,ps="rmuonde.ps", fill=true);
plot (vi,wait=1,ps="imuonde.ps", fill=true);

fespace Uh(Th,P1l); Uh u,uu, ff=lebx(vr"2 + vi~2)«R;
solve temperature (u,uu)= int2d(Th) (dx(u)* dx(uu)+ dy (u)* dy(uu))

— int2d(Th) (ffxuu) + on(1l,2,u=0);
plot (u,wait=1,ps="tempmuonde.ps", fill=true);

3.13 Optimal Control

Thanks to the function BFGS it is possible to solve complex nonlinear optimization problem
within FreeFem++. For example consider the following inverse problem

b,c,deER

min J = /(u —ug)® : —V(k(b,c,d)-Vu) =0, ulp=ur
E
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where the desired state ug, the boundary data ur and the observation set £ C  are all
given. Furthermore let us assume that

k(x) =1+ blg(x) + clo(x) + dIp(x) Ve eQ
where B, C, D are separated subsets of €.

To solve this problem by the quasi-Newton BFGS method we need the derivatives of J with
respect to b, ¢, d. We self explanatory notations, if 0b, dc, dd are variations of b, ¢, d we have

0J ~ 2/(u —ug)ou, — V(k-Vou)=V(0k-Vu) dulp =0
E
Obviously J] is equal to d.J when db = 1,0¢c = 0,dd = 0, and so on for J. and .J),.

All this is implemented in the following program

// file optimcontrol.edp
border aa (t=0, 2+pi) { X = 5%cos (t); y = b5xsin(t); }s
border Dbb (t=0, 2*pi) { X = cos(t); y = sin(t); }i
border cc (t=0, 2xpi) { x = —3+4cos (t); y = sin(t); }s
border dd(t=0, 2xpi) { x = cos(t); y = —3+sin(t); };
mesh th = buildmesh (aa (70) +bb (35) +cc (35)+dd (35));

fespace Vh(th,P1);
Vh Ib=((x"2+y~2)<1.0001),
=(((x+3) 72+ y~2)<1.0001),
=((x"2+(y+3)"2)<1.0001),
=(((x-1) "2+ y"2)<=4),
ud,u,uh du;
real[int] z(3);
problem A (u,uh) =int2d(th) ((1+z[0]*Ib+z[1l]*Ic+z[2]*Id) * (dx (u)+dx (uh)
+dy (u) *dy (uh))) + on(aa,u=x"3-y"3);
z[0]=2; z[1]=3; z[2]=4;
A; ud=u;
ofstream f ("J.txt");
func real J(real[int] & Z2)

{

for (int i=0;i<z.n;i++)z[1]1=Z2[1i];
A; real s= int2d(th) (Iex* (u-ud) "2);
f<<s<” ", return s;

}
real[int] dz (3), dJdz(3);

problem B (du, uh)
=int2d (th) ((1+z[0]*Ib+z[1]xIc+z[2]*Id) * (dx (du) *dx (uh) +dy (du) »dy (uh) ) )
+int2d (th) ((dz [0] *Ib+dz[1]*Ic+dz[2] *xId) * (dx (u) *dx (uh) +dy (u) *dy (uh) ) )
+on (aa, du=0) ;

func real[int] DJ(reallint] &Z)
{
for (int i=0;i<z.n;i++)
{ for(int j=0; j<dz.n; j++) dz[3j]=0;
dz[i]=1; B;
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dddz[i]= 2*int2d(th) (Ie* (u-ud) xdu) ;

}
return dJdz;

}

real[int] Z(3);

for (int j=0; j<z.n; j++) Z[jl1=1;

BFGS (J,DJ, Z,eps=1.e-6,nbiter=15,nbiterline=20);

cout << "BFGS: J(z) = " << J(Z2) << endl;

for (int j=0; j<z.n; j++) cout<<z[]j]<<endl;

plot (ud, value=1,ps="u.eps");

In this example the sets B,C, D, E are circles of boundaries bb, cc, dd, ee are the domain )
is the circle of boundary aa. The desired state uy is the solution of the PDE for b = 2,¢ =
3,d = 4. The unknowns are packed into array z. Notice that it is necessary to recopy
Z into z because one is a local variable while the other one is global. The program found
b = 2.00125, c = 3.00109, d = 4.00551. Figure|3.12|shows u at convergence and the successive
function evaluations of J. Note that an adjoint state could have been used. Define p by

Figure 3.12: On the left the level lines of u. On the right the successive evaluations of J by
BFGS (5 values above 500 have been removed for readability)

—V - (kVp) =2Ig(u — ug), plr=0

Consequently
0] = —/(V - (kVp))ou
Q

- /Q (kVp - Vou) = — / (0kVp - V) (3.9)

Q
Then the derivatives are found by setting 6b = 1, dc = dd = 0 and so on:

Jé:—/Vp-Vu, Jé:—/Vp-Vu, Jé:—/V]%VU
B c D

Remark As BFGS stores an M x M matrix where M is the number of unknowns, it is
dangerously expensive to use this method when the unknown x is a Finite Element Function.
One should use another optimizer such as the NonLinear Conjugate Gradient NLCG (also a
key word of FreeFem++). See the file algo.edp in the examples folder.
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3.14 A Flow with Shocks

Compressible Euler equations should be discretized with Finite Volumes or FEM with flux
up-winding scheme but these are not implemented in FreeFem++ . Nevertheless acceptable
results can be obtained with the method of characteristics provided that the mean values
f= %( ft+ f7) are used at shocks in the scheme, and finally mesh adaptation .

Op+uVp+pV-u=0
(O + %VU +Vp=0
Op+uVp+(y—1)pV-u=0 (3.10)

One possibility is to couple u, p and then update p, i.e.

1 +1
mt+l _ m o xm vV - m+1 _ 0
o —nepr VTPV
%_t(uerl —u™o Xm) + meJrl -0
m+1l _ m xm ﬁm m+1 _  m xXm 3.11
p p" o +—(7_1>]3m(p proX™) (3.11)

A numerical result is given on Figure and the FreeFem++ script is

\\\\\\\\

Figure 3.13: Pressure for a Euler flow around a disk at Mach 2 computed by (3.11])

verbosity=1;
int anew=1;
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real x0=0.5,y0=0, rr=0.2;

border ccc (t=0,2) {x=2-t;vyv=1;1};

border ddd(t=0,1) {x=0;y=1-t;};

border aaal (t=0,x0-rr) {x=t;vy=0;};

border cercle(t=pi,0){ x=x0+rr*cos (t);y=yO+rr*sin(t);}
border aaa2 (t=x0+rr,2) {x=t;y=0;};

border bbb (t=0,1) {x=2;y=t; };

int m=5; mesh Th;
if (anew) Th = buildmesh (ccc(5*m) +ddd(3*m) + aaal(2+m) + cercle (5+m)
+ aaa2 (5*m) + bbb (2xm) );
else Th = readmesh ("Th_circle.mesh"); plot (Th,wait=0);

real dt=0.01, u0=2, err0=0.00625, pena=2;
fespace Wh(Th,P1);

fespace Vh (Th,P1);

Wh u,v,ul,vl,uh,vh;

Vh r,rh,rl;

macro dn(u) (N.x*dx (u)+N.y*dy(u) ) // def the normal derivative
if (anew){ ul= ul0; vl= 0; rl = 1;}
else {

ifstream g ("u.txt");g>>ull]l;

ifstream gg ("v.txt");gg>>v1[];
ifstream ggg ("r.txt");ggg>>rll[];

plot (ul,ps="eta.eps", value=l,wait=1);
errO=err0/10; dt = dt/10;

problem eul (u,v,r,uh,vh,rh)

= int2d (Th) ( (uxuh+vxvh+r*rh) /dt
+ ((dx(r)*uh+ dy(r)=*vh) - (dx(rh)=*u + dy(rh)x*v))
)
+ int2d (Th) (- (rh*convect ([ul,vl],-dt,rl) + uhxconvect ([ul,v1l],—-dt,ul)
+ vhxconvect ([ul,vl],-dt,vl))/dt)
+intld (Th, 6) (rhxu) // +intld(Th, 1) (rh#*v)

+ on(2,r=0) + on(2,u=ul) + on(2,v=0);

int j=80;

for (int k=0;k<3;k++)

{

if (k==20){ errO=err0/10; dt = dt/10; J=5;}

for (int i1=0;i<j;i++) {
eul; ul=u; vl=v; rl=abs(r);
cout<<"k="<<k<<" E="<<int2d(Th) (u"2+v”"2+r)<<endl;
plot (r,wait=0,value=1);

}

Th = adaptmesh (Th,r, nbvx=40000,err=err0,
abserror=1,nbjacoby=2, omega=1.8,ratio=1.8, nbsmooth=3,
splitpbedge=1, maxsubdiv=5,rescaling=1l) ;

plot (Th,wait=0);
u=u; vV=v; r=r;

savemesh (Th, "Th_circle.mesh");
ofstream f ("u.txt");f<<ul];
ofstream ff ("v.txt");ff<<v[];
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ofstream fff ("r.txt");fff<<rl[];

rl = sqgrt (uxu+v*v);
plot (rl,ps="mach.eps", value=l);
rl=r;

}

3.15 Classification of the equations

Summary [t is usually not easy to determine the type of a system. Yet the approrimations
and algorithms suited to the problem depend on its type:

e Finite Elements compatible (LBB conditions) for elliptic systems

e Finite difference on the parabolic variable and a time loop on each elliptic subsystem
of parabolic systems; better stability diagrams when the schemes are implicit in time.

e Upwinding, Petrov-Galerkin, Characteristics-Galerkin, Discontinuous-Galerkin, Finite
Volumes for hyperbolic systems plus, possibly, a time loop.

When the system changes type, then expect difficulties (like shock discontinuities)!

Elliptic, parabolic and hyperbolic equations A partial differential equation (PDE) is a
relation between a function of several variables and its derivatives.

At O™

Flo(z), 22 (), 3_%0(:6),8_93%(@,... G

: = Q d
s D ())=0 VzeQCR

The range of x over which the equation is taken, here €2, is called the domain of the PDE.
The highest derivation index, here m, is called the order. If F' and ¢ are vector valued
functions, then the PDE is actually a system of PDEs.

Unless indicated otherwise, here by convention one PDE corresponds to one scalar valued
F and . If F is linear with respect to its arguments, then the PDE is said to be linear.

. . 2 d
The general form of a second order, linear scalar PDE is 9% and A : B means >0 aiibi;.
) Ox;0x; ,j=1 "%

ap+a-Vo+B:V(Vp)=f in QcCRY

where f(z),a(z) € R,a(z) € RY B(x) € R¥? are the PDE coefficients. If the coefficients
are independent of z, the PDE is said to have constant coefficients.

To a PDE we associate a quadratic form, by replacing ¢ by 1, d¢/0x; by z; and 9*p/dx;0x;
by z;z;, where z is a vector in RY

a+a-z2+2'Bz=f.

If it is the equation of an ellipse (ellipsoid if d > 2), the PDE is said to be elliptic; if it is
the equation of a parabola or a hyperbola, the PDE is said to be parabolic or hyperbolic. If

A = 0, the degree is no longer 2 but 1, and for reasons that will appear more clearly later,
the PDE is still said to be hyperbolic.

These concepts can be generalized to systems, by studying whether or not the polynomial



o6 CHAPTER 3. LEARNING BY EXAMPLES

system P(z) associated with the PDE system has branches at infinity (ellipsoids have no
branches at infinity, paraboloids have one, and hyperboloids have several).

If the PDE is not linear, it is said to be non linear. Those are said to be locally elliptic,
parabolic, or hyperbolic according to the type of the linearized equation.

For example, for the non linear equation

Po 0pPp
o2 Ox dx2 7

we have d = 2, x1 = t,r9 = x and its linearized form is:

Pu Oud e  Opd*u

otz Ox 0x2  Orox2

which for the unknown u is locally elliptic if g—f < 0 and locally hyperbolic if g—f > 0.

Examples Laplace’s equation is elliptic:

P Py %
Ap=2F2 2% 4 Z¥_ O c R
aFr + o3 et o2 f, YzeQCR

The heat equation is parabolic in Q = Qx]0, T[C R+ :

%_f_ Ap=f YreQcR', vtelo,Tl.

If > 0, the wave equation is hyperbolic:
02 .
2 pAe=f n Q.

The convection diffusion equation is parabolic if p # 0 and hyperbolic otherwise:

Op
— Vo — ulAp = f.
En +aVe —pulAp = f

The biharmonic equation is elliptic:

A(Ap)=f in Q.

Boundary conditions A relation between a function and its derivatives is not sufficient to
define the function. Additional information on the boundary I' = 9€) of €2, or on part of I’
is necessary.

Such information is called a boundary condition. For example,

o(x) given, Vo € T,

is called a Dirichlet boundary condition. The Neumann condition is

0
ﬁ(m) given on I' (or n-BVy,given on T for a general second order PDE)

on
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where n is the normal at « € I' directed towards the exterior of 2 (by definition g—i = Vp-n).
Another classical condition, called a Robin (or Fourier) condition is written as:

0
o(r) + ﬁ(x)a—fl(x) given on I'.

Finding a set of boundary conditions that defines a unique ¢ is a difficult art.

In general, an elliptic equation is well posed (i.e. ¢ is unique) with one Dirichlet, Neumann
or Robin conditions on the whole boundary.

Thus, Laplace’s equations is well posed with a Dirichlet or Neumann condition but also with

D) .
@ given on I'y, a—(p givenon 'y, ThZWUTy,=T, I''NnTy=0.
n

Parabolic and hyperbolic equations rarely require boundary conditions on all of T'x]0, T7[.
For instance, the heat equation is well posed with

¢ given at t = 0 and Dirichlet or Neumann or mixed conditions on 0f2.

Here ¢ is time so the first condition is called an initial condition. The whole set of conditions
are also called Cauchy conditions.
The wave equation is well posed with

0
v and a—f given at t = 0 and Dirichlet or Neumann or mixed conditions on 0f2.
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Chapter 4

Syntax

4.1 Data Types

In essence FreeFem++ is a compiler: its language is typed, polymorphic, with excep-
tion and reentrant. Every variable must be declared of a certain type, in a declarative
statement; each statement are separated from the next by a semicolon ‘;’. The language
allows the manipulation of basic types integers (int), reals (real), strings (string), ar-
rays (example: real [int]), bidimensional (2D) finite element meshes (mesh), 2D finite
element spaces (fespace) , analytical functions (func), arrays of finite element functions

(funclbasic_type]), linear and bilinear operators, sparse matrices, vectors , etc. For instance

int i,n=20; // i,m are integer.
real[int] xx(n),yy(n); // two array of size n
for (i=0;1<=20;1i++) // which can be used in statements such as

{ xx[i]= cos(i*pi/10); yylil= sin(i*pi/10); }

The life of a variable is the current block {...}, except the fespace variable, and the
variables local to a block are destroyed at the end of the block as follows.

Example 4.1

real r= 0.01;

mesh Th=square (10,10); // unit square mesh
fespace Vh (Th,P1); // P1 lagrange finite element space
Vh u = x+ exp(y);

func f = z * x + r *» log(y);

plot (u,wait=true);

{ // new block
real r = 2; // not the same r
fespace Vh(Th,P1); // error because Vh is a global name

} // end of block

// here r back to 0.01

The type declarations are compulsory in FreeFem++ ; in the end this feature is an asset
because it is easy to make bugs in a language with many implicit types. The variable name

is just an alphanumeric string, the underscore character “.” is not allowed, because it will
be used as an operator in the future.

99
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4.2 List of major types

bool is used for logical expression and flow-control. The result of a comparison is a boolean
type as in

bool fool=(1<2);

which makes fool to be true. Similar examples can be built with ==, <=, >=, <, > 1 =

int declares an integer (i.e. long in C++)..

string declare the variable to store a text enclosed within double quotes, such as:
"This is a string in double quotes."

real declares the variable to store a number such as “12.345”. (i.e. double in C++).

complex Complex numbers, such as 1 4 2i, FreeFem++ understand that ¢ = /—1 (i.e.
complex<double> in C++).

complex a = 1i, b = 2 + 3i;

cout << "a + b =" << a + b << endl;
cout << "a - b = " << a + b << endl;
cout << "a * b =" << a * b << endl;
cout << "a / b =" << a / b << endl;

Here’s the output;

4

~

2)
)

2, -
3,2
.230769,0.153846)

o o oo

(2
(=
(=
(0

U U]

ofstream to declare an output file .
ifstream to declare an input file .

real[int | declares a variable that stores multiple real numbers with integer index.
real[int] a(5);
al0] = 1; all]l = 2; al[2] = 3.3333333; al3] = 4; al4] = 5;

7
cout << "a ' << a << endl;

This produces the output;

2 3.33333 4 5

real[string | declares a variable that store multiple real numbers with string index.

string[string | declares a variable that store multiple strings with string index.
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func defines a function without argument, if independent variables are x, y. For example

func f=cos (x)+sin(y) ;

Remark that the function’s type is given by the expression’s type. Raising functions
to a numerical power is done, for instance, by x"1, y~0.23.

mesh creates the triangulation, see Section

fespace defines a new type of finite element space, see Section Section [6]
problem declares the weak form of a partial differential problem without solving it.
solve declares a problem and solves it.

varf defines a full variational form.

matrix defines a sparse matrix.

4.3 Global Variables

The names x,y, z, label, region,P,N,nu_triangle... are reserved words used to
link the language to the finite element tools:

x is the z coordinate of the current point (real value)
y is the y coordinate of the current point (real value)
z is the z coordinate of the current point (real value)

label contains the label number of a boundary if the current point is on a boundary, 0
otherwise (int value).

region returns the region number of the current point (x,y) (int value).

P gives the current point (R? value. ). By P.x, P.y, we can get the z, y components of P
. Also P.z is reserved and can be used in 3D.

N gives the outward unit normal vector at the current point if it is on a curve defined by
border (R? value). N.x and N.y are x and y components of the normal vector. N. z
is reserved. .

lenEdge gives the length of the current edge
lenEdge = |¢" — ¢’| if the current edge is [¢", ¢’]

hTriangle gives the size of the current triangle

nuTriangle gives the index of the current triangle (int value).
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nuEdge gives the index of the current edge in the triangle (int value).
nTonEdge gives the number of adjacent triangle of the current edge (integer ).
area give the area of the current triangle (real value).

volume give the volume of the current tetrahedra (real value).

cout is the standard output device (default is console). On MS-Windows, the standard
output is only the console, at this time. ostream

cin is the standard input device (default is keyboard). (istreamvalue).
endl adds an "end of line” to the input/output flow.

true means “true” in bool value.

false means “false” in bool value.

pi is the realvalue approximation value of .

4.4 System Commands

Here is how to show all the types, and all the operator and functions of a FreeFem++
program:

dumptable (cout) ;

To execute a system command in the string (not implemented on Carbon MacOS), which
return the value of the system call.

system ("shell command"); // after version 3.12-1

exec ("shell command");

This is useful to launch another executable from within FreeFem++ . On MS-Windows, the
full path of the executable. For example, if there is the command “ls.exe” in the subdirectory
“c:\cygwin\bin\”, then we must write

exec ("c:\\cygwin\\bin\\1ls.exe");

Another useful system command is assert() to make sure something is true.

assert (version>=1.40);
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4.5 Arithmetics

On integers , +, —, * are the usual arithmetic summation (plus), subtraction (minus)
and multiplication (times), respectively, The operators / and % yield the quotient and the
remainder from the division of the first expression by the second. If the second number of
/ or % is zero the behavior is undefined. The mazimum or minimum of two integers a, b
are obtained by max (a, b) or min (a, b). The power a’ of two integers a, b is calculated by
writing a“b. The classical C++ "arithmetical if” expression a ? b : c is equal to
the value of expression b if the value of expression a is true otherwise is equal to value of
expression c.

Example 4.2 Computations with the integers

int a = 12, b = 5;

cout <<"plus, minus of "<<a<<" and "<<b<<" are "<<a+b<<", "<<a-b<<endl;
cout <<"multiplication, quotient of them are "<<axb<<", "<<a/b<<endl;

cout <<"remainder from division of "<<a<<" by "<<b<<" is "<<a%b<<endl;
cout <<"the minus of "<<a<<" is "<< -a << endl;

cout <<a<<" plus —"<<b<<" need bracket:"<<a<<"+ (—"<<b<<")="<<a+ (-b)<<endl;
cout <<"max and min of "<<a<<" and "<<b<<" is "<<max (a,b)<<","<<min (a,b)<< endl;
cout <<b<<"th power of "<<a<<" is "<<a"b<< endl;

cout << " min == (a < b ? a : b)) is " << (a < b ? a : b) << endl;

b=0;
cout <<a<<"/0"<<" is "<< a/b << endl;
cout <<a<<"%0"<<" is "<< a%b << endl;

produce the following result:

plus, minus of 12 and 5 are 17, 7
multiplication, quotient of them are 60, 2
remainder from division of 12 by 5 is 2
the minus of 12 is -12

12 plus -5 need bracket :12+(-5)=7

max and min of 12 and 5 is 12,5

5th power of 12 is 248832

min == (a < b ? a : b) is 5

12/0 : long long long

Fatal error : ExecError Div by 0 at exec line 9

Exec error : exit

By the relation integer C real, the operators “+, —, %, /, %” and “ max, min, "” are

extended to real numbers or variables. However, % calculates the remainder of the integer
parts of two real numbers.
The following are examples similar to Example [4.2

real a=sqgrt(2.), b = pi;

cout <<"plus, minus of "<<a<<" and "<<pi<<" are "<< a+b <<", "<< a-b << endl;
cout <<"multiplication, quotient of them are "<<axb<<", "<<a/b<< endl;

cout <<"remainder from division of "<<a<<" by "<<b<<" is "<< a%b << endl;

cout <<"the minus of "<<a<<" is "<< -a << endl;

cout <<a<<" plus —"<<b<<" need bracket :"<<a<<"+ (-"<<b<<")="<<a + (-b) << endl;
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It gives the following output:

plus, minus of 1.41421 and 3.14159 are 4.55581, -1.72738
multiplication, quotient of them are 4.44288, 0.450158
remainder from division of 1.41421 by 3.14159 is 1

the minus of 1.41421 is -1.41421

1.41421 plus -3.14159 need bracket :1.41421+(-3.14159)=-1.72738

By the relation
bool C int C real C complex,

the operators “+, —, %, /7 and “ 7 are also applicable on complex-typed variables, but “%,

max, min” cannot be used. Complex numbers such as 5+91i, i= /—1, are valid expressions.
With real variables a=2.45, b=5.33,complex numbers like a +¢ b and a + iv/2.0 must be
declared by

complex z1 = at+bxli, z2=at+sqrt(2.0)=x1i;

The imaginary and real parts of a complex number z can be obtained with imag and real.
The conjugate of a + bi (a,b are reals) is defined by a — bi, which can also be computed
with the operator "conj”, by conj(a+bx11) in FreeFem++
Internally the complex number z = a+1b is considered as the pair (a, b) of real numbers a, b.
We can attach to it the point (a,b) in the Cartesian plane where the z-axis is for the real
part and the y-axis for the imaginary part. The same point (a, b) has a representation with
polar coordinate (1, ¢), So z his also z = r(cos ¢ +isin @), r = va? + b? and ¢ = tan~'(b/a);
r is called the modulus and ¢ the argument of z. In the following example, we shall show
them using FreeFem++ programming, and de Moivre’s formula z™ = r"(cosng + i sin ng).

Example 4.3

real a=2.45, b=5.33;

complex zl=a+bxli, z2 = a+sqrt(2.)«*1i;
func string pc(complex z) // printout complex to (real)+i(imaginary)
{

string r = " ("+real(z);

if (1mag(z)>=0) r = r+"+";
return r+imag(z)+"i)";

// printout complex to |z|#*(cos(arg(z))+i+sin(arg(z)))
func string toPolar (complex z)
{
return abs (z)+"x (cos ("+arg(z)+")+ixsin("+arg(z)+"))";

}

cout <<"Standard output of the complex "<<pc(zl)<<" is the pair "
<<zl<<endl;

cout <<"Plus, minus of "<<pc(zl)<<" and "<<pc(z2)<<" are "<< pc(zl+z2)
<<", "<< pc(zl-z2) << endl;

cout <<"Multiplication, quotient of them are "<<pc(zlxz2)<<", "
<<pc(zl/z2)<< endl;

cout <<"Real/imaginary part of "<<pc(zl)<<" is "<<real(zl)<<", "
<<imag (zl)<<endl;

cout <<"Absolute of "<<pc(zl)<<" is "<<abs(zl)<<endl;

cout <<pc(z2)<<" = "<<toPolar (z2)<<endl;

cout <<" and polar("<<abs(z2)<<","<<arg(z2)<<") ="
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<< pc (polar(abs(z2),arg(z2)))<<endl;
cout <<"de Moivre’s formula: "<<pc(z2)<<""3 = "<<toPolar (z2"3)<<endl;
cout <<"conjugate of "<<pc(z2)<<" is "<<pc(conj(z2))<<endl;
cout <<pc(zl)<<"""<<pc(z2)<<" is "<< pc(zl®z2) << endl;

Here’s the output from Example[4.5

Standard output of the complex (2.45+5.331i) is the pair (2.45,5.33)
Plus, minus of (2.45+5.33i) and (2.45+1.41421i) are (4.94+46.744211i), (0+3.915791i)
Multiplication, quotient of them are (-1.53526+16.52331), (1.692+1.198831)
Real/imaginary part of (2.45+5.331i) is 2.45, 5.33
Absolute of (2.45+5.331i) 1is 5.86612
(2.45+41.414211) = 2.82887(cos(0.523509)+ixsin(0.523509))

and polar(2.82887,0.523509) = (2.45+1.414211)
de Moivre’s formula: (2.45+1.414211i)"3

= 22.638x(cos(1.57053)+1ixsin(1.57053))

conjugate of (2.45+1.414211) is (2.45-1.414211)
(2.45+5.331) " (2.45+1.414211i) 1is (8.37072-12.70781)

4.6 string expression

In the following example you some example string expression

string tt="totol"+1+" —— 77"; // string concatenation
string t1="0123456789";
string t2;

// new operator

t2 ="12340005678";
t2(4:3) = "abcdefghijk-";
string t55=t2(4:3);

// t2 = "12340abcdefghi jk-005678";
cout << t2 << endl;
cout << " find abc " << t2.find("abc") << endl;
cout << "r find abc " << t2.rfind("abc") << endl;
cout << " find abc from 10 " << t2.find("abc",10) << endl;
cout << " ffind abc from 10 " <<t2.rfind("abc",10) << endl;
cout << " " << string("abcc").length << endl;
cout << " t55 " << t55 << endl;
{ // add getline version 3.0-6 jan 2009 FH

string s;
ifstream toto("xyf");
for (int i=0;i<10;++1)
{
getline (toto, s);
cout << 1 << " : " << s << endl;

}



66 CHAPTER 4. SYNTAX
4.7 Functions of one Variable

Fundamental functions are built into FreeFem++ as well as The power function x~ vy
= pow(x,y)= xY¥;, the exponent function exp(x) (= €*), the logarithmic func-
tion log(x)(=Inz) or logio (x) (= log,,x); the trigonometric functions sin(x),
cos (x), tan(x) assume angles measured in radians; the inverse of sin x, cos z, tanx
(called circular function or inverse trigonometric function ) asin(x)(=arcsinz),
acos (x) (=arccosz), atan (x) (=arctanz) are also implemented; the atan2(x,y)
function computes the principal value of the arc tangent of y/x, using the signs of both
arguments to determine the quadrant of the return value;

the hyperbolic functions,
sinhz = (¢* —e™™) /2, coshz = (" +¢77) /2.

and tanhx = sinhx/coshz called by sinh(x), cosh(x), tanh(x), asinh(x),
acosh (x) and atanh (x).

sinh™z =1In [x + Va2 + 1} , cosh™z =1n [m + Va2 — 1} )

The real function which rounds a real to an integer £loor(z) rounds to largest integral
value not greater than x, ceil(z) round to smallest integral value not less than x;
similarly rint(z) returns the integral value nearest to x (according to the prevailing
rounding mode) in floating-point format)..

Elementary Functions denotes for us the class of functions presented above (polyno-
mials, exponential, logarithmic, trigonometric, circular) and the functions obtained
from those by the four arithmetic operations

f(@) +g(x), f(x) = g(x), f(x)g(x), f(x)/g(x)

and by composition f(g(x)), each applied a finite number of times. In FreeFem++
all elementary functions can thus be created. The derivative of an elementary func-
tion is also an elementary function; however, the indefinite integral of an elementary
function cannot always be expressed in terms of elementary functions.

Example 4.4 The following is an example where an elementary function is used to
build the border of a domain. Cardioid

real b = 1.;
real a = b;
func real phix(real t)
{

return (a+b) *xcos (t)-bx*cos (tx (a+b)/b);
}
func real phiy(real t)
{

return (a+b)*sin(t)-b*sin(tx (a+b)/b);
}
border C (t=0,2*pi) {
mesh Th = buildmesh (

x=phix (t); y=phiy(t); }
C(50));



4.7. FUNCTIONS OF ONE VARIABLE 67

Taking the principal value, we can define log z for z # 0 by
Inz=In|z|+iargz.

Using FreeFem++ , we calculated exp (1+4i), sin(pi+1i), cos(pi/2-1i) and
log (1+21), we then have

—1.77679 — 2.0572i, 1.88967107¢ — 1.1752i,
9.448331077 + 1.1752i,  0.804719 + 1.10715i.

Random Functions can be define as FreeFem++ has a Mersenne Twister function (see
pagehttp://www.math.sci.hiroshima-u.ac.jp/-m-mat/MT/emt.html for
full detail). It is a very fast and accurate random number generator Of period 2219937 —1,
and the functions which calls it are:

randint32 () generates unsigned 32-bit integers.

e randint31 () generates unsigned 31-bit integers.

e randreall () generates uniform real in [0, 1] (32-bit resolution).

e randreal?2 () generates uniform real in [0, 1) (32-bit resolution).

e randreal3 () generates uniform real in (0, 1) (32-bit resolution).

e randres53 () generates uniform real in [0, 1) with 53-bit resolution.

e randinit (seed ) initializes the state vector by using one 32-bit integer "seed”,
which may be zero.

Library Functions form the mathematical library (version 2.17).

e the functions jO0(x), jl(x), Jn(n,x), y0(x), yl(x), yn(n,x) are
the Bessel functions of first and second kind.
The functions j0 (x) and j1 (x) compute the Bessel function of the first kind of
the order 0 and the order 1, respectively; the function jn (n, x) computes the
Bessel function of the first kind of the integer order n.

The functions y0 (x) and y1 (x) compute the linearly independent Bessel func-
tion of the second kind of the order 0 and the order 1, respectively, for the positive
integer value x (expressed as a real); the function yn (n, x) computes the Bessel
function of the second kind for the integer order n for the positive integer value
x (expressed as a real).

e the function tgamma (x) calculates the I' function of x. 1gamma (x) calculates
the natural logorithm of the absolute value of the I'" function of x.

e Theerf (x) function calculates the error function, where erf(x) = ﬁ s exp(—t?)dt.

The erfc (x) = function calculates the complementary error function of x, i.e.
erfc(z) =1— erf(x).


http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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4.8 Functions of two Variables

4.8.1 Formula

The general form of real functions of two independent variables a, b is usually written as
¢ = f(a,b). In FreeFem++ , x, y and z are reserved word as explained in in Section [4.3|
So when the two variables of the function are x and y, we may define the function without
its argument, for example

func f=cos (x)+sin(y) ;

Remark that the function type is given by the expression type. The power operator can be
used in functions such as x"1, y~0.23. In func, we can write an elementary function
as follows

func f = sin(x)*cos(y);
func g = (x"2+3xy " 2)xexp (1-x"2-y"2);
func h = max(-0.5,0.1x1log(f°2+g"2));

Complex valued function create functions with 2 variables x, vy as follows,

mesh Th=square (20,20, [-pit+2*pi*x, —pi+2+pi*y]); // | —m w2
fespace Vh (Th,P2);

func z=x+y*1i; // z=x+ 1y
func f=imag(sqgrt(z)); // f=Svz
func g=abs( sin(z/10)xexp(z~2/10) ); // g = |sinz/10exp 22/10|
Vh fh = f; plot (fh); // contour lines of f
Vh gh = g; plot(gh); // contour lines of g

We call also construct elementary functions of two variables from elementary functions f(z)
or g(y) by the four arithmetic operations plus composition applied a finite number of times.

4.8.2 FE-functions

Finite element functions are also constructed like elementary functions by an arithmetic for-
mula involving elementary functions. The difference is that they are evaluated at declaration
time and FreeFem++ stores the array of its values at the places associated with he degree
of freedom of the finite element type. By opposition elementary functions are evaluated only
when needed. Hence FE-functions are not defined only by their formula but also by the
mesh and the finite element which enter in their definitions. If the value of a FE-function is
requested at a point which is not a degree of freedom, an interpolation is used, leading to an
interpolation error, while by contrast, an elementary function can be evaluated at any point
exactly.

func f=x"2* (1+y) "3+y~2;

mesh Th = square (20,20, [-2+4xx, —2+4*y]); // square | —2,2[?

fespace Vh(Th,P1);

Vh fh=f; // fh is the projection of f to Vh (real value)

func zf=(x"2% (1+y) "3+y~2) xexp (x+1ix*y);

Vh<complex> zh = zf; // zh is the projection of zf
// to complex value Vh space

The construction of £h (=f}) is explained in Section [6]
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Note 4.1 The command plot applies only for real or complexr FE-functions (2d or 3d) and
not to elementary functions.

Complex valued functions create functions with 2 variables x, vy as follows,

mesh Th=square (20,20, [-pi+2*pi*x, —pi+2+pix*y]); // | —m w2
fespace Vh (Th,P2);

func z=x+yx1i; // z=x+ 1y
func f=imag(sqrt(z)); // f=Svz
func g=abs( sin(z/10)xexp(z~2/10) ); // g = |sinz/10exp 22/10|
Vh fh = f; plot (fh); // Fig. isovalue of f
Vh gh = g; plot(gh); /7 Fig. isovalue of g

Figure 4.1:  $y/z has branch Figure 4.2: |sin(z/10) exp(z?/10)|

4.9 Arrays

An array stores multiple objects, and there are 2 kinds of arrays: The first is similar to
vector, i.e. arrays with with integer indices and the second type is arrays with string indices.
In the first case, the size of the array must be known at execution time, and implementation
is done with the KN<> class and all the vector operator of KN<> are implemented. For
instance

real [int] tab(10), tabl(10); // 2 array of 10 real
real [int] tab2; // bug array with no size
tab = 1.03; // set all the array to 1.03
tab[l]=2.15;
cout << tab[l] << " " << tab[9] << " size of tab ="

<< tab.n << " min: " << tab.min << " max:" << tab.max

<< " sum : " << tab.sum << endl; //
tab.resize (12); // change the size of array tab

// to 12 with preserving first value

tab(10:11)=3.14; // set unset value
cout <<" resize tab: " << tab << endl;

real ([string] tt;
tL["+"]1=1.5;
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cout<<tt["a"]<<"

"<ttt ["+"]<<endl;
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real[int] a(5),b(5),c(5),d(5);

a 1;

b = 2;

c = 33

al21=0;

d= (a?b c ) // for 1 = 0, n-1 dfi] = a[i] ? b[i] cli] ,
cout << " d= (a?b c ) is " << d << endl;

d= (az1 c)); // for i = 0, n-1: d[i] = al[i] ? 1 cli] , (v2.23-1)
d= (a?b 0); // for 1 = 0, n-1: dfi] = a[i] ? b[i] : 0 , (v2.23-1)
d= (az21 o), // for i = 0, n-1: d[i] = af[i] 2 0 : 1, (v2.23-1)
tab.sort ; // sort the array tab (version 2.18)
cout << " tab (after sort) " << tab << endl;

int[int] ii(0:d.n-1); // set array ii to 0,1, ..., d.n-1 (v3.2)
d=-1:-5; // set d to -1,-2, -5 (v3.2)
sort (d,1i1); // sort array d and ii in parallel
cout << " d " << d << "\n 1ii = " << 1ii << endl;

produces the output

2.15 1.03 size of tab =

resize tab: 12

10 min: 1.03

max:2.15 sum

11.42

1.03 2.15 1.03 1.03 1.03
1.03 1.03 1.03 1.03 1.03
3.14 3.14

0 1.5

d=(a?b:c) 1is 5

3 3 2 3 3

tab (after sort) 12

1.03 1.03 1.03 1.03 1.03

1.03 1.03 1.03 1.03 2.15

3.14 3.14

d 5

Arrays can be set like in matlab or scilab with the operator : :, the array generator of a:c
is equivalent to a:1:c, and the array set by a:b:c is set to size ||(b—a)/c| + 1] and the
value i is set by a +i(b—a)/c.

There are int, real, complex arrays with, in the third case, two operators (.in, .re) to
generate the real and imaginary real array from the complex array (without copy) :

// version 3.2 mai 2009

// like matlab. and scilab
{
int[int] tt(2:10); // 2,3,4,5,6,7,8,9,10
int[int] t1(2:3:10); // 2,5,8,
cout << " tt(2:10)= " << tt << endl;
cout << "™ t1(2:3:10)= " << tl << endl;
tt=1:2:5;

cout << " 1.:2:5 => "

}

<< tt << endl;
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real[int] tt
real[int] t1l
cout << " tt
cout << " tl
tt=1.:0.5:3.
cout << " 1.
}

{

complex[int]

:10);

.:3:10.);

:10)= " << tt << endl;
:3:10)= " << tl << endl;

9;

.5:3.999 => " << tt << endl;

tt(2.+401:10.+401);

71

// 2,3,4,5,6,7,8,9,10
// 2/5/8/

// 2,3,4,5,6,7,8,9,10

complex[int] t1(2.:3.:10.); // 2,5,8,
cout << " tt(2.401:10.+401)= " << tt << endl;
cout << " t1(2.:3.:10.)= " << tl << endl;
cout << " tt.re real part array " << tt.re << endl
// the real part array of the complex array

cout << " tt.im imag part array

}
The output is

" << tt.im << endl

// the imag part array of the complex array

tt(2:10)= 9
2 3 4 5 6
7 8 9 10
£t1(2:3:10)= 3
2 5 8
1.:2:5 => 3
1 3 5
tt(2:10) = = 9
2 3 4 5 6
7 8 9 10
£1(2.:3:10.)= 3
2 5 8
1.:0.5:3.999 => o6
1 1.5 2 2.5 3
3.5
tt (2.4+01:10.+01)= 9
(2,0) (3,0) (4,0) (5,0) (6,0)
(7,0) (8,0) (9,0) (10,0)
tl1(2.:3.:10.);= 3
(2,0) (5,0) (8,0)
tt.re real part array 9
2 3 4 5 6
7 8 9 10
tt.im imag part array 9
0 0 0 0 0
0 0 0 0
2

the all integer array operators are :
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int N=5;

real[int] a(N),b(N),c(N);

a =1;

a(0:4:2) = 2;

a(3:4) = 4;

cout <<" a = " << a << endl;

b = a+ a;

cout <<" b = at+a : " << b << endl;

b += a;

cout <<" b += a : " << b << endl;

b += 2%*a;

cout <<" b += 2xa : " << b << endl;

b /= 2;

cout <<" b /= 2 : " << b << endl;

b .x= a; // same b = b .* a
cout << "b.*x=a; b =" << b << endl;

b ./= a; // same b = b ./ a
cout << "b./=a; b =" << b << endl;

c = atb;

cout << " ¢ =a+b : c=" << c << endl;

c = 2xat+d«*b;

cout << " ¢ =2%a+4db : c= " << ¢ << endl;
c = atd«*b;

cout << " ¢ =a+4db : c= " << ¢ << endl;
c = —atdxb;

cout << " ¢ =-a+tdb : c= " << c << endl;
c = —a-4+Db;

cout << " ¢ =—-a-4b : c= " << c << end]l;
c = —-a-b;

cout << " ¢ =—a-b : c= " << ¢ << endl;
c =a .*x b;

cout << " ¢ =a.*b : c= " << c << endl;
c=a ./ b;

cout << " ¢ =a./b : c= " << ¢ << endl;
c =2 % b;

cout << " c =2xb : c= " << ¢ << endl;
c = bx2 ;

cout << " ¢ =bx*2 = " << ¢ << endl;
/* this operator do not exist

c = b/2;

cout << " ¢ =b/2 : c= " << ¢ << endl;
*/

// -——— the methods --
cout << " |lall_1 =" << a.ll << endl; //
cout << " |lall_2 =" << a.l2 << endl; //
cout << " |lal||_infty = " << a.linfty << endl; //
cout << " sum a_i = " << a.sum << endl; //
cout << " max a_i = " << a.max << endl; //
cout << " min a_i = " << a.min << endl; //
cout << " a’=xa =" << (a’=*a) << endl; //
cout << " a quantile 0.2 = " << a.quantile(0.2) << endl; //

}
produce the output
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5
3 3
== 3 3
a=>5
2 1
b =at+a : 5
4 2
b += a 5
6 3
b += 2%a : 5
10 5
b /=2 5
5 2.5
b.x=a; b =
10 2.5
b./=a; b =5
5 2.5
c =a+tb c=5
7 3.5
c =2xa+4b : c= 5
24 12
c =a+4b : c= 5
22 11
c =—at4b : c= 5
18 9
c =—a-4b : c= 5
-22 -11
c =—a-b : c=5
-7 -3.
c =a.*b : c=5
10 2.5
c =a./b : c=
0.4 0.4
c =2xb c= 5
10 5
c =bx2 c= 5

10 5

10

10

24

22

18

=22

10

10

10

12

20

10

40

10

14

48

44

36

-44

-14

40

20

20

12

20

10

40

10

14

48

44

36

-44

-14

40

20

20

73
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[Mall_1 = 13

[lall_2 = 6.403124237
[lall_infty = 4

sum a_i =13

max a_i =4

min a_i =1

a’ xa = 41

a quantile 0.2 = 2

Note 4.2 Quantiles are points taken at regqular intervals from the cumulative distribution
function of a random variable. Here the array values are random.

This statisticial function a.quantile (q) computes v from an array a of size n for a
given number q €0, 1] such that

#{ifali] <v}e~gxn

; it is equivalent to v = alq * n] when the array a is sorted.

Example of array with renumbering (version 2.3 or better) . The renumbering is always
given by an integer array, and if a value in the array is negative, the mapping is not imaged,
so the value is not set.

int[int] I=[2,3,4,-1,01; // the integer mapping to set the renumbering
b=c=-3;

b= a(I); // for( i=0;i<b.n;i++) if(I[i] >=0) bl[i]=a[I[i]];
c(I)= a; // for( i=0;i<I.n;i++) if(I[i] >=0) C(I[i])=ali];
cout << " b = a(I) : " << b << "\n c¢c(I) = a " << ¢ << endl;

The output is

4.9.1 Arrays with two integer indices versus matrices

Some example are given below to transform full matrices into sparse matrices.

int N=3,M=4;

real[int,int] A(N,M);
real[int] b(N),c(M);
b=[1,2,31;
c=[4,5,6,7];

complex[int,int] C(N,M);
complex[int] cb=[1,2,3]1,cc=[104i,204i,301,401i];
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A=1; // set the all matrix
A(2,:) = 4; // the full line 2
A(:,1) = 5; // the full column 1
A(0:N-1,2) = 2; // set the column 2
A(1,0:2) = 3; // set the line 1 from 0 to 2
cout << " A = " << A << endl;
// outer product

C = <cbx*cc’;
C += 3xcbxcc’;
C —= bSi*cb*cc’;
cout << " C = " << C << endl;

// this transforms an array into a sparse matrix
matrix Bj;
B = A4;
B=A(I,J); // B(i,j)= A(I(i),Jd(37))
B=A(I"-1,J"-1); // B(I(i),Jd(3j))= A(i,])
A = 2.xbxc’; // outer product
cout << " A = " << A << endl;
B = bxc’; // outer product B(i, j) = b(i)~*c(7F)
B = bxc’; // outer product B(i,j) = b(i)*c(7J)
B = (2+b*c’) (I,J); // outer product B(i,j) = b(I(i))*c(J(7F))
B = (3.xb*xc’)(I"-1,3°-1); // outer product B(I(i),J(3j)) = b(i)~*c(7)
cout << "B = (3.xb*xc’) (I"-1,J°-1) = " << B << endl;

the output is

4 -3 2 1 2
A =34
1 5 2 1
3 3 3 1
4 5 2 4
C =234
(-50,-40) (-100,-80) (-150,-120) (-200,-160)
(-100,-80) (-200,-160) (-300,-240) (-400,-320)
(-150,-120) (-300,-240) (-450,-360) (-600,-480)
A =34

8 10 12 14
16 20 24 28
24 30 36 42
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4.9.2 Matrix construction and setting

e To change the linear system solver associated to a matrix do

set (M, solver=sparsesolver) ;
The default solver is GMRES.

e from a variational form: (see section page for details)

varf vDD(u,v) = int2d(Thm) (u*xv*le-10);
matrix DD=vDD (Lh, Lh);

e To set from a constant matrix

matrix A =

— — —

e To set from a block matrix

matrix M=

[ Asd[0] ,0 , 0 , 0 ,Csd[0] 1,
[0 ,Asd[1] ,0 , 0 ,Csd[1] 1,
[0 ,0 ,Asd[2] ,0 ,Csd[2] 1,
[0 ,0 , 0 ,Asd[3] ,Csd[3] 1,
[ ]

Csd[0]’,Csd[1l]",Csd[2]",Csd[3]",DD

// to now to pack the right hand side
real[int] bb =[rhssd[0][], rhssd[1l][],rhssd[2][],rhssd[3][],rhsl[] ];
set (M, solver=sparsesolver) ;
Xxx = M"=1 *x bb;
[usd[O] [1,usd[1][],usd[2][],usd[3][],1h[]] = xx; /7 to dispatch
// the solution on each part.

where Asd and Csd are arrays of matrices (from example mortar-DN-4.edp of
examples++-tuturial).

e To set or get all the indices and coefficients of the sparse matrix A, let I, J,C be
respectively two int [int] arrays and a real [int] array. The three arrays define
the matrix as follows

A — Z C[k]MI[k],J[k} Whel"e Mab — (520,5]17)1]
k

one has: M, a basic matrix with the only non zero term my, = 1.

One can write [I,J,C]=A ; to get all the term of the matrix A (the arrays are
automatically resized), and A=[I,J,C] ; to change all the term matrices. Note
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that the size of the matrix is with n= I.max and m=J.max. Remark that I, Jis
forgotten to build a diagonal matrix, and similarly for the n, m of the matrix.

e matrix renumbering

int[int] I(15),J(15); // two array for renumbering
//

// the aim is to transform a matrix into a sparse matrix
matrix B;
B = A; // copie matrix A
B=A(I,J); // B(i,j) = A(I(i),J(3))
B=A(I"-1,J°-1); // B(I(i),Jd(j))= A(i,])
B.resize (10,20); // resize the sparse matrix and remove out of bound

terms

where A is a given matrix.

e complex versu real sparse matrix:

matrix<complex> C=vv (Xh,Xh);
matrix R=vr (Xh,Xh);

matrix<complex> CR=R; C=R; // create or copy real matrix tp complex
matrix

R=C.im; R=C.re; // get real or imagery part of complex sparse matrix

matrix CI=C.im, CR=C.re; // get real or imagery part of complex sparse
matrix

4.9.3 Matrix Operations

The multiplicative operators *, /, and % group left to right.

e ’ is the (unary) right transposition for arrays, the matrix in real cases and Hermitian
transpose in complex cases.

e . x is the term to term multiply operator.

e ./ is the term to term divide operator.

there are some compound operators also:
e "—1 is for solving the linear system (example: b = A"-1 x)

e '« is the compound of transposition and matrix product, so it is the dot product (ex-
ample real DotProduct=a’ *b), in complex case you get the Hermitian product,
so mathematically we have a’ xb=a’b .

e axb’ is the outer product (example matrix B=a’ xb )
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Example 4.5

mesh Th = square(2,1);
fespace Vh (Th,P1l);

vh f,g;

f = xxy;

g = sin(pi*x);

Vh<complex> ff, gg; // a complex valued finite element function

ff= x*(y+1i);
gg = exp(pixxx1i);
varf mat (u,v) =
int2d (Th) (1xdx (u) *dx (v) +2+dx (u) *dy (v) +3xdy (u) *dx (v) +4*dy (u) *dy (v) )
+ on(l,2,3,4,u=1);
varf mati(u,v) =
int2d (Th) (1xdx (u) *dx (v) +2i*dx (u) *dy (v) +3xdy (u) »dx (v) +4xdy (u) *dy (v) )
+ on(l,2,3,4,u=1);
matrix A = mat (Vh,Vh); matrix<complex> AA = mati (Vh,Vh); // a complex
sparse matrix

Vh mO; mO[]

Axf[];

Vh mO1l; mO1[] = A’'xf[];
Vh ml; ml[] = £[]1.*xgl];
Vh m2; m2[] = f[1./g9l];
cout << "f = " << f[] << endl;
cout << "g = " << g[] << endl;
cout << "A = " << A << endl;
cout << "m0 = " << mO[] << endl;
cout << "m0l = " << mO01[] << endl;
cout << "ml = "<< ml[] << endl;
cout << "m2 = "<< m2[] << endl;
cout << "dot Product = "<< f[]’*g[] << endl;
cout << "hermitien Product = "<< ff[]’*gg[] << endl;
cout << "outer Product = "<< (A=ff[]lxgg[]’) << endl;
cout << "hermitien outer Product = "<< (AA=ff[]lxgg[]’) << endl;
real[int] diagofA (A.n);

diagofA = A.diag; // get the diagonal of the matrix

A.diag = diagofA ; // set the diagonal of the matrix

// version 2.17 or better ——-—

int[int] I(1),J(l); real[int] C(1);
[I,J,Cl=A; // get of the sparse term of the matrix A (the array are
resized)
cout << " I= " << I << endl;
cout << " J= " << J << endl;
cout << " C= " << C << endl;
A=[I,J,C]; // set a new matrix
matrix D=[diagofA] ; // set a diagonal matrix D from the array diagofA.
cout << " D = " << D << endl;

For the second case, it is just a map of the ST[EL{%I] s0 no operations on vector are allowed,
except the selection of an item .

The transpose or Hermitian conjugation operator is ’ as in Matlab or Scilab, so the way to
compute the dot product of two array a,b is real ab= a’ *b.

The resizing of a sparse matrix A is also allowed:

'Standard template Library, now part of standard C++
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A.resize (10,100);
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Note that the new size can be greater or smaller than the previous size; all new term are set

to zero.

On the triangulation of Figure this produces the following:

[ 10%
0.
0.
A =1 o5
—2.5
0.
{v}=£[] =

{wy=9gl] =
A*f[] —

fl].*xgl] =
£l1./9l] =
fl]7*gl] =

0.5
1030
0.
0.
0.5
—2.5

The output of the I, J,C" array:

I= 18
0 0 0
1 1 2
3 4 4
5 5 5
J= 18
0 1 4
4 5 2
3 0 1
1 4 5
C= 18
le+30 0.5 -2.5
0.5 -2.5 le+30
le+30 -2.5 0.5
-2.5 0.5 le+30

0. 30. =25
05 0. 05
103 0. 0.
0. 10% 0.
0. 05 10%
0. 0. 05

0000051)

1 1
2 3
4 4
1 2
5 0
3 4

le+30 0.5
0.5 0.5

0000 05 12x1076)"
—NaN 0 0 —NaN 0.5 8.1x10% )"
5 (= {v}{w} = {v} - {w})

0.5 le+30

0.

—2.5

0.5
0.
0.

1030

01 1.2x107% 0 1 1.2x10710)
~1.25 =225 0.5 0 5x102 10° )" (= A{v})

::(Uluh, e UA4UUM)T

(
(
(
Ar+f[] = (-125 =225 0 025 5x102 10%)" (= AT{v})
(
(
0.

= (v1/wy --- UM/wM)T

The output of a diagonal sparse matriz D (Warning du to fortran interface the indices start
on the output at one, but in FreeFem++ in index as in C begin at zero);

D = # Sparce Matrix (Morse)
# first line: n m (is symmetic)

nbcoef

# after for each nonzero coefficient:

6 61 6

o v W N
oUW N R
N e e

i j a_ij where

.0000000000000000199%e+30
.0000000000000000199e+30
.000000000000000019%e+30
.0000000000000000199e+30
.000000000000000019%e+30
.0000000000000000199e+30

(i,3)

\in

{1,

c..,ntx{1l,...,m}
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Note 4.3 The operators ~—1 cannot be used to create a matriz; the following gives an error

matrix AAA A"-1;

In examples++-load/lapack.edp a full matriz is inverted using the lapack library and this

CHAPTER 4. SYNTAX

small dynamic link interface (see for more detail section @ page .

load "lapack"

load "fflapack"

int n=5;

real[int,int] A(n,n),Al(n,n),B(n,n);
for (int i=0;i<n; ++1i)

for (int j=0; j<n;++3)

A(i,J)= (i==3) ? n+l 1;
cout << A << endl;
Al=A"-1;

cout << Al << endl;

B=0;
for (int 1i=0;i<n;++1)
for (int j=0; j<n;++73)
for (int k=0;k<n;++k)
B(i,3J) +=A(i,k)*Al(k,3]);
cout << B << endl;

inv (Al);
cout << Al << endl;

and the output is:

55
6 1 1 1 1
1 6 1 1 1
1 1 6 1 1
1 1 1 6 1
1 1 1 1 6
error: dgesv_ O
55
0.18 -0.02 -0.02 -0.02 -0.02
-0.02 0.18 -0.02 -0.02 -0.02
-0.02 -0.02 0.18 -0.02 -0.02
-0.02 -0.02 -0.02 0.18 -0.02
-0.02 -0.02 -0.02 -0.02 0.18
55

1 -1.387778781le-17 -1.040834086e-
1 -1.040834086e-

-1.040834086e-17
3.469446952e-18 —-5.551115123e-17

1.387778781le-17 —-4.510281038e-17 -4.857225733e-17

//

// Al+A"-1;

/7

17 3.469446952e-17 0
17 -2.081668171e-17 0
1 -2.081668171e-17 -2.775557562e-17
1 -2.775557562e-17

-1.387778781e-17 —-9.714451465e-17 —-5.551115123e-17 —-4.163336342e-17

def in load "lapack"

attention ne marche pas

def in load "fflapack"

1
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to compile lapack.cpp or fflapack.cpp you must have the library lapack on you system
and try in directory examples++—-1oad

ff-c++ lapack.cpp —-llapack
ff-c++ fflapack.cpp -llapack

4.9.4 Other arrays

It is also possible to make an array of FE functions, with the same syntax, and we can
treat them as vector valued function if we need them. , the syntax for space or vector finite
function is

int n = 100; // size of the array.
Vh([int] wh(n); // real scalar case
Wh(int] [uh,vh] (n); // real vectorial case
Vh<complex>[int] cwh (n); // complex scalar case
Wh<complex>[int] [cuh, cvh] (n); // complex vectorial case
[cuh[2],cvh[2]]= [x,V]; // set interpolation of index 2.

Example 4.6 In the following example, Poisson’s equation is solved for 3 different given
functions f = 1, sin(mx) cos(mwy), |x — 1||y — 1|, whose solutions are stored in an array of FE
function.

mesh Th=square (20,20, [2*x,2*xy]);
fespace Vh (Th,P1);
Vh u, v, f;
problem Poisson(u,v) =
int2d (Th) ( dx (u) xdx(v) + dy(u) *dy (v))

+ int2d(Th) ( -fxv ) + on(1,2,3,4,u=0) ;
Vhint] uu(3); // an array of FE function
f=1; // probleml
Poisson; uul0] = u;
f=sin (pi*x) *cos (pixy); // problem2
Poisson; uull] = u;
f=abs (x-1) xabs (y—-1); // problem3
Poisson; uul2] = u;
for (int 1=0; 1<3; i++) // plots all solutions

plot (uu[i], wait=true);
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4.10 Map arrays

For the second case, it is just a map of the STIH[QG] so no operations on vector are allowed,
except the selection of an item .

real[string] map; // a dynamic array
for (i=0;i<10;i=i+1)
{

tab[i] = ixi;
cout << 1 << " " << tab[i] << "\n";
}i
map["1"]=2.0;
map[2]=3.0; // 2 is automatically cast to the string "2"
cout << " map[\"1\"] = " << map["1"] << "; "<< endl;
cout << " map([2] = " << map[2] << "; "<< endl;

4.11 Loops

The for and while loops are implemented in FreeFem++ together with break and
continue keywords.

In for-loop, there are three parameters; the INITTALIZATION of a control variable, the
CONDITION to continue, the CHANGE of the control variable. While CONDITION is true,

for-loop continue.

for (INITIALIZATION; CONDITION; CHANGE)
{ BLOCK of calculations }

An example below shows a sum from 1 to 10 with result is in sum,

int sum=0;
for (int i=1; 1i<=10; i++)
sum += 1i;

The while-loop

while (CONDITION) {
BLOCK of calculations or change of control variables

}

is executed repeatedly until CONDITION become false. The sum from 1 to 10 can also be
computed by while as follows,

int i=1, sum=0;
while (i<=10) {
sum += 1i; 1i++;
}
We can exit from a loop in midstream by break. The continue statement will pass the
part from continue to the end of the loop.

2Standard template Library, now part of standard C++
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Example 4.7

for (int i=0;i<10;i=1i+1)
cout << i << "\n";
real eps=1;
while (eps>1le-5)
{ eps = eps/2;
if( i++ <100) break;
cout << eps << endl;}

for (int j=0; 3j<20; J++) {
if (j<10) continue;
cout << "j = " << j << endl;

4.12 Input/Output

The syntax of input/output statements is similar to C++ syntax. It uses cout, cin, endl,
<<, >>.

To write to (resp. read from) a file, declare a new variable of stream ofile ("filename");
orofstream ofile("filename", append); (resp. ifstream ifile("filename");
) and use ofile (resp. ifile) as cout (resp. cin).

The word append in ofstream ofile ("filename", append); means openning a file

in append mode.

Note 4.4 The file is closed at the exit of the enclosing block,

Example 4.8

int i;
cout << " std-out" << endl;
cout << " enter i= ? ";

cin >> i ;
{
ofstream f ("toto.txt");
f << 1 << "coucou’\n";
}s // close the file f because the variable f is delete

ifstream f ("toto.txt");
£f >> i;

ofstream f ("toto.txt", append);
// to append to the existing file "toto.txt"
f << 1 << "coucou’\n";
}i // close the file f because the variable f is delete

cout << i << endl;

Some functions are available to format the output.
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e int nold=f.precision (n) Sets the number of digits printed to the right of the
decimal point. This applies to all subsequent floating point numbers written to that
output stream. However, this won’t make floating-point “integers” print with a decimal
point. It’s necessary to use fized for that effect.

e f.scientific Formats floating-point numbers in scientific notation ( d.dddEdd )

f.fixed Used fized point notation ( d.ddd ) for floating-point numbers. Opposite of
scientific.

f.showbase Converts insertions to an external form that can be read according to the
C++ lexical conventions for integral constants. By default, showbase is not set.

f .noshowbase unset showbase flags

f . showpos inserts a plus sign (+) into a decimal conversion of a positive integral value.

f .noshowpos unset showpos flags
e f.default reset all the previous flags (fmtflags) to the default expect precision.

Where £ is output stream descriptor, for example cout.
Remark, all these methods except the first return the stream f, so they can be chained as in

cout.scientific.showpos << 3 << endl;

4.12.1 Script arguments

There is a very useful predefined array in Freefem++ ARGV that contains all the arguments
of the script used in the command line. The following code prints out the first three of these
arguments:

// version 3.8-1

for (int i1i=0; i<ARGV.n; ++1)

{

cout << ARGV[i] << endl;

}
And to get argument unused in get ARGV . idp include script file,
getARGV (n, defaultvalue) // get the nth parameter unused if exist (n =1,

..)
getARGV (after,defaultvalue) // get the arg after the string after if exist

The type of default value can be int, real, string,
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4.13 preprocessor

The preprocessor handles directives for source file inclusion (include ”script-name.idp”),
macro definitions.

There are two types of macros, object-like and function-like. Object-like macros do not
take parameters; function-like macros do. The generic syntax for declaring an identifier as
a macro of each type is, respectively,

macro <identifier>() <replacement token list> // EOM a // comment to end
the macro
macro <identifier> (<parameter list>) <replacement token list> // EOM

An example of macro without parameter
macro xxx () {real i=0;int j=0;cout << i << " " << j << endl;} //
xxx /+ replace xxx by the <replacement token list> */

The freefem+-+ code associated:

1 : // macro without parameter

2 macro xxx {real i=0;int j=0;cout << 1 << " " << J << endl;}//
3

4 {real i=0;int j=0;cout << 1 << " " << j << endl;}

An example of macro parameter

macro toto (i) i //
// quoting parameter the {} are remove
toto({real 1=0;int J=0;cout << 1 << " " << J << endl;})
// and only one level of {} are remove
toto({{real i=0;int J=0;cout << 1 << " " << J << endl;}})

The freefem+-+ code created :

6 : macro toto(i ) i//

8 : // quoting parameter the \{\} are remove

9 : real i=0;int j=0;cout << i << " " << J << endl;
10 : // and only one level of \{\} are remove
11 : {real i=0;int J=0;cout << 1 << " " << j << endl;}

Use a macro as parameter of macro to transforme full matrix in formal array like in :

real[int,int] CC(7,7),EE(6,3),EEps(4,4);

macro VIL6 (v,i) [ v(l,i), v(2,1i),v(4,1), v(5,1),v(6,1) ] // EOM
macro VIL3(v,i) [ v(1l,1i), v(2,1) ] // EOM
// apply v on array element
macro VVé6 (v,vv) [ v(vv,1), v(vv,2),
v(vv,4), v(vv,5), v(vv,6) ] // EOM
macro VV3(v,vv) [ v(vv,1), v(vv,2) ] // EOM
// so formal matrix to build problem..

func C5x5 = VV6(VIL6,CC);
func E5x2 = VV6(VIL3,EE);
func Eps = VV3(VIL3,EEps);

The freefem+-+ code created :
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16 : reallint,int] CC(7,7),EE(6,3),EEps(4,4);

17 =
18 : macro VIL6(v,i ) [ v(l,1i), v(2,1),v(4,1), v(5,1i),v(6,1)
19 : macro VIL3(v,i ) [ v(1,1), v(2,1) 1 // EOM
20 : // apply v on array element
21 macro VVo6 (v, vv ) [ v(vv,1), v(vv,2),
22 v(vv,4), v(vv,5), v(vv,6) 1 // EOM
23 macro VV3(v,vv ) [ v(vv,1), v(vv,2) 1 // EOM
24 : // so formal matrix to build problem..
25 :  func Cbx5 =
1 : [ [ CC(1,1), CC(2,1),CcC(4,1), CC(5,1),CC(b,1)
[ CC(1,2), CC(2,2),CC(4,2), CC(5,2),CC(6,2) ,
1 : [ CC(1,4), CC(2,4),CcC(4,4), CC(5,4),CC(6,4) ,
[ CC(1,5), CC(2,5),CcC(4,5), CC(5,5),CC(6,5) ]
[ CC(1,6), CC(2,6),CC(4,06), CC(5,6),CC(6,06)
26 : func Eb5x2 =
1 : [ [ EE(1,1), EE(2,1) ] , [ EE(1,2),
1 : [ EE(1,4), EE(2,4) ] , [ EE(1,5), EE(2,5)
[ EE(1,6), EE(2,6) ] 1
27 func Eps = [ [ EEps(1,1), EEps(2,1) 1 ,
[ EEps(1,2), EEps(2,2) ] ] ;
28

finally the operator # to do concatenation of parameter: to build vectorial operation, like in

macro div(u) (dx(u#l)+ dy(u#2)) //  EOM
mesh Th=square(2,2); fespace Vh(Th,P1l);
Vh vl=x,v2=y;
cout << int2d(Th) (div(v)) << endl;
The freefem++ code created :
31 : macro div(u ) (dx (u#1)+ dy (u#2)) //EOM
32 : mesh Th=square(2,2); fespace Vh(Th,Pl);
33 : Vh vl=x,v2=y;
34 : cout << int2d(Th) ( (dx (v1)+ dy(v2)) ) << endl;
And to finish a amazing test to verified the quoting :
macro foo(i,j,k) i j k // EOM
foo(,,) // empty line
foo( {int [}, {int] a(10},{);})
the result:
36 : macro foo (i, j,k ) i 3 k//EOM
37 // empty line
38 : int [ int] a (10 );

To defined macro in a macro you can use the two new word NewMacro , EndMacro key

word to set and and claose de macro definition (version 3.11, and not well tested).

//

EE (2,2



4.14. EXCEPTION HANDLING 87

4.14 Exception handling

In the version 2. 3 of FreeFem++, exception handing was added as in C++. But today only
the C++ exceptions are caught. Note that in C++ all the errors attached to ExecError,
assert, exit, ... call exceptions too so it may be hard to find the cause of the error.
The exceptions handle all ExecError:

Example 4.9 A simple example: catch a division by zero:

real a;
try {
a=1./0.;
}
catch (...) // in versions > 2.3 all exceptions can be caught
{
cout << " Catch an ExecError " << endl;
a =0;

The output is

1/0 : ddd
current line = 3
Exec error : Div by 0
—— number :1
Try:: catch (...) exception

Catch an ExecError

Example 4.10 : a more realistic ezample with a none invertible matriz:

int nn=5 i
mesh Th=square (nn,nn);
verbosity=5;

fespace Vh(Th,P1l); // P1 FE space
Vh uh, vh; // unkown and test function.
func f=1; // right hand side function
func g=0; // boundary condition function
real cpu=clock () ;
problem laplace (uh,vh,solver=Cholesky,tolpivot=le-6) = //
definion of the problem
int2d (Th) ( dx (uh) *dx (vh) + dy (uh) *dy (vh) ) // bilinear form
+ int2d(Th) ( —f*vh ) // linear form
14
try
cout << " Try Cholesky \n";
laplace; // solve the problem
plot (uh); // to see the result
cout << "-- lap Cholesky " << nn << "x" << nn << " : " << —cputclock()
<< " s, max =" << uh[].max << endl;
}
catch(...) { // catch all

cout << " Catch cholesky PB " << endl;
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The output is

—-— square mesh : nb vertices =36 , nb triangles = 50
Nb of edges on Mortars = 0
Nb of edges on Boundary = 20, neb = 20
Nb Mortars 0

number of real boundary edges 20

Number of Edges = 85

Number of Boundary Edges = 20 neb = 20

Number of Mortars Edges =0

Nb Of Mortars with Paper Def = 0 Nb Of Mortars = 0

Nb Of Nodes = 36
Nb of DF = 36
Try Cholesky
—— Change of Mesh 0 0x312e9e8
Problem () : initmat 1 VF (discontinuous Galerkin) = 0
—— SizeOfSkyline =210
—— size of Matrix 196 Bytes skyline =1

—— discontinous Galerkin =0 size of Mat =196 Bytes
-— int in Optimized = 1,
all
—-— boundary int Optimized = 1, all

ERREUR choleskypivot (35)= -1.23124e-13 < 1le-06
current line = 28

Exec error : FATAL ERREUR dans ../femlib/MatriceCreuse_tpl.hpp
cholesky line:
—— number :545
catch an erreur in solve => set sol = 0 !!!tttl
Try:: catch (...) exception
Catch cholesky PB
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Mesh Generation

5.1 Commands for Mesh Generation

Let us begin with the two important keywords border and buildmesh
All examples in this section come from the files mesh.edp and tablefunction.edp.

5.1.1 Square

The command “square” triangulates the unit square. The following

mesh Th = square(4,5);

generates a 4 X 5 grid in the unit square [0, 1]2. The labels of the boundaries are shown in
Fig. 5.1l To construct a n x m grid in the rectangle [z, 1] X [yo, 41], proceeds as follows:

label

/

label=3

label=1

/|

label

Figure 5.1: Boundary labels of the mesh by square (10,10)

write

real x0=1.2,x1=1.8;
real y0=0,yl=1;
int n=5,m=20;

mesh Th=square (n,m, [x0+ (x1-x0) *x, y0+ (yl-y0) xy]);

39
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Note 5.1 Adding the named parameter flags=icase with icase:

0 will produce a mesh where all quads are split with diagonal x —y = cte

1 will produce Union Jack flag type of mesh.

2 will produce a mesh where all quads are split with diagonal x + y = cte (v 3.8)

3 same as case 0 except in two corners such that no triangle with 8 vertices on boundary (v
3.8)

4 same as case 2 except in two corners such that no triangle with 3 vertices on boundary (v

3.8)

mesh Th=square (n,m, [x0+ (x1-x0) *x,y0+(yl-y0)«y], flags=icase);

Adding the named parameter 1abel=1abs will change the 4 default label numbers to 1abs [i-1],
for example int [int] labs=[11,12,13,14],

and adding the named parameter region=10 will change the region number to 10, for
instance (v 3.8).

To see all these fags at work, try the file examples++/square-mesh.edp :

for (int i=0;1i<5;++1)
{
int[int] labs=[11,12,13,141;
mesh Th=square (3,3, flags=1i, label=labs, region=10);
plot (Th,wait=1, cmm=" square flags = "+i );
}

5.1.2 Border

Boundaries are defined piecewise by parametrized curves. The pieces can only intersect at
their endpoints, but it is possible to join more than two endpoints. This can be used to
structure the mesh if an area thouches a border and create new regions by dividing larger
ones:

int upper = 1;
int others = 2;

int inner = 3;

border CO01(t=0,1){x = 0; y = —-1+t; label = upper;}
border C02(t=0,1){x = 1.5-1.5xt; y = —-1; label = upper;}
border C03(t=0,1){x = 1.5; y = —-t; label = upper;}
border C04 (t=0,1) {x 1+0.5*t; y = 0; label = others;}
border C05(t=0,1){x = 0.5+0.5xt; y = 0; label = others;}
border C06(t=0,1){x = 0.5xt; y = 0; label = others;}
border C11(t=0,1){x = 0.5; y = —0.5%t; label = inner;}
border C12 (t=0,1){x = 0.5+0.5xt; y = -0.5; label = inner;}
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border C13(t=0,1){x = 1; y = -0.5+0.5+t; label = inner;}

int n = 10;
plot (CO1 (-n)+C02 (-n)+CO03 (-n) +C04 (-n) +CO5 (-n) +CO6 (-n) +
Cll(n)+Cl2(n)+C1l3(n), wait=true);

mesh Th = buildmesh (C01l(-n)+C02 (-n)+C03(-n)+C04 (-n)+C0O5(—n)+C06 (—n)+
Cll(n)+Cl2(n)+Cl3(n));

plot (Th, wait=true); // figure
cout << "Part 1 has region number " << Th(0.75, -0.25).region << endl;
cout << "Part 2 has redion number " << Th(0.25, -0.25).region << endl;

Figure 5.2: Multiple border ends intersect Figure 5.3: Generated mesh

Triangulation keywords assume that the domain is defined as being on the left (resp right)
of its oriented parameterized boundary

Fj :{($,y)|$:(px(t), y=@y(t)> a; Stéb]}

To check the orientation plot ¢ — (4 (1), ¢, (t)), to <t < ty. If it is as in Fig. [5.4] then the
domain lies on the shaded area, otherwise it lies on the opposite side
The general expression to define a triangulation with buildmesh is

mesh  Mesh_Name = buildmesh(I'i(m;)+ -+ I';(m;) OptionalParameter);

where m; are positive or negative numbers to indicate how many vertices should be on
I, I'= szlF 7, and the optional parameter (separed with comma) can be

nbvx=<int wvalue> , to set the maximal number of vertices in the mesh.

fixeborder=<bool value> , to say if the mesh generator can change the boundary
mesh or not (by default the boundary mesh can change; beware that with periodic
boundary conditions (see. @, it can be dangerous .
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Figure 5.4: Orientation of the boundary defined by (¢, (), ¢, (%))

The orientation of boundaries can be changed by changing the sign of m;. The following
example shows how to change the orientation. The example generates the unit disk with a
small circular hole, and assign “1” to the unit disk (“2” to the circle inside). The boundary

label must be non-zero, but it can also be omitted.

1: border a(t=0,2xpi){ x=cos(t); y=sin(t);label=1;}

2: border b (t=0,2xpi){ x=0.3+0.3xcos(t); y=0.3xsin(t);label=2;}

3: plot (a(50)+b (+30)) ; to see a plot of the border mesh
4: mesh Thwithouthole= buildmesh (a (50)+b (+30));

5: mesh Thwithhole = buildmesh (a (50) +b (-30));

6: plot (Thwithouthole,wait=1,ps="Thwithouthole.eps"); // figure
7: plot (Thwithhole,wait=1,ps="Thwithhole.eps"); // figure

Note 5.2 Notice that the orientation s changed by “b (-30)7 wn 5th line. In 7th line,
ps="rfileName" is used to generate a postscript file with identification shown on the figure.
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Figure 5.5: mesh without hole
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Figure 5.6: mesh with hole

Note 5.3 Borders are evaluated only at the time plot or buildmesh s called so the global
variable are defined at this time andhere since r is changed between the two border calls the
following code will not work because the first border will be computed with r=0.3:
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real r=1; border a (t=0,2%pi){ x=r*cos(t); y=rxsin(t);label=1;}

r=0.3 ; border b (t=0,2xpi) { x=r*cos(t); y=rxsin(t);label=1;}

mesh Thwithhole = buildmesh (a (50)+b (-30)) ; // bug (a trap) because
// the two circle have the same radius = 0.3

5.1.3 Data Structures and Read/Write Statements for a Mesh

Users who want to read a triangulation made elsewhere should see the structure of the file
generated below:

border C (t=0,2xpi) { x=cos(t); y=sin(t); }
mesh Th = buildmesh(C(10));
savemesh ("mesh_sample.msh");

the mesh is shown on Fig.

The informations about Th are saved in the file “mesh_sample.msh”. whose structure is
shown on Table 5.1l

There n, denotes the number of vertices, n; number of triangles and n, the number of edges
on boundary.

For each vertex ¢*, i = 1,--- ,n,, denote by (¢,, q,) the z-coordinate and y-coordinate.
Each triangle T}, k = 1, --- , 10 has three vertices ¢, ¢*2, ¢** that are oriented counterclock-
wise. The boundary consists of 10 lines L;, i = 1,--- , 10 whose end points are ¢, ¢*.

In the left figure, we have the following.
Ny, = 14, ny = 16, ngy = 10

q' = (—0.309016994375, 0.951056516295)

g = (—0.309016994375, —0.951056516295)

The vertices of T} are ¢°, ¢'2, ¢*°.

The vertices of Tyg are ¢°, ¢'°, ¢b.

The edge of 1st side L, are ¢°, ¢°.

The edge of 10th side Ly are ¢'°, ¢°.

Figure 5.7: mesh by buildmesh (C(10))

In FreeFem++ there are many mesh file formats available for communication with other
tools such as emc2, modulef.. (see Section [L2)), The extension of a file implies its format.
More details can be found on the file format .msh in the article by F. Hecht "bamg : a
bidimentional anisotropic mesh generator” (downloadable from the FreeFem web site. )
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Content of the file Explanation

14 16 10 Ny Ny Ne
-0.309016994375 0.951056516295 1 | ¢’ q; boundary label=1
0.309016994375 0.951056516295 1 | ¢> qg boundary label=1

-0.309016994375 -0.951056516295 1 | ¢4 q;4 boundary label=1

912100 1, 15 13 region label=0
5960 21 29 23 region label=0
91060 167 165 163 region label=0
651 1; 1 boundary label=1
521 21 29 boundary label=1
1061 10; 105 boundary label=1

Table 5.1: The structure of “mesh_sample.msh”

A mesh file can be read into FreeFem++ except that the names of the borders are lost
and only their reference numbers are kept. So these borders have to be referenced by the
number which corresponds to their order of appearance in the program, unless this number
is overwritten by the keyword ”label”. Here are some examples:

border floor (t=0,1) { t

border right (t=0,1) { 1; y=t; label=5;};
border ceiling(t=1,0){ x=t; y=1; label=5;};
border left (t=1,0){ x=0; y=t; label=5;};

x=t; y=0; label=1l;}; // the unit square
X
{

int n=10;

mesh th= buildmesh (floor (n)+right (n)+ceiling(n)+left(n));

savemesh (th, "toto.am_fmt") ; // "formatted Marrocco" format

savemesh (th, "toto.Th") ; // "bamg"—-type mesh

savemesh (th, "toto.msh"); // freefem format

savemesh (th, "toto.nopo") ; // modulef format see [10]
mesh th2 = readmesh("toto.msh"); // read the mesh
Example 5.1 (Readmesh.edp) border floor (t=0,1){ x=t; y=0; label=1;}; // the

unit square

border right (t=0,1){ x=1; y=t; label=5;};
border ceiling(t=1,0){ x=t; y=1; label=5;};
border left (t=1,0){ x=0; y=t; label=5;};

int n=10;

mesh th= buildmesh (floor (n)+right (n)+ceiling(n)+left(n));

savemesh (th, "toto.am_fmt"); // format "formated Marrocco"
savemesh (th, "toto.Th") ; // format database db mesh "bamg"
savemesh (th, "toto.msh") ; // format freefem
savemesh (th, "toto.nopo") ; // modulef format see [10]

mesh th2 = readmesh ("toto.msh");
fespace fempl (th,P1);
fempl f = sin(x)*cos(y),g;
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{ // save solution
ofstream file("f.txt");

file << f[] << endl;

} // close the file (end block)
{ // read
ifstream file("f.txt");

file >> g[] ;

} // close reading file (end block)
fespace Vh2 (th2,P1);

Vh2 u,v;

plot (g);

// find uw such that

// u+Au=g in Q ,
// u=0 on I'y and g% =g on I'y
solve pb(u,v) =
int2d (th) ( uxv - dx(u)*dx(v)-dy (u) *dy (v) )
+ int2d (th) (-g*v)
+ intld(th,5) ( gx*v) // g%::g on T’y
+ on(1l,u=0) ;
plot (th2,u);

5.1.4 Mesh Connectivity

The following example explains methods to obtain mesh information.

{ // get mesh information (version 1.37)

mesh Th=square(2,2);

// get data of the mesh

int nbtriangles=Th.nt;

cout << " nb of Triangles = " << nbtriangles << endl;

for (int i=0;i<nbtriangles;i++)

for (int j=0; J <3; Jj++)
cout << i << " " << j << " Th[i][3j] ="
<< Th[i]l[]J] << " x = "<< Th[i]l[]J]l.x << " , y= "<< Th[il[3j].y

<< ", label=" << Th[i][j].label << endl;

// Th (i) return the vextex 1 of Th
// Th[k] return the triangle k of Th

fespace fempl (Th,P1l);

fempl Thx=x, Thy=y; // hack of get vertex coordinates
// get vertices information
int nbvertices=Th.nv;
cout << " nb of vertices = " << nbvertices << endl;
for (int i=0;i<nbvertices;i++)
cout << "Th(" <<i << ") : " // << endl;
<< Th(i).x << " " << Th(i).y << " " << Th(i).label // v 2.19
<< " 0old method: " << Thx[][1] << " " << Thy[]I[i] << endl;

// method to find information of point (0.55,0.6)

int it00 = Th(0.55,0.6) .nuTriangle; // then triangle number
int nro00 = .6) .region; //

|
3
oy
(@]
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)]
(@]
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// info of a triangle
real area00 = Th[it00].area; // new in version 2.19
real nrr00 = Th[it00].region; // new in version 2.19
real nl1100 = Th[it00].label; // same as region in this case.
// Hack to get a triangle containing point x,y
// or region number (old method)
/) T
fespace fempO (Th,PO);
femp0 nuT; // a PO function to get triangle numbering
for (int i=0;i<Th.nt;i++)
nuT[][1]=1;
fempO0 nuReg=region; // a PO function to get the region number
// inquire

int it0=nuT (0.55,0.6); // number of triangle Th’s containing (0.55,0,6);
int nrO=nuReg(0.55,0.6); // number of region of Th’s containing (0.55,0,6);

// dump
A
cout << " point (0.55,0,6) :triangle number " << it00 << " " << it0O0
<< ", region = " << nr0 << " == " << nr00 << ", area K " << area00 << endl;

// new method to get boundary information and mesh adjacent

int k=0,1=1,e=1;

Th.nbe ; // return the number of boundary element
Th.be (k) ; // return the boundary element k € {0,...,Th.nbe — 1}
Th.be (k) [1]; /7 return the vertices 1 € {0,1} of boundary elmt k
Th.be (k) .Element ; // return the triangle containing the boundary elmt
k
Th.be (k) .whoinElement ; // return the edge number of triangle
containing
// the boundary elmt k
Thlk].adj(e) ; // return adjacent triangle to k by edge e, and change
// the value of e to the corresponding edge in the adjacent triangle
Th[k] == Th[k].adj(e) // non adjacent triangle return the same
Th(k] != Thlk].ad](e) // true adjacent triangle

cout << " print mesh connectivity " << endl;
int nbelement = Th.nt;
for (int k=0; k<nbelement; ++k)

cout << k << " : " << int (Th[k][0]) << " " << int(Th([k][1])
<< " " << Int(Thlk]I[2])
<< " , label " << Th[k].label << endl;
//
for (int k=0; k<nbelement; ++k)
for (int e=0,ee;e<3; ++e)
// remark FH hack: set ee to e, and ee 1is change by method adj,
// in () to make difference with named parameters.
cout << k << " " << e << " <=> " << int(Th[k].adj((ee=e))) << " " << ee

<< " adj: " << ( Thlk].adj((ee=e)) != Thlk]) << endl;
// note : 1f k == int(Th([k].adj(ee=e)) not adjacent element
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int nbboundaryelement = Th.nbe;

for (int k=0;k<nbboundaryelement;

cout << k << " : " << Th.be(k)[0] <<
<< Th.be (k) .label << " tria " << int(Th.be (k) .Element)
<< " " << Th.be (k) .whoinElement <<
}
the output is:
—-— square mesh : nb vertices =9 , nb triangles

++k)

Nb of Vertices 9 , Nb of Triangles 8

Nb of edge on user boundary 8
number of real boundary edges 8
nb of Triangles = 8

0 0 Th[il[j]

, Nb of edges on true boundary

0 x=0, y= 0, label=4

01 Thl[il[j] =1 x = 0.5, y= 0, label=1

0 2 Th[il[j] =4 x = 0.5, y= 0.5, 1label=0
6 0 Th{il[j] =4 x = 0.5, y= 0.5, label=0
6 1 Th{i][j] =5 x =1, y= 0.5, label=2

6 2 Th{il[j] =8 x =1, y=1, label=3

7 0 Thiil[]] 4 x = 0.5, y= 0.5, 1label=0
7 1 Thiil[j] = 8 x=1, y=1, label=3

7 2 Thi(il[j] =7 x = 0.5, y=1, label=3
Nb Of Nodes = 9

Nb of DF = 9

—-— vector function’s bound 0 1

-— vector function’s bound 0 1

nb of vertices = 9

Th(0) : 0 0 4 old method: 0 O

Th(l) : 0.5 0 1 old method: 0.5 0
Th(7) : 0.5 1 3 old method: 0.5 1
Th(8) : 1 1 3 old method: 1 1

Nb Of Nodes = 8
Nb of DF = 8

print mesh connectivity

0 01 4, label O
1 04 3, label O
6 : 458, label O
7 : 48 7, label O
0 0 <=> 31 adj: 1
01 <=> 12 adj: 1
0 2 <=> 02 adj: O
6 2 <=> 3 0 adj: 1
70 <=> 70 adj: O
71 <=> 40 adj: 1
72 <=> 61 adj: 1
0 01 , label 1 tria 0 2

<< Th.be (k) [1]

nb boundary edges 8

97
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1 : 12, label 1 tria 2 2

label 4 tria 1 1

3,
6 , label 4 tria 5 1

: 0
7 : 3

5.1.5 The keyword ”triangulate”

FreeFem++ is able to build a triangulation from a set of points. This triangulation is a
Delaunay mesh of the convex hull of the set of points. It can be useful to build a mesh form
a table function.

The coordinates of the points and the value of the table function are defined separately with
rows of the form: x y f (x,y) in a file such as:

0.51387 0.175741 0.636237
0.308652 0.534534 0.746765
0.947628 0.171736 0.899823
0.702231 0.226431 0.800819
0.494773 0.12472 0.580623
0.0838988 0.389647 0.456045
A
== aV)
NS
\\“S!!EEiI-_>!§ul
Figure 5.8:  Delaunay mesh of the convex Figure 5.9: Isovalue of table function

hull of point set in file xyf

The third column of each line is left untouched by the triangulate command. But you
can use this third value to define a table function with rows of the form: x v f(x,vy).
The following example shows how to make a mesh from the file “xyf” with the format stated
just above. The command triangulate command use only use 1st and 2nd rows.

mesh Thxy=triangulate ("xyf"); // build the Delaunay mesh of the convex hull
// points are defined by the first 2 columns of file xyf

plot (Thxy, ps="Thxyf.ps"); // (see figure [5.9)
fespace Vhxy (Thxy,P1l); // create a P1 interpolation
Vhxy fxy; // the function
// reading the 3rd row to define the function

{ ifstream file ("xyf");
real xx,VV;
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for (int 1=0; i<fxy.n;i++)

file >> xx >>yy >> fxy[][i]; // to read third row only.
// xx and yy are just skipped

}
plot (fxy,ps="xyf.eps"); // plot the function (see figure [5.9)

One new way to build a mesh is to have two arrays one the x values and the other for the y
values (version 2.23-2):

Vhxy xx=x,Vyy=y; // to set two arrays for the x’s and y’s
mesh Th=triangulate (xx[],vyI[]);

5.2 Boundary FEM Spaces Built as Empty Meshes

To define a Finite Element space on a boundary, we came up with the idea of a mesh with no
internal points (call empty mesh). It can be useful to handle Lagrange multipliers in mixed
and mortar methods.

So the function emptymesh remove all the internal points of a mesh except points on
internal boundaries.

{ // new stuff 2004 emptymesh (version 1.40)
// -— useful to build Multiplicator space

// build a mesh without internal point

// with the same boundary

/S e

assert (version>=1.40);
border a (t=0,2xpi){ x=cos(t); y=sin(t);label=1;}
mesh Th=buildmesh (a (20));
Th=emptymesh (Th) ;
plot (Th,wait=1,ps="emptymesh-1.eps"); // see figure [5.10
}

It is also possible to build an empty mesh of a pseudo subregion with emptymesh (Th, ssd)
using the set of edges of the mesh Th; a edge e is in this set if with the two adjacent triangles
e = t1 Nt2 and ssd[T'1] # ssd[T2] where ssd refers to the pseudo region numbering of
triangles, when they are stored in an int [int] array of size the number of triangles.

{7/ new stuff 2004 emptymesh (version 1.40)
// -— useful to build Multiplicator space
// build a mesh without internal point
// of peusdo sub domain
/S e

assert (version>=1.40);
mesh Th=square (10,10);
int [int] ssd(Th.nt);

for (int i=0;i<ssd.n;i++) // build the pseudo region numbering
{ int ig=i/2; // because 2 triangle per quad
int ix=1g%10; //
int iy=iq/10; =

ssd[i]l= 1 + (ix>=5) + (1y>=5)*2;
}
Th=emptymesh (Th, ssd) ; // build emtpy with
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// all edge e=T1NT2 and ssd[T1] # ssd[T2]
plot (Th,wait=1,ps="emptymesh-2.eps"); // see figure [6.11
savemesh (Th, "emptymesh-2.msh") ;

}

Figure 5.10:  The empty mesh with bound- Figure 5.11: An empty mesh defined from a
ary pseudo region numbering of triangle

5.3 Remeshing

5.3.1 Movemesh

Meshes can be translated, rotated and deformed by movemesh; this is useful for elasticity
to watch the deformation due to the displacement ®(x,y) = (®1(z,y), P2(z,y)) of shape. It
is also useful to handle free boundary problems or optimal shape problems.

If © is triangulated as T, (£2), and @ is a displacement vector then ®(7},) is obtained by

mesh Th=movemesh (Th, [®1,®2]);

Sometimes the transformed mesh is invalid because some triangle have flip over (now has
negative area).To spot such problems one may check the minimum triangle area in the
transformed mesh with checkmovemesh before any real transformation.

Example 5.2 &(z,y) = x+kx*sin(y*m)/10), ®o(x,y) = y+k*cos(ym)/10) for a big number
k>1.

verbosity=4;
border a (t=0,1) {
border b (t=0,0.5

abel=1;};
; label=1;};

(
border c(t ; 0.5;label=1;};
border d(t=0.5,1 =0.5;y=t; label=1; };
border e (t=0.5,1 =1-t;y=1;label=1;};
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border f (t=0,1) {x=0;y=1-t; label=1;};
func uu= sin(y*pi)/10;
func vv= cos(x*pi)/10;

mesh Th = buildmesh ( a(6) + b(4) + c(4) +d(4) + e(4) + £(6));

plot (Th,wait=1,fill=1,ps="Lshape.eps"); // see figure [5.1]
real coef=1;
real minT0= checkmovemesh (Th, [x,v]); // the min triangle area
while (1) // find a correct move mesh
{
real minT=checkmovemesh (Th, [x+coef*uu,y+coef*vv]); // the min triangle area
if (minT > minTO0/5) break ; // if big enough
coef/=1.5;

Th=movemesh (Th, [x+coef*uu, ytcoef*vv]);
plot (Th,wait=1,fill=1, ps="movemesh.eps"); // see figure |5.13

Figure 5.12: L-shape Figure 5.13:  moved L-shape

Note 5.4 Consider a function u defined on a mesh Th. A statement like Th=movemesh (Th. . .

does not change u and so the old mesh still exists. It will be destroyed when no function use
it. A statement like u = u redefines u on the new mesh Th with interpolation and therefore
destroys the old Th if u was the only function using it.

Example 5.3 (movemesh.edp) Now, we given an ezample of moving mesh with a lagrangian
function u defined on the moving mesh.

// simple movemesh example
mesh Th=square (10,10);
fespace Vh (Th,P1l);
real t=0;
// -
// the problem is how to build data without interpolation

// so the data u is moving with the mesh as you can see in the plot
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A

Vh u=y;

for (int i=0;i<4;i++)

{

t=1ix0.1;

Vh f= x=*t;

real minarea=checkmovemesh (Th, [x,y+£f]);

if (minarea >0 ) // movemesh will be ok

Th=movemesh (Th, [x,y+f]);

cout << " Min area " << minarea << endl;

real[int] tmp(ul].n);

tmp=ul]; // save the value
u=0; // to change the FEspace and mesh associated with u
ul]l=tmp; // set the value of u without any mesh update
plot (Th,u,wait=1);

}i

// In this program, since u is only defined on the last mesh, all the

// previous meshes are deleted from memory.

/) e

5.4 Regular Triangulation: hTriangle
For a set S, we define the diameter of S by
diam(S) = sup{|z — y[; =, y € 5}
The sequence {7y, }nyo of 2 is called regular if they satisfy the following:
1.

l}iLﬂ)l max{diam(7y)| Ty, € Tn} =0

2. There is a number ¢ > 0 independent of A such that

p(Tk)

> for all T}, €
diam(7Ty) — ? or all T, € 7

where p(T}) are the diameter of the inscribed circle of Ty.
We put h(7,) = max{diam(Ty)| T} € Tn}, which is obtained by

mesh Th = ...... ;
fespace Ph (Th,PO);
Ph h = hTriangle;
cout << "size of mesh = " << h[].max << endl;
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5.5 Adaptmesh

The function
f(z,y) = 10.02% + * + tan"'[¢/(sin(5.0y) — 2.02)] & = 0.0001

sharply varies in value and the initial mesh given by one of the commands of Section [5.1
cannot reflect its sharp variations.

Example 5.4

real eps = 0.0001;

real h=1;

real hmin=0.05;

func f = 10.0xx"3+y"3+h*xatan2 (eps,sin(5.0xy)-2.0%x);

mesh Th=square (5,5, [-1+2xx,-1+2xy]);
fespace Vh (Th,P1);
Vh fh=f;
plot (fh);
for (int i=0;i<2;i++)
{
Th=adaptmesh (Th, fh) ;
fh=f; // old mesh is deleted
plot (Th, fh,wait=1);
}

FreeFem++ uses a variable metric/Delaunay automatic meshing algorithm. The command

mesh ATh = adaptmesh(Th, f);

create the new mesh ATh adapted to the Hessian
D*f = (9°f/0a?, 0% f |0xDy, & f | Oy°)

of a function (formula or FE-function). Mesh adaptation is a very powerful tool when the

solution of a problem varies locally and sharply.
Here we solve the problem (2.1)-(2.2]), when f =1 and 2 is a L-shape domain.

Example 5.5 (Adapt.edp) The solution has the singularity v3/%, r = |x — | at the point
of the intersection of two lines be and bd (see Fig. .

border ba (t=0,1.0) {x=t; y=0; label=1;};

border bb (t=0,0.5) {x=1; y=t; label=1;};

border bc (£t=0,0.5) {x=1-t; y=0.5;1label=1;};

border bd(t=0.5,1) {x=0.5; y=t; label=1;};

border be (t=0.5,1) {x=1-t; y=1; label=1;};

border bf (t=0.0,1) {x=0; y=1-t;label=1;};

mesh Th = buildmesh ( ba (6)+bb (4)+bc (4)+bd (4)+be (4)+bf (6) );

fespace Vh(Th,P1); // set FE space
Vh u,v; // set unknown and test function

func £ = 1;
real error=0.1; // level of error
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Figure 5.14: 3D graphs for the initial mesh and 1st and 2nd mesh adaptation

problem Poisson (u, v, solver=CG,eps=1.0e-6)

int2d (Th) ( dx(u)*dx(v) + dy (u)*dy(v))
— int2d(Th) ( fx*v )
+ on(1l,u=0) ;
for (int i=0;i< 4;i++)
{
Poisson;
Th=adaptmesh (Th,u, err=error);
error = error/2;
b
plot (u);

To speed up the adaptation the default parameter err of adaptmesh is changed by hand;
it specifies the required precision, so as to make the new mesh finer or coarser.

The problem is coercive and symmetric, so the linear system can be solved with the conjugate
gradient method (parameter solver=CG with the stopping criteria on the residual, here
eps=1.0e-6). By adaptmesh, the slope of the final solution is correctly computed near
the point of intersection of bc and bd as in Fig. |5.16

This method is described in detail in [9]. It has a number of default parameters which can

be modified :

Si £1, £2 sont des functions et thold, Thnew
Thnew = adaptmesh (Thold, f1l ) ;
Thnew = adaptmesh (Thold, f1,f2 ... ]
Thnew = adaptmesh (Thold, [f1l,f2]

des maillages.

)i
)i
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be
: bd
~ bc
bf 7 NI
| 'bb
ba
Figure 5.15: L-shape domain and its Figure 5.16:  Final solution after 4-times
boundary name adaptation

The additional paramters of adaptmesh not written here, hence the ”...”

hmin= Minimum edge size. (val is a real. Its default is related to the size of the domain
to be meshed and the precision of the mesh generator).

hmax= Maximum edge size. (val is a real. It defaults to the diameter of the domain to be
meshed)

err= P interpolation error level (0.01 is the default).
errg= Relative geometrical error. By default this error is 0.01, and in any case it must be
lower than 1/4/2. Meshes created with this option may have some edges smaller than

the —hmin due to geometrical constraints.

nbvx= Maximum number of vertices generated by the mesh generator (9000 is the default).

nbsmooth= number of iterations of the smoothing procedure (5 is the default).

nbjacoby= number of iterations in a smoothing procedure during the metric construction,
0 means no smoothing (6 is the default).

ratio= ratio for a prescribed smoothing on the metric. If the value is 0 or less than 1.1 no
smoothing is done on the metric (1.8 is the default).

If ratio > 1.1, the speed of mesh size variations is bounded by log(ratio). Note:
As ratio gets closer to 1, the number of generated vertices increases. This may be
useful to control the thickness of refined regions near shocks or boundary layers .

omega= relaxation parameter for the smoothing procedure (1.0 is the default).

iso= If true, forces the metric to be isotropic (false is the default).
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abserror= If false, the metric is evaluated using the criterium of equi-repartion of relative
error (false is the default). In this case the metric is defined by

err coef? maz(Cut0ff, |7

otherwise, the metric is evaluated using the criterium of equi-distribution of errors. In
this case the metric is defined by

. 1 |H| P
M= (err coef? sup(n) — inf(n)> ' (5.2)

cutoff= lower limit for the relative error evaluation (1.0e-6 is the default).

verbosity= informational messages level (can be chosen between 0 and oo). Also changes
the value of the global variable verbosity (obsolete).

inquire= To inquire graphically about the mesh (false is the default).

splitpbedge= If true, splits all internal edges in half with two boundary vertices (true is
the default).

maxsubdiv= Changes the metric such that the maximum subdivision of a background edge
is bound by val (always limited by 10, and 10 is also the default).

rescaling= if true, the function with respect to which the mesh is adapted is rescaled to
be between 0 and 1 (true is the default).

keepbackvertices= if true, tries to keep as many vertices from the original mesh as
possible (true is the default).

isMetric= if true, the metric is defined explicitly (false is the default). If the 3 functions
maiy, M2, Mag are given, they directly define a symmetric matrix field whose Hessian
is computed to define a metric. If only one function is given, then it represents the
isotropic mesh size at every point.

For example, if the partial derivatives fxx (= 9?f/0x?), fxy (= 0?f/0x0y), fyy
(= 0%*f/0y?) are given, we can set

Th=adaptmesh (Th, fxx, fxy, fyy, IsMetric=1, nbvx=10000, hmin=hmin) ;

power= exponent power of the Hessian used to compute the metric (1 is the default).

thetamax= minimum corner angle of in degrees (default is 10°) where the corner is ABC
and the angle is the angle of the two vectors AB, BC, (0 imply no corner, 90 imply
perp. corner , ...).

splitin2= boolean value. If true, splits all triangles of the final mesh into 4 sub-triangles.
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metric= an array of 3 real arrays to set or get metric data information. The size of these
three arrays must be the number of vertices. Soif m11,m12, m22 are three P1 finite el-
ements related to the mesh to adapt, you can write: metric=[ml1[],ml2[], m22[]]
(see file convect-apt.edp for a full example)

nomeshgeneration= If true, no adapted mesh is generated (useful to compute only a
metric).

periodic= Writing periodic=[[4,vy], [2,v],[1,x],[3,x]]; builds an adapted
periodic mesh. The sample build a biperiodic mesh of a square. (see periodic finite
element spaces @ and see sphere.edp for a full example)

We can use the command adaptmesh to build uniform mesh with a contant mesh size.
So to build a mesh with a constant mesh size equal to % try:

Example 5.6 uniformmesh.edp

mesh Th=square (2,2); // to have initial mesh
plot (Th,wait=1,ps="square-0.eps");

Th= adaptmesh (Th,1./3As writing

0.,IsMetric=1,nbvx=10000) ; //
plot (Th,wait=1,ps="square-1l.eps");

Th= adaptmesh (Th,1./30.,IsMetric=1,nbvx=10000); // more the one time du to
Th= adaptmesh (Th,1./30.,IsMetric=1,nbvx=10000); // adaptation bound
maxsubdiv=

plot (Th,wait=1,ps="square-2.eps");
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Figure 5.17: Initial mesh Figure 5.18: first iteration Figure 5.19: last iteration

5.6 Trunc

Two operators have been introduce to remove triangles from a mesh or to divide them.
Operator trunc has two parameters

label= sets the label number of new boundary item (one by default)



108 CHAPTER 5. MESH GENERATION

split= sets the level n of triangle splitting. each triangle is splitted in n x n ( one by
default).

To create the mesh Th3 where alls triangles of a mesh Th are splitted in 3x3 , just write:

mesh Th3 = trunc(Th,1,split=3);

The truncmesh.edp example construct all "trunc” mesh to the support of the basic
function of the space Vh (cf. abs (u)>0), split all the triangles in 5x5, and put a label
number to 2 on new boundary.

mesh Th=square (3, 3);
fespace Vh (Th,P1);

Vh uj;

int i,n=u.n;

u=0;

for (i=0;i<n;i++) // all degree of freedom
{
ull[i1=1; // the basic function 1

plot (u,wait=1);
mesh Shl=trunc (Th,abs(u)>1.e-10,split=5, label=2);

plot (Th,Shl,wait=1,ps="trunc"+i+".eps"); // plot the mesh of
// the function’s support
ul][11=0; // reset

}

Figure 5.20:  mesh of support the function Figure 5.21:  mesh of support the function
P1 number 0, splitted in 5x5 P1 number 6, splitted in 5x5

5.7 Splitmesh

Another way to split mesh triangles is to use splitmesh, for example:

{ // new stuff 2004 splitmesh (version 1.37)
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assert (version>=1.37);
border a (t=0,2*pi){ x=cos(t);
mesh Th=buildmesh (a (20));

plot (Th,wait=1,ps="nosplitmesh.eps");
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y=sin(t);label=1;}

// see figure

Th=splitmesh (Th, 1+5% (square (x-0.5) ty*y));

plot (Th,wait=1,ps="splitmesh.eps");

5.8 Meshing Examples

Figure 5.22:

initial mesh

// see figure
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Figure  5.23: all  left  mesh
triangle is split conformaly in

int (1+5* (square (x-0.5) +ty*y) 2
triangles.

Example 5.7 (Two rectangles touching by a side)

border
border
border
border
border
border
border
border

int n=1;
mesh th = buildmesh (a (10*n)+b (10*n)+c (10xn)+d(10*n));

mesh TH = buildmesh
plot (th, TH,ps="TouchSide.esp");

14
ivy=1;1};
0; y=t;};

x=t jy=1;};
) {x=1;y=1+t;};

ivy=1.2;1;

) {x=0;y=1+t; };

( cl(10%n)

Example 5.8 (NACA0012 Airfoil)

border upper (t=0,1)

{x=t;

+ £(10*n) + g(5%n) );
// Fig. 5.24
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y = 0.17735%xsqgrt (t)-0.075597xt
- 0.212836%(t"2)+0.17363*(t"3)-0.06254x(t"4); }
border lower (t=1,0) { x = t;
y= —(0.17735%sqrt (t)—-0.075597«t
-0.212836%(t"2)+0.17363%(£t"3)-0.06254x(t"4)); }
border c (t=0,2xpi) { x=0.8%cos(t)+0.5; vy=0.8xsin(t); }
mesh Th = buildmesh (c (30) tupper (35) +lower (35));

plot (Th, ps="NACA0012.eps",bw=1); // Fig.
(0,2)
] ‘
(0,0) RAHALRS h RA
9 TH f
(0,-10) (10,-10)
e
Figure 5.24: Two rectangles touching by a Figure 5.25: NACAO0012 Airfoil

side

Example 5.9 (Cardioid)

real b =1, a = b;
border C(t=0,2*pi) { x=(a+b)+*cos(t)-b*cos((a+tb)*t/b);
y=(a+b) *sin (t)-b*sin( (a+b)*t/b); }
mesh Th = buildmesh (C(50));
plot (Th,ps="Cardioid.eps", bw=1); // Fig.

Example 5.10 (Cassini Egg)

border C (t=0,2xpi) { x=(2*cos(2xt)+3)*cos (t);
y=(2*xcos (2xt)+3)xsin(t); 1}
mesh Th = buildmesh (C(50));
plot (Th,ps="Cassini.eps",bw=1); // Fig.

Example 5.11 (By cubic Bezier curve)

// A cubic Bezier curve connecting two points with two control points
func real bzi (real p0O,real pl,real gl,real g2,real t)

{
return pOx (1-t) "3+gl*3* (1-t) "2+t+g2x3% (1-t) *xt"2+pl*t"3;
}

real[int] pOO=[O0,1], pO1=[0,-1], g00=[-2,0.1], 9gO0l1l=[-2,-0.5];
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Figure 5.26: Domain with Cardioid curve Figure 5.27: Domain with Cassini Egg curve

boundary boundary

real[int] pll=[1,-0.9], gl0=[0.1,-0.95], gl1=[0.5,-11;

real[int] p21=[2,0.7], g20=[3,-0.4], g21=[4,0.5];

real[int] g30=[0.5,1.1]1, g31=[1.5,1.2];

border G1 (t=0,1) { x=bzi(p00[0],p01[0],g00[0],901[0],t);
y=bzi (p00[1],p01[1],g00([1],q01[1],t); }

border G2 (t=0,1) { x=bzi(p01[0],pl1[0],gl0[0],qll[0],t);
y=bzi(p01[1],p11[1],9ql0[1],gll[1],t); }

border G3(t=0,1) { x=bzi(pll[0],p21[0],9g20[0],9g21[0],t);
y=bzi(pll([1l],p21([1],920([1],921[1],t); }

border G4 (t=0,1) { x=bzi(p21[0],p00[0],g30[0],931[0],t);
y=bzi(p21[1],p00[1],930[1],g31[1],t); }

int m=5;

mesh Th = buildmesh (Gl (2+m)+G2 (m)+G3 (3+m) +G4 (m) ) ;

plot (Th,ps="Bezier.eps",bw=1); // Fig [5.28

Example 5.12 (Section of Engine)

real a= 6., b= 1., c¢=0.5;

border L1 (t=0,1) { x= -a; y= 1+b - 2% (1l+b)*t; }

border L2 (t=0,1) { x= —at+2+axt; y= —-l-bx(x/a)*(x/a)*(3-2+abs(x)/a );}
border L3(t=0,1) { x= a; y=-1-b + (1+ b )=t; }

border L4 (t=0,1) { x= a - a=*t; y=0; 1}

border L5 (t=0,pi) { x= —-cxsin(t)/2; y=c/2-cxcos(t)/2; }

border L6(t=0,1) { x= ax*t; y=c; }

border L7(t=0,1) { x= a; y=c + (1+ b-c )xt; }

border L8 (t=0,1) { x= a-2xa*t; y= l+b=*(x/a)*(x/a)* (3-2xabs (x)/a); }

mesh Th = buildmesh (L1 (8)+L2(26)+L3(8)+L4(20)+L5(8)+L6(30)+L7(8)+L8(30));
plot (Th, ps="Engine.eps",bw=1); // Fig.

Example 5.13 (Domain with U-shape channel)

real d = // width of U-shape

0.1;
border 11 (t=0,1-d) { x=-1; y=-d-t; }
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Figure 5.29: Section of Engine

Figure 5.28: Boundary drawed by Bezier
curves

border 12 (t=0,1-d) { x=-1; y=1-t; }
border B (t=0,2) { x=-1+t; y=-1; }
border C1 (t=0,1) { x=t-1; y=d; }

border C2 (t=0,2+d) { x=0; y=d-t;

border C3(t=0,1) { x=-t; y=-d; }

border R (t=0,2) }
border T (t=0,2)

int n = 5

mesh Th = buildmesh (L1 (n/2)+L2(n/2)+B(n)+Cl(n)+C2(3)+C3(n)+R(n)+T(n));

plot (Th, ps="U-shape.eps",bw=1); // Fig [5.30

4

Example 5.14 (Domain with V-shape cut)

real dAg = 0.01; // angle of V-shape
border C(t=dAg,2*pi-dAg) { x=cos(t); y=sin(t); };
real[int] pa(2), pb(2), pc(2);

pal0] = cos(dAg); pall]l = sin(dAqg);

Pb[0] = cos(2xpi-dAg); pb[l] = sin(2xpi-dAg);

pcl0] = 0; pcll] = 0;

border segl (t=0,1) { x=(1-t)xpb[0]+txpc[0]; y=(1-t)*pb[l]l+t*pc[l]; };
border seg2(t=0,1) { x=(1l-t)*pc[0]+txpal0]; y=(1l-t)*pc[l]l+t*palll; };
mesh Th = buildmesh (segl (20)+C (40) +seg2 (20)) ;

plot (Th,ps="V-shape.eps",bw=1); // Fig. [5.31

Example 5.15 (Smiling face)

real d=0.1;
int m=5;
real a=1.5, b=2, c=0.7, e=0.01;

border F (t=0,2xpi) { x=a*cos(t); y=bxsin(t); }
border E1 (t=0,2+pi) { x=0.2xcos(t)-0.5; y=0.2xsin(t)+0.5; }
border E2 (t=0,2+pi) { x=0.2xcos(t)+0.5; y=0.2xsin(t)+0.5; }

func real st (real t) {
return sin(pix*t)-pi/2;
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Figure 5.30: Domain with U-shape channel Figure 5.31: Domain with V-shape cut

changed by d changed by dAg
}
border C1 (t=-0.5,0.5) { x=(1-d)+*c*cos(st(t)); y=(1l-d)xcxsin(st(t)); }
border C2 (t=0,1) {x=((1-d) +d*t) *cxcos (st (0.5));y=((1l-d)+dxt)rc*sin(st (0.5));}
border C3(t=0.5,-0.5) { x=cxcos(st(t)); y=cxsin(st(t)); }
border C4 (t=0,1) { x=(l-dxt)*xcxcos(st(-0.5)); y=(l-dxt)*cxsin(st(-0.5));1}
border CO (t=0,2xpi) { x=0.1l%cos(t); y=0.1lxsin(t); }
mesh Th=buildmesh (F (10xm)+C1l (2*m)+C2 (3)+C3 (2*m)+C4 (3)
+CO0 (m) +E1 (-2*m) +E2 (-2*m) ) ;

plot (Th,ps="SmileFace.eps",bw=1); // see Fig. |5.37
}
Example 5.16 (3point bending)

// Square for Three-Point Bend Specimens fixed on Fixl, Fix2

// It will be loaded on Load.

real a=1, b=5, c¢=0.1;

int n=5, m=b=*n;

border Left (t=0,2xa) { x=-b; y=a-t; }

border Botl (t=0,b/2-c) { x=-b+t; y=-a; }

border Fix1 (t=0,2xc) { x=-b/2-c+t; y=-a; }

border Bot2 (t=0,b-2%c) { x=-b/2+c+t; y=-a; }

border Fix2 (t=0,2*c) { x=b/2-c+t; y=-a; }

border Bot3(t=0,b/2-c) { x=b/2+c+t; y=-a; }

border Right (t=0,2xa) { x=b; y=-a+t; }

border Topl (t=0,b-c) { x=b-t; y=a; }

border Load(t=0,2xc) { x=c-t; y=a; }

border Top2 (t=0,b-c) { x=-c-t; y=a; }

mesh Th = buildmesh (Left (n)+Botl (m/4)+Fix1 (5)+Bot2 (m/2)+Fix2 (5)+Bot3 (m/4)
+Right (n) +Topl (m/2) +Load (10) +Top2 (m/2)) ;

plot (Th,ps="ThreePoint.eps",bw=1); // Fig. 15.33

—_~ o~~~



114 CHAPTER 5. MESH GENERATION
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Figure 5.33: Domain for three-point bending
test

Figure 5.32: Smiling face (Mouth is change-
able)

5.9 How to change the label of elements and border elements
of a mesh

Changing the label of elements and border elements will be done using the keyword change.
The parameters for this command line are for a two dimensional and dimensional case:

label = is a vector of integer that contains successive pair of the old label number to the
new label number .

region = is a vector of integer that contains successive pair of the old region number to
new region number.

flabel = is a integer function with given the new value of the label (version 3.21).
fregion = is a integer function with given the new value of the region .

These vectors are composed of n; successive pair of number O, N where n; is the number
(label or region) that we want to change. For example, we have

label = [O1,Ny,...,Op, Ny, (5.3)
region =[O, Ny,...,0p, N, (5.4)

An example of using this function is given in ”glumesh2D.edp”:

Example 5.17 (glumesh2D.edp)

: plot (Thl,wait=1);
Th2=change (Th2, label=r2) ; // Change the label of Edges 4 in 0.

1:

2: mesh Thl=square(10,10);

3: mesh Th2=square (20,10, [x+1,v]);

4: verbosity=3;

5: int[int] rl1=[2,0], r2=[4,0];

6: plot (Thl,wait=1);

7: Thl=change (Thl, label=rl); // Change the label of Edges 2 in 0.
8

9:
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10: mesh Th=Thl+Th2; // ‘‘gluing together’’ of meshes Thl and Th2

11: cout << " nb lab = " << intld(Thl,1,3,4) (1./lenkEdge)+intld(Th2,1,2,3) (1./lenEdge)
12: << " == " << intld(Th,1,2,3,4) (1./lenEdge) <<" == " << ((10+20)+10) %2
<< endl;

13: plot (Th,wait=1);

14: fespace Vh(Th,P1l);

15: macro Grad(u) [dx(u),dy(u)]l; // definition of a macro
16: Vh u,v;

17: solve P (u,Vv)=int2d(Th) (Grad(u)’ xGrad(v))-int2d(Th) (v)+on (1, 3,u=0) ;

18: plot (u,wait=1);

“gluing” different mesh In line 10 of previous file, the method to “gluing” different mesh
of the same dimension in FreeFem++ is using. This function is the operator "+” between
meshes. The method implemented need that the point in adjacent mesh are the same.

5.10 Mesh in three dimensions

5.10.1 Read/Write Statements for a Mesh in 3D

In three dimensions, the file mesh format supported for input and output files by FreeFem+-+
are the extension .msh and .mesh. These formats are described in the chapter on Mesh Files
in two dimensions.

extension file .msh The structure of the files with extension .msh in 3D is given in Table
.2l In this structure, n, denotes the number of vertices, ns; the number of tetrahedra and

nyy; the number of triangles For each vertex ¢', i = 1,--- ,n,, we denote by (g.,q},q.) the
x-coordinate, the y-coordinate and the z-coordinate. Each tetrahedra Ty, k = 1,--- ,n4y has
four vertices ¢*, ¢*2, ¢**, ¢"*. The boundary consists of an union of triangles. Each triangle
bej,j =1, -+ ,ny; has three vertices ¢’*, ¢%2, ¢%*.
Ty Ntet Nty
qt q; ql Vertex label
q qz q? Vertex label
qr 4" qrr Vertex label
1 1, 15 14 region label
21 29 23 24 region label
(tet)r (Muer)2 (Nier)s (et )4 region label
1 1, 15 boundary label
21 29 23 boundary label
(nyri)y  (nyri)2  (ng)3  boundary label

Table 5.2: The structure of mesh file format “.msh” in three dimensions.
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extension file .mesh The data structure for a three dimensional mesh is composed of the
data structure presented in Section and a data structure for tetrahedra. The tetrahedra
of a three dimensional mesh are refereed using the following field:

e Tetrahedra

(I) NbOfTetrahedrons
( @@Vertexg ) j:1,4) , (I) Refol® s i=1 ,NbOfTetrahedrons)

This field is express with the notation of Section [12.1

5.10.2 TeGen: A tetrahedral mesh generator

TetGen TetGen is a software developed by Dr. Hang Si of Weierstrass Institute for Applied Anal-
ysis and Stochastics of Berlin in Germany [36]. TetGen is a free for research and non-commercial
uses. For any commercial licence utilization, a commercial licence is available upon request to Hang
Si.

This software is a tetrahedral mesh generator of a three dimensional domain defined by its boundary.
The input domain take into account a polyhedral or a piecewise linear complex. This tetrahedral-
ization is a constrained Delaunay tetrahedralization.

The method used in TetGen to control the quality of the mesh is a Delaunay refinement due to
Shewchuk [37]. The quality measure of this algorithm is the Radius-Edge Ratio (see Section 1.3.1
[36] for more details). A theoretical bounds of this ratio of the algorithm of Shewchuk is obtained
for a given complex of vertices, constrained segments and facets of surface mesh, with no input
angle less than 90 degree. This theoretical bounds is 2.0.

The launch of Tetgen is done with the keyword tetg. The parameters of this command line is:

label = is a vector of integer that contains the old labels number at index 27 and the new labels
number at index 2¢ 4+ 1 of Triangles. This parameters is initialized as label for the keyword
change (5.3]).

switch = A string expression. This string corresponds to the command line switch of Tetgen see
Section 3.2 of [36].

nbofholes= Number of holes (default value size of holelist/3 (version 3.11) ).

holelist = This array correspond to holelist of tetgenio data structure [36]. A real vector of
size 3 X nbofholes. In TetGen, each hole is associated with a point inside this domain.
This vector is m’f,y{‘, z{l,xg”, yél, zé‘, -+, where x?,ylh, zlh is the associated point with the i*®

hole.
nbofregions = Number of regions (size of regionlist/5 (version 3.11) ).

regionlist = This array corresponds to regionlist of tetgenio data structure [36]. The attribute
and the volume constraint of region are given in this real vector of size 5 X nbofregions.
The i*® region is described by five elements: z—coordinate, y—coordinate and z—coordinate of
a point inside this domain (x;, y;, 2;); the attribute (at;) and the maximum volume for tetrahe-
dra (mwol;) for this region. The regionlist vectoris: x1,y1, 21, at, mvoly, xa, y2, 22, ata, mvola, - - - .

nboffacetcl= Number of facets constraints size of facetcl/2 (version 3.11) ).



5.10.

MESH IN THREE DIMENSIONS 117

facetcl= This array corresponds to facetconstraintlist of tetgenio data structure [36]. The it

facet constraint is defined by the facet marker Re fif “ and the maximum area for faces

marea{c. The facetcl array is: Reflfc,marea{C,Refzfc,mareagc,---. This parameters

has no effect if switch g is not selected.

Principal switch parameters in TetGen:

p

q

YY

cC

M

T

d

Tetrahedralization of boundary.

Quality mesh generation. The bound of Radius-Edge Ratio will be given after the option q.
By default, this value is 2.0.

Construct with the volumes constraints on tetrahedra. These volumes constraints are defined
with the bound of the previous switch g or in the parameter regionlist.

Attributes reference to region given in the regionlist. The other regions have label 0.
The option AA gives a different label at each region. This switch work with the option p’.
If option 1’ is used, this switch has no effect.

Reconstructs and Refines a previously generated mesh. This character is only used with the
command line tetgreconstruction.

This switch allow to preserve the mesh on the exterior boundary. This switch must be used
to ensure conformal mesh between two adjacents mesh.

This switch allow to preserve the mesh on the exterior and interior boundary.
The consistency of the result’s mesh is testing by TetGen.

The consistency of the result’s mesh is testing by TetGen and also checks constrained delaunay
mesh (if 'p’ switch is selected) or the consistency of Conformal Delaunay (if 'q’ switch is
selected).

Give information of the work of TetGen. More information can be obtained in specified 'VV’
or 'VVV’.

Quiet: No terminal output except errors
The coplanar facets are not merging.
Set a tolerance for coplanar test. The default value is 1le — 8.

Itersections of facets are detected.

To obtain a tetrahedral mesh generator with tetgen, we need the surface mesh of three dimensional
domain. We give now the command line in FreeFem++ to construct these meshes.

keyword: “movemesh23” A simple method to construct a surface is to place a two dimensional
domain in a three dimensional space. This corresponding to move the domain by a displacement
vector of this form ®(x,y) = (P1(z,y), P2(z,y), P3(x,y)). The result of moving a two dimensional
mesh Th2 by this three dimensional displacement is obtained using:

mesh3 Th3 = movemesh23 (Th2,transfo=[®1, P2, P3]);

The parameters of this command line are:
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transfo = [P1, P2, P3] set the displacement vector of transformation ®(x,y) = [®1(x,y), P2(x,y), P3(a

label = set integer label of triangles
orientation= set integer orientation of mesh.

ptmerge = A real expression. When you transform a mesh, some points can be merged. This
parameters is the criteria to define two merging points. By default, we use

ptmerge = le —7 Vol(B),

where B is the smallest axis parallel boxes containing the discretized domain of 2 and Vol(B)
is the volume of this box.

We can ‘do a ‘gluing” of surface meshes using the process given in Section An example to
obtain a three dimensional mesh using the command line tetg and movemesh23 is given in the
file tetgencube.edp.

Example 5.18 (tetgencube.edp)

// file tetgencube.edp
load "msh3"
load "tetgen"

real x0,x1,y0,v1;
x0=1.; x1=2.; y0=0.; yl=2%pi;
mesh Thsgl = square (5,35, [x0+ (x1-x0) *x,y0+(yl-y0)*y]);

func 7ZZ1lmin = 0;
func ZZlmax = 1.5;
func XX1 = x;

func YY1 = y;

mesh3 Th31lh = movemesh23 (Thsqgl,transfo=[XX1,YY1l,ZZ1lmax]);
mesh3 Th31lb = movemesh23 (Thsqgl,transfo=[XX1,YY1l,ZZ1lmin]);

// SIS S S S S S S S S S S S S
x0=1.; x1=2.; y0=0.; yl=1.5;
mesh Thsg2 = square (5,8, [x0+ (x1-x0) *x,y0+(yl-y0)*vy]);

func 7272 = y;

func XX2 = x;

func YY2min = 0.;
func YY2max = 2xpi;

mesh3 Th32h movemesh23 (Thsg2, transfo=[XX2,YY2max, Z2Z2]) ;
mesh3 Th32b = movemesh23 (Thsqg2, transfo=[XX2,YY2min, Z2221]);

// SIS S S S S
x0=0.; x1=2+pi; y0=0.; yl=1.5;
mesh Thsg3 = square (35,8, [x0+ (x1-x0) *x,y0+ (y1l-y0) *y]);
func XX3min = 1.;
func XX3max = 2.;
func YY3 = x;
func 72723 = y;



5.10. MESH IN THREE DIMENSIONS 119

mesh3 Th33h = movemesh23 (Thsqg3, transfo=[XX3max,YY3,Z%3]);
mesh3 Th33b movemesh23 (Thsg3, transfo=[XX3min, YY3, ZZ3]);

// SIS S S S S S S SSSS
mesh3 Th33 = Th31h+Th31b+Th32h+Th32b+Th33h+Th33b; // "gluing" surface meshs
to obtain the surface of cube
savemesh (Th33, "Th33.mesh") ;

// build a mesh of a axis parallel box with TetGen
real[int] domain =[1.5,pi,0.75,145,0.0025];
mesh3 Thfinal = tetg(Th33, switch="paAAQY", regionlist=domain) ; //

Tetrahelize the interior of the cube with tetgen
savemesh (Thfinal, "Thfinal .mesh") ;

// build a mesh of a half cylindrical shell of interior radius 1. and
exterior radius 2 and heigh 1.5

func mv2x x*Ccos (y);

func nv2y = xxsin(y);

func mv2z = z;

mesh3 Thmv2 = movemesh3 (Thfinal, transfo=[mv2x,mv2y,mv2z]);
savemesh (Thmv2, "halfcylindricalshell.mesh")

The command movemesh is describe in the following section.

The keyword “tetgtransfo” This keyword correspond to a composition of command line tetg
and movemesh?23:

tetgtransfo( Th2, transfo= [®1, ®2, &3] ), --- ) = tetg( Th3surf, --- ),

where Th3surf = movemesh23( Th2,tranfo=[®1, ®2, ®3] ) and Th2 is the input two dimensional
mesh of tetgtransfo.
The parameters of this command line are on the one hand the parameters:
label, switch, regionlist nboffacetcl facetcl
of keyword tetg and on the other hand the parameter ptmerge of keyword movemesh23.

Remark: To use tetgtransfo, the result’s mesh of movemesh23 must be an closed surface
and define one region only. Therefore, the parameter regionlist is defined for one region.
An example of this keyword can be found in line of file “buildlayers.edp”

The keyword ”tetgconvexhull” FreeFem++ |, using tetgen, is able to build a tetrahedralization
from a set of points. This tetrahedralization is a Delaunay mesh of the convex hull of the set of
points.

The coordinates of the points can be initialized in two ways. The first is a file that contains the
coordinate of points X; = (x;,y;, z;). This files is organized as follows:

Uz
45 Al Z1
T2 Y2 Z2

xn'u ynv va
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The second way is to give three arrays that correspond respectively to the z—coordinates, y—coordinates
and z—coordinates.

The parameters of this command line are

switch = A string expression. This string corresponds to the command line switch of TetGen
see Section 3.2 of [30].

reftet = An integer expression. set the label of tetrahedra.
label = An integer expression. set the label of triangles.

In the string switch, we can’t used the option 'p’ and 'q’ of tetgen.

5.10.3 Reconstruct/Refine a three dimensional mesh with TetGen

Meshes in three dimension can be refined using TetGen with the command line tetgreconstruction.
The parameter of this keyword are

region= an integer array that allow to change the region number of tetrahedra. This array is
defined as the parameter reftet in the keyword change.

label= an integer array that allow to change the label of boundary triangles. This array is defined
as the parameter label in the keyword change.

sizevolume= a reel function. This function allows to constraint volume size of tetrahedra in the

domain. (see example to build 3d adapt mesh )

The parameter switch nbofregions, regionlist, nboffacetcl and facetcl of the com-
mand line which call TetGen (tetg) is used for tetgrefine.

In the parameter switch=, the character 'r’ should be used without the character 'p’. For instance,
see the manual of TetGen [36] for effect of 't’ to other character.

The parameter regionlist allows to define a new volume constraint in the region. The label in
the regionlist will be the previous label of region. This parameter and nbofregions can’t
be used with parameter sizevolume.

Example:

Example 5.19 (refinesphere.edp) // file refinesphere.edp

load "msh3"
load "tetgen"
load "medit"

mesh Th=square (10,20, [x+pi-pi/2, 2+y*pil]); // =2, frac—pi2[x]0, 27|
// a parametrization of a sphere
func fl =cos (x) *cos (y);
func f2 =cos (x)*sin(y);
(x)

func f£3 = si

;

// partiel derivative of the parametrization DF
func flx=sin (x) *cos (y)
func fly=-cos (x)*sin(y
func f2x=-sin (x)*sin(y
func f2y=cos (x) *cos (y)
func f3x=cos (x);

14

)
)

4
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func f3y=0;
// M = DF'DF
func mll=£f1x"24+£f2x"2+£3x"2;
func m21=flx+xfly+f2x+f2y+£3x+xf3y;
func m22=fly " 2+f2y"2+£f3y~2;

func perio=[[4,y], [2,y], [1,x],[3,x]];

real hh=0.1;

real vv= 1/square (hh);

verbosity=2;

Th=adaptmesh (Th, mllxvv, m21xvv,m22+vv, IsMetric=1,periodic=perio);
Th=adaptmesh (Th, mllxvv, m2l+vv,m22xvv, IsMetric=1, periodic=perio);
plot (Th,wait=1);

verbosity=2;

// construction of the surface of spheres
real Rmin = 1.;
func flmin = Rminxfl;
func f2min = Rminxf2;
func f3min = Rmin*£3;

mesh3 Th3=movemesh23 (Th, transfo=[flmin, f2min, £3min]);

real[int] domain = [0.,0.,0.,145,0.017;
mesh3 Th3sph=tetg(Th3, switch="paAAQYY",nbofregions=1,regionlist=domain);

int [int] newlabel = [145,18];

real[int] domainrefine = [0.,0.,0.,145,0.00017;

mesh3 Th3sphrefine=tetgreconstruction (Th3sph, switch="raAQ", reftet=newlabel,
nbofregions=1,regionlist=domain, refinesizeofvolume=0.0001);

int [int] newlabel2 = [145,53];

func fsize = 0.01/(( 1 + 5*sgrt( (x-0.5) "2+ (y-0.5)"2+(z-0.5)"2) )"3);

mesh3 Th3sphrefine2=tetgreconstruction (Th3sph, switch="raAQ",reftet=newlabel?2,
sizeofvolume=fsize);

medit (' ‘sphere’’, Th3sph);
medit (' ‘isotroperefine’’ ,Th3sphrefine);
medit (' ‘anisotroperefine’’, Th3sphrefine?2);

5.10.4 Moving mesh in three dimensions

Meshes in three dimensions can be translated rotated and deformed using the command line
movemesh as in the 2D case (see section movemesh in chapiter 5). If Q is tetrahedrized as Tj (),
and ®(z,y) = (®1(z,y, 2), P1(z,y, 2), P3(x,y, 2)) is a displacement vector then ®(T}) is obtained
by

mesh3 Th = movemesh( Th, transfo=[®1, ®2, ®3]1, ... );

The parameters of movemesh in three dimensions are

transfo = [®P1,P2, D3] set the displacement vector of 3D transformation [®1(x,y, z), P2(x, y, 2), P3(x, y,
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upper surface

Middle surface

ﬁ -
Lower surface

Figure 5.34: Example of Layer mesh in three dimension.

region = set integer label of tetrahedra. 0 by default.

label = set the label of faces of border. This parameters is initialized as label for the keyword

change (5.3)).

facemerge = An integer expression. When you transform a mesh, some faces can be merged.
This parameters equals to one if merge’s faces is considered. Otherwise equals to zero. By
default, this parameter is equals to 1.

ptmerge = A real expression. When you transform a mesh, some points can be merged. This
parameters is the criteria to define two merging points. By default, we use

ptmerge = le — 7 Vol(B),

where B is the smallest axis parallel boxes containing the discretion domain of € and Vol(B)
is the volume of this box.

An example of this command can be found in the file ”"Poisson3d.edp” located in the directory
examples++-3d.

5.10.5 Layer mesh

In this section, we present the command line to obtain a Layer mesh: buildlayermesh. This
mesh is obtained by extending a two dimensional mesh in the z-axis.

The domain Q34 defined by the layer mesh is equal to Q345 = Qo4 X [zmin, zmaz] where Q4 is the
domain define by the two dimensional mesh, zmin and zmax are function of {294 in R that defines
respectively the lower surface and upper surface of €34.

For a vertex of a two dimensional mesh Vfd = (z4,v;), we introduce the number of associated
vertices in the z—axis M; + 1. We denote by M the maximum of M; over the vertices of the two
dimensional mesh. This value are called the number of layers (if Vi, M; = M then there are M
layers in the mesh of Q34). Vi2d generated M + 1 vertices which are defined by

Vi=0,. M, V= (@i 0iz),

where (2; j)j—o...a are the M + 1 equidistant points on the interval [zmin(V;*?), zmaz(V;??)]:

zmaz (V2 — zmin(V2)

zij = j da+ zmin(Vi2Y), da = i
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The function 6;, defined on [zmin(V;2?), zmaz(V;*?)], is given by

0i(z) = Oio ifz= zmin(\/?d),
! o 01'7]' if z 6]01‘7]',1,91',]'],

with (6;;)j—0...a; are the M; + 1 equidistant points on the interval [zmin(V24), zmax(V,2)].

Set a triangle K = (V2¢, V2% V2%) of the two dimensional mesh. K is associated with a trian-

K2
gle on the upper surface (resp. on the lower surface) of layer mesh: (V??M,%%?M,%gflM) (resp.

7
d d d
(Vi Vidt» Vis0))-

Also K is associated with M volume prismatic elements which are defined by

. _ /1/3d 13d vs3d v,3d 3d 3d
Vi=0,...,M, Hj= (V;l,ﬁvz?,jvViS,j7Vil,j+17ViZ,j—i-bVi?;,j—&-l)'

Theses volume elements can have some merged point:
e ( merged point : prism
e 1 merged points : pyramid
e 2 merged points : tetrahedra
e 3 merged points : no elements

The elements with merged points are called degenerate elements. To obtain a mesh with tetrahe-
dra, we decompose the pyramid into two tetrahedra and the prism into three tetrahedra. These
tetrahedra are obtained by cutting the quadrilateral face of pyramid and prism with the diagonal
which have the vertex with the maximum index (see [8] for the reaspn of this choice).

The triangles on the middle surface obtained with the decomposition of the volume prismatic el-
ements are the triangles generated by the edges on the border of the two dimensional mesh. The
label of triangles on the border elements and tetrahedra are defined with the label of these associ-
ated elements.

The arguments of buildlayermesh is a two dimensional mesh and the number of layers M.
The parameters of this command are:

zbound = [zmin,zmax| where zmin and zmax are functions expression. Theses functions define
the lower surface mesh and upper mesh of surface mesh.

coef = A function expression between [0,1]. This parameter is used to introduce degenerate

element in mesh. The number of associated points or vertex ViQd is the integer part of
coef (VA1) M.

region = This vector is used to initialized the region of tetrahedra. This vector contain successive
pair of the 2d region number at index 2i and the corresponding 3d region number at index
2i + 1, like (5.3]). become the

labelmid = This vector is used to initialized the 3d labels number of the vertical face or mid
face form the 2d label number. This vector contains successive pair of the 2d label number
at index 2¢ and the corresponding 3d label number at index 2i + 1, like ([5.3)).

labelup = This vector is used to initialized the 3d label numbers of the upper/top face form the
2d region number. This vector contains successive pair of the 2d region number at index 2:
and the corresponding 3d label number at index 2i + 1, like (5.3)).
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labeldown = Same as the previous case but for the lower/down face label .

Moreover, we also add post processing parameters that allow to moving the mesh. These parameters
correspond to parameters transfo, facemerge and ptmerge of the command line movemesh.
The vector region, labelmid, labelup and labeldown These vectors are composed of n;
successive pairs of number O;, N; where n; is the number (label or region) that we want to get.
An example of this command line is given in buildlayermesh.edp.

Example 5.20 (cube.idp)

load "medit™"
load "msh3"
func mesh3 Cube (int[int] & NN, real[int,int] &BB ,int[int,int] & L)
{
// first build the 6 faces of the hex.
real x0=BB(0,0),x1=BB(0,1);
real y0=BB(1,0),y1=BB(1,1);
real z0=BB(2,0),z1=BB(2,1);

int nx=NN[0],ny=NN[1],nz=NN[2];
mesh Thx = square(nx,ny, [x0+ (x1-x0) *x,y0+(yl-y0)*xy]l);

int[int] rup=[0,L(2,1)], rdown=[0,L(2,0)1],
rmid=[1,L(1,0), 2,L(0,1), 3, L(1,1), 4, L(0,0) 1;
mesh3 Th=buildlayers (Thx,nz, zbound=[z0,z1],
labelmid=rmid, labelup = rup,

labeldown = rdown) ;

return Th;
}
The unit cube example:

include "Cube.idp"

int[int] NN=[10,10,107; // the number of step in each direction
real [int,int] BB=[[0,1]1,[0,1]1,10,1171; // bounding box
int [int,int] L=[[1,21,13,41,1[5,61]1; // the label of the 6 face
left, right,

// front, back, down, right

mesh3 Th=Cube (NN, BB, L) ;
medit ("Th", Th); // see figure

The cone example (an axisymtric mesh on a triangle with degenerateness).

Example 5.21 (cone.edp)

load "msh3"
load "medit"
// cone using buildlayers with a triangle
real RR=1,HH=1;
border Taxe (t=0,HH) {x=t;y=0; label=0;};
border Hypo (t=1,0) {x=HH«xt; y=RRxt; label=1; };
border Vert (t=0,RR) {x=HH; y=t; label=2;};
int nn=10; real h= 1./nn;
mesh Th2=buildmesh( Taxe (HHxnn)+ Hypo (sqrt (HH*HH+RR+RR) *nn) + Vert (RRxnn) ) ;
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plot (Th2,wait=1); // the 2d mesh
int MaxLayersT=(int (2xpi*RR/h)/4) x4; /7 number of layers
real zminT = 0, zmaxT = 2*pi; // height 2x%pi

func fx= yxcos(z); func fy= yxsin(z); func fz= x;
int[int] r1T=[0,0], r2T=[0,0,2,2], r4T=[0,2];

// trick function:
func deg= max (.01, y/max (x/HH,0.4) /RR); // the function defined the
proportion

// of number layer close to axis with reference MaxLayersT
mesh3 Th3T=buildlayers (Th2, coef= deg, MaxLayersT,
zbound=[zminT, zmaxT], transfo=[fx, fy, fz],
facemerge=0, region=rlT, labelmid=r2T);

medit ("cone", Th3T) ; // see figure

Figure 5.35: the mesh of a cube made with Figure 5.36: the mesh of a cone made with
cube.edp cone.edp

Example 5.22 (buildlayermesh.edp)

// file buildlayermesh.edp
load "msh3"
load "tetgen"
/7 Test 1

int C1=99, C2=98; // could be anything
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border CO01 (t=0,pi){ x=t; vy=0; label=1;}
border C02 (t=0,2*pi){ x=pi; y=t; label=1l;}
border CO03(t=0,pi){ x=pi-t; y=2xpi; label=1;}
border C04 (t=0,2*pi){ x=0; y=2+pi-t; label=1;}
border C11(t=0,0.7){ x=0.5+t; y=2.5; label=C1;}
border C12 (t=0,2 ){ x=1.2; y=2.5+t; label=C1;}
border C13(t=0,0.7){ x=1.2-t; vy=4.5; label=C1;}
border C14 (t=0,2 ){ x=0.5; y=4.5-t; label=Cl;}
border C21(t=0,0.7){ x= 2.3+t; y=2.5; label=C2;}
border C22 (t=0,2 ){ x=3; y=2.5+t; label=C2;}
border C23(t=0,0.7) { x=3-t; y=4.5; label=C2;}
border C24 (t=0,2 ){ x=2.3; y=4.5-t; label=C2;}
mesh Th=buildmesh ( C01(10)+C02(10)+ C03(10)+C04(10)
+ Cl1(5)+C12(5)+C13(5)+C14(5)
+ C21(-5)+C22(-5)+C23(-5)+C24 (-5));
mesh Ths=buildmesh ( C01(10)+C02(10)+ C03(10)+C04(10)

+ C1l1(5)+C12(5)+C13(5)+C14(5) );

// construction of a box with one hole and two regions
func zmin=0.;
func zmax=1.;
int MaxLayer=10;

func XX = xxcos (y);
func YY
func 77

x*xsin(y);

Zy

int[int] rl1=[0,41], r2=[98,98, 99,99, 1,56];

int[int] r3=[4,12]; // The triangles of uppper surface mesh
// generated by the triangle in the 2D region of mesh Th of label 4 as

label 12.

int[int] r4=[4,45]; // The triangles of lower surface mesh
// generated by the triangle in the 2D region of mesh Th of label 4 as

label 45.

mesh3 Th3=buildlayers( Th, MaxLayer, zbound=[zmin,zmax], region=rl,
labelmid=r2, labelup = r3, labeldown = r4 );
savemesh (Th3, "box2regionlhole.mesh") ;
// construction of a sphere with TetGen
func XX1 = cos(y)*sin (x);
func YY1 sin(y) *sin(x);
func 771 cos (x);
string test="paACQ";
cout << "test=" << test << endl;
mesh3 Th3sph=tetgtransfo (Ths,transfo=[XX1,YY1l,ZzZ1],switch=test,nbofregions=1,
regionlist=domain) ;

savemesh (Th3sph, "sphere2region.mesh") ;
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5.11 Meshing examples

Example 5.23 (lac.edp) // file "lac.edp”

load ‘‘msh3’’

int nn=5;

border cc (t=0,2+pi) {x=cos(t);y=sin(t);label=1;}

mesh Th2 = buildmesh(cc (100));

fespace Vh2 (Th2,P2);

Vh2 ux,uy,p2;

int[int] rup=[0,2], rdlow=[0,1], rmid=[1,1,2,1,3,1,4,1]1;
func zmin = 2-sqrt (4— (x*x+y*y));

func zmax = 2-sqrt(3.);

mesh3 Th = buildlayers(Th2, nn,
coeff = max((zmax—-zmin)/zmax, 1./nn),
zbound=[zmin, zmax],
labelmid=rmid;
labelup=rup;
labeldown=rlow) ;
savemesh (Th,’’ Th.meshb’ ') ;
exec (' ‘medit Th; Th.meshb’’);

Example 5.24 (tetgenholeregion.edp) // file ‘‘tetgenholeregion.edp’’
load "msh3’’
load "tetgen"

mesh Th=square (10,20, [x*pi-pi/2,2*y*pil); // F%E,%?[XMLQW[
// a parametrization of a sphere

func fl =cos (x) *cos (y);

func f2 =cos (x)*sin(y);

func f3 = sin(x);

// partiel derivative of the parametrization DF
func flx=sin (x) *cos(y
func fly=-cos (x) *sin(
func f2x=-sin(x)*sin(
func f2y=cos (x) *cos (y
func f3x=cos (x);
func f3y=0;

4

)
)

—_ K —

14

// M = DF'DF
func mll=f1x"2+£f2x"2+£f3x"2;
func m21=flx+xfly+f2x+xf2y+£f3x+x£f3y;
func m22=fly " 2+f2y"2+£f3y~2;

func perio=[[4,v],[2,v],[1,x],[3,x]];

real hh=0.1;

real vv= 1/square (hh);

verbosity=2;

Th=adaptmesh (Th, mllxvv,m21xvv,m22+vv, IsMetric=1, periodic=perio);
Th=adaptmesh (Th, mll*vv, m2l+vv,m22xvv, IsMetric=1, periodic=perio);
plot (Th,wait=1);

verbosity=2;
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// construction of the surface of spheres

real Rmin = 1.;

func flmin = Rminxfl;
func f2min = Rminxf2;
func f3min = Rminx£f3;

mesh3 Th3sph = movemesh23 (Th,transfo=[flmin, f2min, £3min]);

real Rmax = 2.;

func flmax = Rmax*fl;
func f2max = Rmax=*f2;
func f3max = Rmaxx£f3;

mesh3 Th3sph2 = movemesh23 (Th, transfo=[flmax, f2max, f3max]) ;

cout << "addition" << endl;
mesh3 Th3 = Th3sph+Th3sph2;

real[int] domain2 = [1.5,0.,O.,145,0.001,0.5,0.,O.,18,0.001];
cout << " = ==" << endl;

cout << " tetgen call without hole " << endl;

cout << " === ===============" << endl;

mesh3 Th3fin = tetg(Th3 sw1tch—"paAAQYY",nbofreglons 2,regionlist=domain2);
cout << " =" << endl;

cout << "finish tetgen call without hole" << endl;

cout << " === ==" << endl;

savemesh (Th3fin, "spherewithtworegion.mesh");

real[int] hole = [0.,0.,0.];

real[int] domain = [1.5,0.,0.,53,0.0017;

cout << " = = =" << endl;
cout << " tetgen call with hole " << endl;
cout << " ==== ==== ===" << endl;

mesh3 Th3finhole=tetg(Th3, switch="paAAQYY",nbofholes=1,holelist=hole,
nbofregions=1, regionlist=domain) ;

cout << " == = =" << endl;
cout << "finish tetgen call with hole " << endl;
cout << " ==== === =" KL endl;

savemesh (Th3finhole, "spherewithahole.mesh");

5.11.1 Build a 3d mesh of a cube with a balloon

First the MeshSurface. idp file to build boundary mesh of a Hexaedra and of a Sphere.

func mesh3 SurfaceHex (int[int] & N, real[int,int] &B ,int[int,int] & L,int orientation)

{
real x0=B(0,0),x1=B(0,1);
real y0=B(1,0),yl1=B(1,1);
real z0=B(2,0),z1=B(2,1);

int nx=N[0],ny=N[1l],nz=N[2];

mesh Thx = square(ny,nz, [yO0+(yl-y0)xx,z0+(z1-20)*y]);
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mesh Thy = square(nx,nz, [x0+ (x1-x0)xx,z0+ (z1-20) *xy]);

mesh Thz = square (nx,ny, [x0+ (x1-x0) xx,y0+ (y1l-y0)*y]);

int[int] refx=[0,L(0,0)],refX=[0,L(0,1)]; // Xmin, Ymax faces labels
renumbering

int[int] refy=[0,L(1,0)],refY=[0,L(1,1)]; // Ymin, Ymax faces labesl
renumbering

int[int] refz=[0,L(2,0)],refz=[0,L(2,1)]; // Zmin, Zmax faces labels
renumbering

,orientation=-orientation, label=refx
,orientation=+orientation, label=refX);

mesh3 Thx0 = movemesh23 (Thx, transfo= )
)

,orientation=+orientation, label=refy);
)
)
)

mesh3 Thxl = movemesh23 (Thx,transfo=

( [x0,%,y
( [
mesh3 Thy0 = movemesh23 (Thy,transfo=[x,y0,y
( [x
( [

’
x1,%x,Vy
mesh3 Thyl = movemesh23 (Thy,transfo=[x,yl,y],orientation=-orientation, label=refY
mesh3 Thz0 = movemesh23 (Thz,transfo=[x,y, z0
mesh3 Thzl = movemesh23(Thz,transfo=[x,y,zl
mesh3 Th= Thx0+Thx1+Thy0+Thyl+Thz0+Thzl;
return Th;

7
,orientation=-orientation, label=refz
,orientation=+orientation, label=ref?Z

14

e e e e

4

func mesh3 Sphere(real R,real h,int I1,int orientation)

{

mesh Th=square (10,20, [x*xpi-pi/2,2*y*pil); // ] Pljlac —pi2[x]0, 27|
// a parametrization of a sphere
func fl =cos (x) *cos(y);
func f2 =cos (x)*sin(y);
func £f3 = sin(x);
// partiel derivative
func flx=sin (x) *cos(y
func fly=-co

(x)

s (x) *sin(
func f2x=-sin(x) *sin(

(x

(

)l
v)i
v)i
func f2y=cos (x) *xcos (y);
func f3x=cos (x);

func f3y=0;

4

// the metric on the sphere M = DF!DF
func mll=f1x"2+£f2x"2+£f3x"2;
func m21=flx*xfly+f2x+xf2y+f3x+x£f3y;
func m22=£fly " 2+£f2y"2+£3y"2;

func perio=[[4,y],[2,y],[1,x],[3,x]); // to store the periodic condition

real hh=h/R; // hh mesh size on unite sphere
real vv= 1/square (hh);

Th=adaptmesh (Th, mllxvv, m21xvv,m22*vv, IsMetric=1,periodic=perio);
Th=adaptmesh (Th, mllxvv, m21xvv,m22*vv, IsMetric=1,periodic=perio);
Th=adaptmesh (Th, mllxvv,m21xvv,m22+vv, IsMetric=1,periodic=perio)
Th=adaptmesh (Th, mll*vv,m2l*vv,m22*vv, IsMetric=1,periodic=perio)
int[int] ref=[0,L];

14

4

mesh3 ThS= movemesh23 (Th,transfo=[fl1*R, f2%xR, £3«R],orientation=orientation, refface=ref
return ThS;

The test of the two functions and the call to tetgen mesh generator
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load "tetgen"
include "MeshSurface.idp"

real hs = 0.1; // mesh size on sphere
int[int] N=[20,20,20];

real [int,int] B=[[-1,1],[-1,11,[-1,111;

int [int,int] L=[[1,2],1[3,41,1[5,611;

mesh3 ThH = SurfaceHex (N,B,L,1);

mesh3 ThS =Sphere(0.5,hs,7,1); // "gluing" surface meshs to tolat

boundary meshes

mesh3 ThHS=ThH+ThS;
savemesh (ThHS, "Hex—-Sphere.mesh") ;
exec ("ffmedit Hex-Sphere.mesh;rm Hex-Sphere.mesh"); // see

real voltet=(hs"3)/6.;
cout << " voltet = " << voltet << endl;
real[int] domaine = [0,0,0,1,voltet,0,0,0.7,2,voltet];

mesh3 Th = tetg(ThHS, switch="pgaAAYYQ",nbofregions=2,regionlist=domaine) ;
medit ("Cube-With-Ball", Th); // see

Figure 5.37:  The surface mesh of the Hex Figure 5.38: The tet mesh of the cube with
with internal Sphere internal ball

5.12 The output solution formats .sol and .solb

With the keyword savesol, we can store a scalar functions, a scalar FE functions, a vector fields, a
vector FE fields, a symmetric tensor and a symmetric FE tensor.. Such format is used in medit.
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extension file .sol The first two lines of the file are

e MeshVersionFormatted O

e Dimension (I) dim

The following fields begin with one of the following keyword: SolAtVertices, SolAtEdges, SolAtTri-
angles, SolAtQuadrilaterals, SolAtTetrahedra, SolAtPentahedra, SolAtHexahedra.

In each field, we give then in the next line the number of elements in the solutions (SolAtVertices:
number of vertices, SolAtTriangles: number of triangles, ...). In other lines, we give the number of
solutions , the type of solution (1: scalar, 2: vector, 3: symmetric tensor). And finally, we give the
values of the solutions on the elements.

The file must be ended with the keyword End.

The real element of symmetric tensor

STye 575’5 ST 2d 2d
T T

stored in the extension .sol are respectively ST3¢, §T34 T34 §T3d gT3d

xT> yx Yy 2z zy >

An example of field with the keyword SolAtTetrahedra:

ST3 and ST24, ST2¢

xx> yx

2d
STy,

e SolAtTetrahedra
(I) NbOfTetrahedrons

nbsol typesoll ... typesol®
(((Ufj, Vi e {1, ...,nbrealsolk}> , Vkedl, ...nbsol}) Vi e{l, ...,NbOfTetrahedrons})
where
e nbsol is an integer equal to the number of solutions
e typesol¥, type of the solution number k, is

— typesol® = 1 the solution k is scalar.
— typesol® = 2 the solution k is vectorial.

— typesol® = 3 the solution k is a symmetric tensor or symmetric matrix.
e nbrealsol® number of real to discribe solution number k is

— nbrealsol® = 1 the solution k is scalar.
— nbrealsol® = dim the solution k is vectorial (dim is the dimension of the solution).

— nbrealsol® = dimx (dim + 1)/2 the solution k is a symmetric tensor or symmetric
matrix.

. Ufj is a real equal to the value of the component 7 of the solution k£ at tetrahedra j on the
associated mesh.

This field is written with the notation of Section [[2.1l The format .solb is the same as format .sol
but in binary (read/write is faster, storage is less).

A real scalar functions f1, a vector fields ® = [®1, ®2, 3] and a symmetric tensor ST3¢ at
the vertices of the three dimensional mesh Th3 is stored in the file ”f1PhiTh3.sol” using
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savesol ("f1PhiST3dTh3.sol", Th3, f1, [®1, ®2, P3], VV3, order=1l);

where VV3 = [ST3d, ST34, ST34, ST3H ST3¢, ST, For a two dimensional mesh Th, A real scalar

functions f2, a vector fields ¥ = [¥1, ¥2] and a symmetric tensor ST?¢ (5.5 at triangles is stored
in the file ”f2PsiST2dTh3.solb” using

savesol ("f2PsiST2dTh3.so0lb",Th, f2, [¥1, ¥2], VV2, order=0);
where VV2 = [ST2¢ ST?2d

Jiet yz,STyQ;j] The arguments of savesol functions are the name of a file, a
mesh and solutions. These arguments must be given in this order.

The parmameters of this keyword are

order = 0 is the solution is given at the center of gravity of elements. 1 is the solution is given
at the vertices of elements.

In the file, solutions are stored in this order : scalar solutions, vector solutions and finally symmetric
tensor solutions.

5.13 medit

The keyword medit allows to dipslay a mesh alone or a mesh and one or several functions defined
on the mesh using the Pascal Frey’s freeware medit. Medit opens its own window and uses OpenGL
extensively. Naturally to use this command medit must be installed.

A vizualisation with medit of scalar solutions f1 and f2 continuous, piecewise linear and known at
the vertices of the mesh Th is obtained using

medit ("soll sol2",Th, f1, f2, order=1);

The first plot named “soll” display f1. The second plot names “sol2” display 2.

The arguments of function medit are the name of the differents scenes (separated by a space) of
medit, a mesh and solutions. Each solution is associated with one scene. The scalar, vector and
symmetric tensor solutions are specified in the format described in the section dealing with the
keyword savesol.

The parameters of this command line are

order = 0 is the solution is given at the center of gravity of elements. 1 is the solution is given
at the vertices of elements.

meditff = set the name of execute command of medit. By default, this string is medit.
save = set the name of a file .sol or .solb to save solutions.

This command line allows also to represent two differents meshes and solutions on them in the same
windows. The nature of solutions must be the same. Hence, we can vizualize in the same window
the different domains in a domain decomposition method for instance. A vizualisation with medit
of scalar solutions Al and h2 at vertices of the mesh Thl and Th2 respectively are obtained using

medit ("sol2domain", Thl, hl, Th2, h2, order=1l);

Example 5.25 (meditddm.edp) // meditddm. edp
load "medit"



5.13. MEDIT 133

// Initial Problem:
// Resolution of the following EDP:
// =Augs=f on Q= {(z,y)]1 < sqrt(z? +y?) > 2}
// —Aup = f1 on Q= {(x,9)]0.5 < sqrt(x? +y?) > 1.}
// u=1 on I' + Null Neumman condition on I'1 and on I's
// We find the solution w in solving two EDP defined on domain ) and ()
// This solution 1s visualize with medit

verbosity=3;

border Gamma (t=0,2*pi) {x=cos(t); y=sin(t); label=1l;};
border Gammal (t=0,2xpi) {x=2*cos(t); y=2xsin(t); label=2;};
border Gamma2 (t=0, 2xpi) {x=0.5xcos(t); y=0.5*xsin(t); label=3;};

// construction of mesh of domain
mesh Th=buildmesh (Gammal (40)+Gamma (—-40)) ;

fespace Vh (Th,P2);

func f=sqgrt (xxx+y*y);

Vh us,v;

macro Grad2 (us) [dx(us),dy (us)] // EOM

problem Lap2dOmega (us,v,init=false)=int2d (Th) (Grad2 (v)’ =xGrad2(us))
— int2d(Th) (fxv)+on(1l,us=1) ;

// Definition of EDP defined on the domain {2
// —Aus=f1 on 1, us=1 on I'y, %&5::0 on I'y
Lap2dOmega;
// construction of mesh of domain ()

mesh Thl=buildmesh (Gamma (40)+GammaZ2 (-40)) ;

fespace Vhl (Thl,P2);

func fl1=10xsqrt (x*x+y*y);

Vvhl ul,vl;

macro Grad2l (ul) [dx(ul),dy(ul)] // EOM

problem Lap2dOmegal (ul,vl,init=false)=int2d(Thl) (Grad2l (v1l)’ =xGrad2l(ul))
- int2d (Thl) (fl1xvl)+on(1,ul=1) ;

// Resolution of EDP defined on the domain ()
// —Auy =f; on Q, u—1=1 on I'y, %ljll =0 on I'y
Lap2dOmegal;
// vizualisation of solution of the initial problem

medit ("solution", Th,us, Thl,ul, order=1, save="testsavemedit.solb");

Example 5.26 (StockesUzawa.edp) // signe of pressure is correct
assert (version>1.18);

real sO=clock();

mesh Th=square (10,10);

fespace Xh(Th,P2),Mh(Th,P1);

Xh ul,u2,vl,v2;
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Mh p, g, ppp;

varf bx(ul,q) = int2d(Th) ( (dx(ul)*q));

varf by (ul,q) = int2d(Th) ( (dy(ul)*q));

varf a(ul,u2)= 1int2d(Th) ( dx(ul)*dx(u2) + dy(ul)*dy(u2) )
+ on(l,2,4,ul=0) + on(3,ul=1l) ;

Xh bcl; bcl[] = a(0,Xh);

Xh b;

matrix A= a (Xh, Xh, solver=CG) ;
matrix Bx= bx (Xh,Mh);

matrix By= by (Xh,Mh);

Xh bcx=1,bcy=0;

func real[int] divup(real[int] & pp)
{

int verb=verbosity;

verbosity=0;

b[] = Bx'xpp; bl]l += bcl[] .xbcx[];
ul[] = A"-1+b[];
b[] = By’'*pp; bl] += bcl[] .xbcyll;
u2[] = A"=1«b[];
pppl]l = Bx*xull[];

[

pppl]l += By=*u2l[];

verbosity=verb;

return pppl] ;
i
p=0;9=0;ul=0;v1=0;

LinearCG (divup,pll,ql]l,eps=1l.e-6,nbiter=50);
divup (p[]);

plot ([ul,u2],p,wait=1,value=true,coef=0.1);
medit ("velocity pressure",Th, [ul,u2],p,order=1);

5.14 Mshmet

Mshmet is a software developped by P. Frey that allows to compute an anisotropic metric based on
solutions (i.e. Hessian-based). This sofware can return also an isotropic metric. Moreover, mshmet
can construct also a metric suitable for level sets interface capturing. The solution can be defined
on 2D or 3D structured/unstructured meshes. For example, the solution can be an error estimate
of a FE solutions.

Solutions for mshmet are given as an argument. The solution can be a func, a vector func, a
symmetric tensor, a FE func, a FE vector func and a FE symmetric tensor. The symmetric tensor
argument is defined as this type of data for datasol argument. This software accepts more than
one solution.

For example, the metric M computed with mshmet for the solution u defined on the mesh T'h is
obtained by writing.
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fespace Vh(Th,P1);
Vh u; // a scalar FE func
real[int] M = mshmet (Th,u);

The parameters of the keyword mshmet are :

e normalization = <b> do a normalisation of all solution in [0, 1].
e aniso = <b> build aniso metric if 1 ( delault 0: iso)
e levelset = <b> build metric for level set method (default: false)

e verbosity = <1>

e nbregul = <1> number of regularization’s iteration of solutions given (default 0).
e hmin = <d>

® hmax = <d>

e err = <d> level of error.

e width = <d> the width

e metric= a vector of double. This vector contains an initial metric given to mshmet. The
structure of the metric vector is described in the next paragraph.
e loptions=]a vector of integer of size 7. This vector contains the integer parameters of
mshmet(for expert only).
— loptions(0): normalization (default 1).
— loptions(1): isotropic parameters (default 0). 1 for isotropic metric results otherwise 0.
— loptions(2): level set parameters (default 0). 1 for building level set metric otherwise 0.
— loptions(3): debug parameters (default 0). 1 for turning on debug mode otherwise 0.
— loptions(4): level of verbosity (default 10).
(5)
(6)

— loptions(5): number of regularization’s iteration of solutions given (default 0).

— loptions(6): previously metric parameter (default 0). 1 for using previous metric oth-

erwise 0.

e doptions= a vector of double of size 4. This vector contains the real parameters of mshmet
(for expert only).

doptions(0): hmin : min size parameters (default 0.01).

doptions(1): hmax : max size parameters (default 1.0).
— doptions(2): eps : tolerance parameters ( default 0.01).
doptions(2): width : relative width for Level Set (0 < w < 1) ( default 0.05).

The result of the keyword mshmet is a real [int] which contains the metric computed by mshmet
at the different vertices V; of the mesh.
With nv is the number of vertices, the structure of this vector is

Miso = (m(Vp), m(V1),...,m(Vy,))"

mi1 M1z M3

for a isotropic metric m. For a symmetric tensor metric h = mo1 Moo Mos |, the parameters
m31 M3z M33

metric is

Maniso = (H(Vb)7 ceey H(an))t
where H(V;) is the vector of size 6 defined by [m11,m21,m22,m31,m32,m33]



136 CHAPTER 5. MESH GENERATION

Example 5.27 (mshmet.edp)

load "mshmet"
load "medit"

load "msh3"

border a(t=0,1.0) {x=t; y=0; label=1;};

border b (t=0,0.5) {x=1; y=t; label=2;};

border c (t=0,0.5) {x=1-t; y=0.5;1label=3;};

border d(t=0.5,1) {x=0.5; y=t; label=4;};

border e (t=0.5,1) {x=1-t; y=1; label=5;};

border f(t=0.0,1) {x=0; y=1-t; label=6; };

mesh Th = buildmesh (a(6) + b(4) + c(4) +d(4) + e(4) + £(6));

savemesh (Th, "th.msh") ;
fespace Vh (Th,P1);
Vh u,v;
real error=0.01;
problem Probleml (u, v, solver=CG,eps=1.0e-6) =
int2d (Th, gforder=2) ( uxvx1.0e-10+ dx(u)x*dx(v) + dy(u)+*dy(v))
+int2d (Th, gforder=2) ( (x-y)*V);

func zmin=0;

func zmax=1;

int MaxLayer=10;

mesh3 Th3 = buildlayers (Th,MaxLayer, zbound=[zmin, zmax]) ;

fespace Vh3(Th3,P2);

fespace Vh3P1 (Th3,P1);

Vvh3 u3,v3;

Vh3P1 usol;

problem Problem2 (u3,v3, solver=sparsesolver) =
int3d (Th3) ( u3*v3x1.0e-10+ dx (u3)xdx (v3) + dy (u3)*dy(v3) + dz (u3)*dz(v3))
- int3d(Th3) ( v3) +on(0,1,2,3,4,5,6,u3=0);

Problem?2;

cout << u3[].min << " " << u3[].max << endl;

savemesh (Th3, "metrictest.bis.mesh");

savesol ("metrictest.sol", Th3,u3);

real[int] bb=mshmet (Th3,u3);
cout << bb << endl;
for (int 1i=0; 1i<Th3.nv; 1ii++)
usol[] [1ii]=bb[ii];
savesol ("metrictest.bis.sol",Th3,usol);

5.15 FreeYams

FreeYams is a surface mesh adaptation software which is developed by P. Frey. This software
is a new version of yams. The adapted surface mesh is constructed with a geometric metric
tensor field. This field is based on the intrinsic properties of the discrete surface. Also this
software allows to construct a simplification of a mesh. This decimation is based on the Haus-
dorff distance between the initial and the current triangulation. Compared to the software yams,
FreeYams can be used also to produce anisotropic triangulations adapted to level set simula-
tions. A technical report on FreeYams is not available yet but a documentation on yams exists at
http://www.ann.jussieu.fr/~frey /software.html [40].
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To call FreeYams in Freefem++, we used the keyword freeyams. The arguments of this function
are the initial mesh and/or metric. The metric with freeyams are a function, a FE function, a
symmetric tensor function, a symmetric tensor FE function or a vector of double. If the metric is
vector of double, this data must be given in metric parameter. Otherwise, the metric is given in
the argument.

For example, the adapted mesh of Thinit defined by the metric u defined as FE function is obtained
in writing.

fespace Vh(Thinit,P1l);
Vh uj;
mesh3 Th=freeyams (Thinit,u);

The symmetric tensor argument for freeyams keyword is defined as this type of data for datasol
argument.
e aniso = <b> aniso or iso metric (default 0, iso)
e mem = <1> memory of for freeyams in Mb (delaulf -1, freeyams choose)
e hmin = <d>
® hmax = <d>
e gradation = <d>
e option = <1>
0 : mesh optimization (smoothing+swapping)
1 : decimation+enrichment adaptated to a metric map. (default)
-1 : decimation adaptated to a metric map.
2 : decimation+enrichment with a Hausdorff-like method
-2 : decimation with a Hausdorff-like method
4 : split triangles recursively.

9 : No-Shrinkage Vertex Smoothing

e ridgeangle = <d>
e absolute = <b>
e verbosity = <i>

e metric= vector expression. This parameters contains the metric at the different vertices on
the initial mesh. With nwv is the number of vertices, this vector is

Miso = (m(Vo), m(V1),...,m(Vp))"

mi1 M2 M3

for a scalar metric m. For a symmetric tensor metric h = | mo1 mos mosg |, the param-
ms1 M3z M33

eters metric is

Maniso = (H(‘/O)7 cee 7H(V7w))t
where H(V;) is the vector of size 6 defined by [m11,m21,m22,m31,m32,m33]

e loptions= a vector of integer of size 13. This vectors contains the integer options of
FreeYams. (just for the expert )
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loptions(0): anisotropic parameter (default 0). If you give an anisotropic metric 1
otherwise 0.

loptions(1): Finite Element correction parameter (default 0). 1 for no Finite Element
correction otherwise 0.

loptions(2): Split multiple connected points parameter (default 1). 1 for splitting mul-
tiple connected points otherwise 0.

loptions(3): maximum value of memory size in Mbytes (default -1: the size is given by
freeyams).

loptions(4): set the value of the connected component which we want to obtain. (Re-
mark: freeyams give an automatic value at each connected component).

loptions(5): level of verbosity

loptions(6): Create point on straight edge (no mapping) parameter (default 0). 1 for
creating point on straight edge otherwise 0.

loptions(7): validity check during smoothing parameter. This parameter is only used
with No-Shrinkage Vertex Smoothing optimization (optimization option parameter 9).
1 for No validity checking during smoothing otherwise 0.

loptions(8): number of desired’s vertices (default -1).
loptions(9): number of iteration of optimizations (default 30).

loptions(10): no detection parameter (default 0) . 1 for detecting the ridge on the mesh
otherwise 0. The ridge definition is given in the parameter doptions(12).

loptions(11): no vertex smoothing parameter (default 0). 1 for smoothing the vertices
otherwise 0.

loptions(12): Optimization level parameter (default 0).
* 0 : mesh optimization (smoothing+swapping)
* 1 : decimation+enrichment adaptated to a metric map.
%  -1: decimation adaptated to a metric map.
% 2 : decimation+enrichment with a Hausdorff-like method
*  -2: decimation with a Hausdorff-like method
* 4 : split triangles recursively.

* 9 : No-Shrinkage Vertex Smoothing

doptions= a vector of double of size 11. This vectors contains the real options of freeyams.

doptions(0): Set the geometric approximation (Tangent plane deviation) (default 0.01).

doptions(1): Set the lamda parameter (default -1. ).

doptions(2): Set the mu parmeter (default -1. ).

doptions(3): Set the gradation value (Mesh density control) (default 1.3).

doptions(4): Set the minimal size(hmin) (default -2.0: the size is automatically com-
puted).

doptions(5): Set the maximal size(hmax) (default -2.0: the size is automatically com-
puted).

doptions(6): Set the tolerance of the control of Chordal deviation (default -2.0).
doptions(7): Set the quality of degradation (default 0.599).
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— doptions(8): Set the declic parameter (default 2.0).
— doptions(9): Set the angular walton limitation parameter (default 45 degree).

— doptions(10): Set the angular ridge detection (default 45 degree).

Example 5.28 (freeyams.edp)

load "msh3"

load "medit"

load "freeyams"

int nn=20;

mesh Th2=square (nn,nn);

fespace Vh2 (Th2,P2);

Vh2 ux,uz,p2;

int[int] rup=[0,2], rdown=[0,1], rmid=[1,1,2,1,3,1,4,1];

real zmin=0, zmax=1;

mesh3 Th=buildlayers (Th2,nn, zbound=[zmin,zmax],
reffacemid=rmid, reffaceup = rup, reffacelow = rdown);

mesh3 Th3 = freeyams (Th);
medit ("maillagesurfacique",Th3,wait=1);

5.16 mmg3dd

Mmg3d is a 3D remeshing software developed by C. Dobrzynski and P. Frey
(http://www.math.u-bordeaux1.fr/~dobj/logiciels/mmg3d.php). To obtain a version of this li-
brary send an e-mail at :

cecile.dobrzynski@math.ubordeauxl.fr or pascal.frey@Qupmec.fr.

This software allows to remesh an initial mesh made of tetrahedra. This initial mesh is adapted to

a geometric metric tensor field or to a displacement vector (moving rigid body). The metric can
be obtained with mshmet (see section |5.14)).

Remark 5 :

(a) If no metric is given, an isotropic metric is computed by analyzing the size of the edges in the
initial mesh.

(b) if a displacement is given, the vertices of the surface triangles are moved without verifying the
geometrical structure of the new surface mesh.

The parameters of mmg3d are :

e options= vector expression. This vector contains the option parameters of mmg3d. It is a
vector of 6 values, with the following meaning:
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(0) optimization parameters : (default 1)
0 : mesh optimization.
1 : adaptation with metric (deletion and insertion vertices) and optimization.
-1: adaptation with metric (deletion and insertion vertices) without optimization.
4 : split tetrahedra (be careful modify the surface).
9 : moving mesh with optimization.
-9: moving mesh without optimization.

(1) debug mode : (default 0)
1 : turn on debug mode.
0 : otherwise.

(2) Specify the size of bucket per dimension ( default 64)

(3) swapping mode : (default 0)
1 : no edge or face flipping.
0 : otherwise.

(4) insert points mode : (default 0)
1 : no edge splitting or collapsing and no insert points.
0 : otherwise.

(5) verbosity level (default 3)

memory= integer expression. Set the maximum memory size of new mesh in Mbytes. By
default the number of maximum vertices, tetrahedra and triangles are respectively 500 000,
3000 000, 100000 which represent approximately a memory of 100 Mo.

metric= vector expression. This vector contains the metric given at mmg3d. It is a vector
of size nv or 6 nv respectively for an istropic and anisotropic metric where nv is the number
of vertices in the initial mesh. The structure of metric vector is described in the mshmet’s

section(section [5.14)).

displacement= [®1, $2, P3] set the displacement vector of the initial mesh

D(z,y) = [P1(z,y), P2(z,y), P3(x,y)].

displVect= sets the vector displacement in a vector expression. This vector contains the
displacement at each point of the initial mesh. It is a vector of size 3 nwv.

An example using this function is given in ?mmg3d.edp”:

Example 5.29 (mmg3d.edp)

load

// test mmg3d
"msh3"

load "medit"
load "mmg3d"
include "../examples++-3d/cube.idp"

int
int [
real
int

n=6;

int] Nxyz=[12,12,12];
[int,int] Bxyz=[[0.,1.1,1[0.,
[int, int] Lxyz=[[1,1]1,12,2],1(

N
~ .
N —

mesh3 Th=Cube (Nxyz,Bxyz,Lxyz) ;

real
fo

[int] isometric (Th.nv); {
r( int 1i=0; ii<Th.nv; ii++)
isometric([ii]=0.17;
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mesh3 Th3=mmg3d( Th, memory=100, metric=isometric);

medit ("init", Th);
medit ("isometric", Th3);

An example of a moving mesh is given in fallingspheres.edp”:

Example 5.30 (fallingspheres.edp) load "msh3" 1load "tetgen" load "medit" load "mmg3d"
include "MeshSurface.idp"

// build mesh of a box (311) wit 2 holes (300,310)

real hs = 0.8;

int[int] N=[4/hs,8/hs,11.5/hs];

real [int,int] B=[[-2,21,[-2,61,[-10,1.511;

int [int,int] 1=[[311,311],(311,311],([311,31111];

mesh3 ThH = SurfaceHex (N,B,L,1);

mesh3 ThSg =Sphere(1l,hs,300,-1);

mesh3 ThSd =Sphere(l,hs,310,-1); ThSd=movemesh3 (ThSd, transfo=[x,4+y,z]);
mesh3 ThHS=ThH+ThSg+ThSd; // gluing surface meshes
medit ("ThHS", ThHS); // see surface mesh

real voltet=(hs"3)/6.;

real[int] domaine = [0,0,-4,1,voltet];

real [int] holes=[0,0,0,0,4,0];

mesh3 Th = tetg(ThHS, switch="pgaAAYYQ", nbofregions=1,regionlist=domaine, nbofholes=2, ho!
medit ("Box-With-two-Ball", Th);

// End build mesh
int[int] opt=[9,0,64,0,0,3]; // options of mmg3d see freeem++ doc
real[int] vit=[0,0,-0.3];
func zero = 0.;
func dep = vit[2];
fespace Vh (Th,P1l);
macro Grad(u) [dx(u),dy(u),dz(u)] //
Vh uh, vh; // to compute the displacemnt field
problem Lap (uh,vh, solver=CG) = int3d(Th) (Grad (uh)’ *Grad(vh)) // /) for

emacs
+ on (310,300, uh=dep) +on(311,uh=0.);

for (int it=0; it<29; it++){
cout<<" ITERATION "<<it<<endl;
Lap;
plot (Th,uh);
Th=mmg3d (Th, options=opt, displacement=[zero, zero,uh], memory=1000) ;

}
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5.17 A first 3d isotope mesh adaptation process

Example 5.31 (Laplace-Adapt-3d.edp)

load "msh3" load "tetgen" load "mshmet" load "medit"
// build initial mesh

int nn = 6;
int[int] 11111=(1,1,1,1],101=[0,1],111=[1,11; // label numbering to have all
label to 1

mesh3 Th3=buildlayers (square (nn,nn, region=0,label=11111),
nn, zbound=[0,1], labelmid=111, labelup = 101, labeldown = 101);
Th3 = trunc(Th3, (x<0.5) | (y < 0.5) | (z < 0.5) ,label=1); // remove the
10.5, 1[3cube
// end of build initial mesh
fespace Vh(Th3,P1);
Vh u,v,usol, h;

macro Grad(u) [dx(u),dy(u),dz(u)] // EOM

problem Poisson (u,v,solver=CG) = int3d(Th3) ( Grad(u)'’ xGrad(v) )
-int3d(Th3) ( 1+xv ) + on(1l,u=0);

real errm=le-2; // level of error
for (int 1i=0; 1i<5; ii++)

{

Poisson; // solve Poisson equation.
cout <<" u min, max = " << u[].min << " "<< u[].max << endl;
h=0. ; // for resizing h[] because the mesh change
h[]=mshmet (Th3,u,normalization=1, aniso=0,nbregul=1, hmin=1e-3, hmax=0.3,err=errm) ;
cout <<" h min, max = " << h[].min << " "<< h[].max

<< " " << h[]l.n << " " << Th3.nv << endl;
plot (u,wait=1);
errmx= 0.8; // change the level of error
cout << " Th3" << Th3.nv < " " << Th3.nt << endl;

Th3=tetgreconstruction (Th3, switch="raAQ", sizeofvolume=hxh+h/6.); // rebuild
mesh
medit ("U-adap—-iso-"+ii, Th3,u,wait=1);}

5.18 Build a 2d mesh from a isoline

The idea is get the discretization of a isoline to fluid meshes, this tool can be useful to construct
meshes from image. First, we give an example of the isovalue meshes 0.2 of analytical function
V/(z —1/2)2 + (y — 1/2)2, on unit square.

Example 5.32 (isoline.edp)

load "isoline" // load the plugin "isoline™
real[int,int] xy(3,1); // to store the isoline points
int[int] be(1l); // to store the begin , end couple of lines

{ // a block for memory management
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mesh Th=square (10, 10); // , [x*.5,y*x0.5]);
fespace Vh(Th,P1l);

Vh u= sqrt (square (x-0.5)+square(y-0.5));

real iso= 0.2 ;

real[int] viso=[iso];

plot (u,viso=viso, Th); // to see the iso line

int nbc= isoline(Th,u,xy,close=1,iso=is0,beginend=be, smoothing=0.1);

The isoline parameters are Th the mesh, the expression u , the bidimentionnal array xy to store
the list coordinate of the points. The list of named parameter are:

iso= walue of the isoline to compute (0 is the default value)

close= close the iso line with the border (def. true), we add the part of the mesh border such the
value is less than the iso value

smoothing= nb of smoothing process is the I"s where [ is the length of the current line component,
r the ratio, s is smoothing value. The smoothing default value is 0.

ratio= the ratio (1 by default).

eps= relative ¢ (see code ??) (def 1e-10 )

beginend= array to get begin, end couple of each of sub line (resize automatically)
file= to save the data curve in data file for gnu plot

In the array xy you get the list of vertices of the isoline, each connex line go from i =if,...,i{ —1
with i§ = be(2 * ¢) if = be(2*c+ 1), and where z; = xy(0,1),y; = yx(1,7),l; = zy(2,4). Here l; is
the length of the line (the origin of the line is point ifj).

The sense of the isoline is such that the upper part is at the left size of the isoline. So here : the
minimum 18 a point 0.5,05 so the curve 1 turn in the clockwise sense, the order of each component
are sort such the the number of point by component is decreasing .

cout << " nb of the line component = " << nbc << endl;

cout << " n = " << xy.m << endl; // number of points

cout << "be = " << be << endl; // begin end of the each componant
// show the lines component

for ( int c=0;c<nbc; ++c)

{

int 10 = be[2*c], 11l = be[2xc+1]-1; // begin,end of the line component

cout << " Curve " << ¢ << endl;

for (int 1i=i0; i<= 1il; ++1)

cout << " x= " << xy(0,1) <<" y= " << xy(1l,1) << " s="
<< xy(2,1) << endl;
plot ([xy(0,10:11),xy(1,1i0:11)],wait=1,viso=viso,cmm = " curve "+c);
}

} // end of block for memory management
cout << " len of last curve " << xy(2,xy.m-1) << endl;;

We also have a new function to parametrize easly a discret Curve defined by couple be, xy.

border CurveO (t=0,1) // the extern boundary
{ int c =0; // component 0
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int i0 = be[2%*c], il be[2*c+1]-1;
P=Curve (xy,10,1i1,t); // Curve 0
label=1;

border Curvel (£t=0,1)

{ int c =1; // component 1
int i0 = be[2+%c], 11 = be[2xc+1]-1;
P=Curve (xy, 10, 11,t); // Curve 1
label=1;
}
plot (Curvel (100)) ; // show curve.
mesh Th= buildmesh (Curvel (-100)); // because
plot (Th,wait=1); //

Secondly, we use this idea to build meshes from image, we use the plugins ppm2rnm to read pgm
gray scale image, and we extract the gray contour at level 0.25.

Example 5.33 (Leman-mesh.edp)

load "ppm2rnm" load "isoline"

string leman="1g.pgm"; //  see figure
real Arealac = 580.03; // in Km?
real hsize= 5; // mesh sir in pixel

real[int,int] Curves(3,1);
int[int] be(1l);

int nc; // nb of curve
{

real[int,int] ffl (leman); // read image (figure [5.39)
// and set to an rect. array
int nx = ffl.n, ny=ffl.m; // grey value between 0 to 1 (dark)
// build a Cartesian mesh such that the origin is gt the right place.

mesh Th=square (nx-1,ny-1, [ (nx-1)*(x), (ny=-1)*x(1-y)]1);
// warning the numbering 1s of the vertices (x,y) 1s

// given by i =z/nx+nx*xy/ny
fespace Vh(Th,P1);
Vh f1; f1[]=£ff1; // transforme array in finite element function.
nc=isoline (Th, f1,is0=0.25,close=1,Curves,beginend=be, smoothing=.1,ratio=0.5);

// the longest isoline : the lac
int icO=be(0), icl=be(1l)-1;
plot ([Curves (0,ic0O0:icl),Curves(l,ic0:icl) ], wait=1);
int NC= Curves (2,1icl) /hsize;
border G(t=0,1) { P=Curve(Curves,ic0,icl,t); 1label= 1 + (x>x1)*x2 + (y<yl);}

plot (G(-NC) ,wait=1);
mesh Th=buildmesh (G (-NC)) ;
plot (Th,wait=1);

real scale = sqgrt (Arealac/Th.area);
Th=movemesh (Th, [x*scale, yxscale]) ; // resize the mesh
cout << " Th.area = " << Th.area << " Km™2 " << " == " << Arealac << " Km~2 "

<< endl ;
plot (Th,wait=1,ps="leman.eps"); // see figure [5.40
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Figure 5.39:
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Chapter 6

Finite Elements

As stated in Section 2 FEM approximates all functions w as

w(x,y) ~ wopo(z,y) +widr(z,y) + - + wryr—1dnm—1(x, y)

with finite element basis functions ¢y (z,y) and numbers wy (k = 0,--- , M — 1). The functions
¢r(x,y) are constructed from the triangle T;,, and called shape functions. In FreeFem++ the
finite element space

Vi, ={w | wopo + wi1 + - -+ +wpr—1ém—1, w; € R}

is easily created by

fespace IDspace (IDmesh,<IDFE>) ;

or with ¢ pairs of periodic boundary condition in 2d

fespace IDspace (IDmesh, <IDFE>,
periodic=[[la_l,sa_l], [1b_1,sb_1],

[la_k,sa-k], [1b_k,sbl]1]1);
and in 3d

fespace IDspace (IDmesh, <IDFE>,
periodic=[[la.l,sa_l,ta_l], [1b.1,sb_1,tb 1],

[la_k,sa-k,ta_k], [1b_k,sb f,tb l1]);
where
IDspace is the name of the space (e.g. Vh),

IDmesh is the name of the associated mesh and <IDFE> is a identifier of finite element type.

In 2D we have a pair of periodic boundary condition, if [la_i, sat], [1b_i, sb_i] is a pair of
int, and the 2 labels la_i and 1b_i refer to 2 pieces of boundary to be in equivalence.

If [las,sasd], [1b,sb] is a pair of real, then sa_i and sb_i give two common abscissa
on the two boundary curve, and two points are identified as one if the two abscissa are equal.

In 2D, we have a pair of periodic boundary condition,if [la_i, sa_i,ta-], [1b., sb_i, tb_] is
a pair of int, the 2 labels la_i and 1b_¢ define the 2 piece of boundary to be in equivalence.

147
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If [la.i,sazi,tas], [1b.i, sb.i,tb_i] is a pair of real, then sa_i,ta_i and sb_i, tb_i give
two common parameters on the two boundary surface, and two points are identified as one if the
two parameters are equal.

Remark 6 The 2D mesh of the two identified borders must be the same, so to be sure, use the param-
eter fixeborder=true in buildmesh command (see[5.1.9) like in example periodic2bis.edp

(see[9.7).

As of today, the known types of finite element are:

P0,P03d piecewise constant discontinuous finite element (2d, 3d), the degrees of freedom are the
barycenter element value.

PO, ={ve L*(Q) ’ for all K € Tj, thereis ax € R: v =ax} (6.1)

P1,P13d piecewise linear continuous finite element (2d, 3d), the degrees of freedom are the vertices
values.

Pl,={ve H(Q)|VK €T, vgeP} (6.2)

Pldc piecewise linear discontinuous finite element
Plde, = {ve L*(Q)|VK €T, vy € P} (6.3)

Warning, due to interpolation problem, the degree of freedom is not the vertices but three
vectices move inside with 7'(X) = G+.99(X — G) where G is the barycenter, (version 2.24-4).

P1b,P1b3d piecewise linear continuous finite element plus bubble (2d, 3d)

The 2d case:

Plb, ={ve HY(Q)|VK € T, v € P & Span{AfAFAL}} (6.4)

The 3d case:
Plb, ={ve HY(Q)|VK € T, v € Pt & Span{A\FAFAFAL}} (6.5)

where )\Z-K ,i =0,..,d are the d+1 barycentric coordinate functions of the element K (triangle
or tetrahedron).

P2,P23d piecewise P, continuous finite element (2d, 3d),
P2, ={ve H'(Q)|VKE€T, vk€eP} (6.6)
where P, is the set of polynomials of R? of degrees < 2.
P2b piecewise P, continuous finite element plus bubble,

P2, ={ve H'(Q)|VK €T, v € P& Span{A\f A\ \]'}} (6.7)
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P2dc piecewise P, discontinuous finite element,
P2de, = {ve L*(Q)|VK €T, v € P2} (6.8)

Warning, due to interpolation problem, the degree of freedom is not the six P2 nodes but six
nodes move inside with 7'(X) = G + .99(X — G) where G is the barycenter, (version 2.24-4).

P3 piecewise P3 continuous finite element (2d) (need load "Element_ P3",
P2, ={veH(Q)|VK €T, vi€Ps} (6.9)
where Pj is the set of polynomials of R? of degrees < 3.

P3dc piecewise P3 discontinuous finite element (2d) (need load "Element_P3dc",
P2, ={vel*(Q)|VKET, vgePs} (6.10)
where Pj is the set of polynomials of R? of degrees < 3.

P4 piecewise Py continuous finite element (2d) (need load "Element_P4",
P2, ={ve H'(Q)|VK €T, vk€Pl} (6.11)
where Py is the set of polynomials of R? of degrees < 4.

P4dc piecewise P, discontinuous finite element (2d) (need load "Element_P4dc",
P2, ={vel*(Q)|VK €T, vkePs} (6.12)
where P, is the set of polynomials of R? of degrees < 3.

Morley piecewise Py non conform finite element (2d) (need load "Morley")

v continuous at vertices,

_ 2
Pon = {v € L) ‘ VE € Tn YK € s, { Onv continuous at middle of edge,

} (6.13)

where Py is the set of polynomials of R? of degrees < 3.

Warning to build the interplant of a function u (scalar) for this finite element, we need the
function and 2 partial derivatives (u, u, uy), so this vectorial finite element with 3 components

(u, ug, uy).

See example bilapMorley.edp of examples++-1oad for solving BiLaplacien problem :

load "Morley"

fespace Vh (Th,P2Morley); // the Morley finite element space
macro bilaplacien(u,v) ( dxx(u)*xdxx (v)+dyy (u)xdyy (v)+2.xdxy (u) xdxy (v))

// fin macro
real f=1;

Vh [u,ux,uyl, [v,vx,vy];

solve bilap([u,ux,uyl, [v,vx,vy]) =
int2d(Th) ( bilaplacien(u,v) )
- int2d (Th) (f*v)
+ on(l,2,3,4,u=0,ux=0,uy=0)
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P2BR (need load "BernadiRaugel") the Bernadi Raugel Finite Elemen is a Vectorial element
(2d) with 2 components, See Bernardi, C., Raugel, G.: Analysis of some finite elements
for the Stokes problem. Math. Comp. 44, 71-79 (1985). It is a 2d coupled FE, with the
Polynomial space is P12 + 3 normals bubbles edges function (P) and the degre of freedom
is 6 values at of the 2 components at the 3 vertices and the 3 flux on the 3 edges So the
number degrees of freedom is 9.

RTO0,RT03d Raviart-Thomas finite element of degree 0.

The 2d case:
Oél x
RT0, = {v € H(div) ’ VK €T, vik(ey) = + k|5 } (6.14)
K
The 3d case:
aj
RTO, = {v € H(div) | VK €T, vig(z,y,2) = | ek + Bk ‘g } (6.15)
o3 #

where by writing div w = Y>% | dw;/0z; with w = (w;)L;,
H(div) = {w € L2(Q) |div w € L2<Q)}

and where a}(, oz%(, a%, By are real numbers.

RT0O0rtho Raviart-Thomas Orthogonal, or Nedelec finite element type I of degree 0 in dimension

2
RT00rthoh = {v & H(cur) ‘ VK € Th virc(e,y) = | °K + B | 3 } (6.16)
K
Edge03d Nedelec finite element or Edge Element of degree 0.
The 3d case:
ae Bk 1y
Edge0p, = ¢v € H(Curl) | VK €T, vig(z,y,2) = |k + |8k X |y (6.17)
ok |7

8w2 /613—811)3 /8I2
Ows /dx1—0w1 /dzs with w = (wi)?zl,
aw1/8$2—8w2/8$1

where by writing curlw =

H(eurl) = {w € L2(@)? |eurl w € L2(@)" }

1 .2 3 5l 52 723
and oy, o, g, By, Br, By are real numbers.

RT1 (need load "Element_Mixte", version 3.13)

oK +BK|$} (6.18)

2
R37e

RT1, = {v € H(div) ‘ VK €T, (a2, 0%, Pk) € P13,V|K(337y) =

RT10rtho (need load "Element_ Mixte", version 3.13, dimension 2)

1

K 4 B | } (6.19)

2
R37e

RT1, = {v € H(curl) ‘ VK €T, (a2, 0%, BK) € P13,V|K(as,y) =
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BDM1 (need load "Element_Mixte", version 3.13, dimension 2) the Brezzi-Douglas-Marini
finite element
BDM1, ={v e H(div) |VK €T, v|x€P}} (6.20)

BDM1Ortho (need load "Element_Mixte", version 3.13, dimension 2) the Brezzi-Douglas-
Marini Orthogonal also call Nedelec of type II | finite element

BDM1Ortho, = {v € H(cwtl) | VK € T, vx € P}} (6.21)

TDNNS1 (need load "Element_ Mixte", version 3.13, dimension 2) A new element finite el-
ement to approximation symetrique 2x2 matrix in H(divdiv) (i.e o,y is continuous accross
edge).

TDNNS1h = {0' € (112)2’2 | VK €T, okc€ P12, 012 = 0921, OpniS continuous} (6.22)

where 0,,, = n'on, and n is a normal to the edge (see [41), section 4.2.2.3] for full detail)

6.1 Use of “fespace” in 2d
With the 2d finite element spaces
Xn,={veH'(J0,1)| VK €T, v, € P}

Xpn ={v € Xp|v(|V) =v(|1),v(l0) =v(i)}
M, ={ve H'(]0,1*)| VK € T, vk € P2}
Rh:{VGHI(]O,1[2)2\VK€E V|K(:C,y): ’%g +vk |y}

when 7y, is a mesh 10 x 10 of the unit square ]0, 1[?, we only write in FreeFem++ :

mesh Th=square (10,10);

fespace Xh(Th,P1); // scalar FE
fespace Xph(Th,P1,

periodic=[[2,v], [4,v], [1,x],[3,x11); // bi-periodic FE
fespace Mh (Th,P2); // scalar FE
fespace Rh (Th,RTO) ; // vectorial FE

where Xh, Mh, Rh expresses finite element spaces (called FE spaces ) Xy, Mj, Rp, respectively.
To use FE-functions uyp, vy, € Xp, pn,qn € My, and Uy, V), € Ry, , we write :

Xh uh, vh;

Xph uph, vph;

Mh ph, gh;

Rh [Uxh,Uyh], [Vxh,Vyh];

Xh[int] Uh(10); // array of 10 function in Xh
Rh[int] [Wxh,Wyh] (10); // array of 10 functions in Rh.
Wxh[5](0.5,0.5) // the 6th function at point (0.5,0.5)
Wxh([5] [] // the array of the degre of freedom of the 6 function.

The functions Uy, V3, have two components so we have

_ | Uxh _ | Vzh
Uh = ‘ Uyh and Vh = | vyh
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6.2 Use of fespace in 3d
With the 3d finite element spaces
Xp={veH'(0,1’)|VK € T), vk € P1}

Xph ={v € Xp|v(|?) =v(|!),v(l0) =2v(i)}
M, ={ve H'(J0,1*)| VK € T, vk € P2}
Ry ={veH(0,1P? VK € Tn vig(z,y) =55 +vx |5}

when 7y, is a mesh 10 x 10 x 10 of the unit cubic ]0, 1[?, we write in FreeFem++ :

mesh3 Th=buildlayers (square (10,10),10, zbound=[0,11]);

// label: 0 up, 1 down; 2 front, 3 left, 4 back, 5: right
fespace Xh (Th,P1); // scalar FE
fespace Xph(Th,P1,

periodic=[[0,x,vy1l, [1,%x,v],
[(2,x,2],[4,%x,2],
[3,v,2]1,105,v,211); // three-periodic FE (see Note [6.1)
fespace Mh (Th,P2); // scalar FE
fespace Rh (Th,RT03d); // vectorial FE

where Xh, Mh, Rh expresses finite element spaces (called FE spaces ) Xj, My, Ry, respectively.
To define and use FE-functions up, vy, € X}, and pp, qn € My, and Uy, Vy, € Ry, , we write:

Xh uh, vh;

Xph uph, vph;

Mh ph, gh;

Rh [Uxh,Uyh,Uyzh], [Vxh,Vyh, Vyzh];

Xh[int] Uh(10); // array of 10 function in Xh
Rh([int] [Wxh,Wyh,Wzh] (10); // array of 10 functions in Rh.
Wxh[5](0.5,0.5,0.5) // the 6th function at point (0.5,0.5,0.5)
Wxh[5][] // the array of the degre of

freedom of the 6 function.

The functions Uy, V}, have three components so we have

Uxh Vzh
Up,=|Uyh and V) =|Vyh
Uzh Vzh

Note 6.1 One hard problem of the periodic boundary condition is the mesh must be the same au
equivalence face, the BuildLayer mesh generator split each quadrilateral faces with the diagonal pass-
ing through vertex with maximal number, so to be sure to have the same mesh one both face periodic
the 2d numbering in corresponding edges must be compatible (for example the same variation). By
Default, the numbering of square vertex are correct.

To change the mesh numbering you can used the change function like:

{ // for cleanning memory. .
int [int] old2new (0:Th.nv-1); // array set on 0, 1, .., nv-1
fespace Vh2 (Th,P1l);

Vh2 sorder=x+y; // choose an ordering increasing on 4 square borders with x
or y

sort (sorder[],o0ld2new) ; // build the inverse permutation

int[int] new2old=old2new”-1; // inverse the permutation
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Th= change (Th, renumv=new201d) ; change}
}

the full example is in examples++-3d/periodic-3d.edp

6.3 Lagrangian Finite Elements

6.3.1 PoO-element

For each triangle (d=2) or tetrahedron (d=3) T}, the basis function ¢y in Vh (Th,P0) is given by
or(x) =1if (x) €Ty,  ¢p(x) =0if () ¢ Ty

If we write

Vh (Th,P0); Vh fh=f(z,y);

then for vertices ¢¥, i = 1,2,..d + 1 in Fig. [6.1)(a), f is built as

2

k,
4"
d+1 )k

fh:fh(x7y) :Zf(
k

See Fig. for the projection of f(z,y) = sin(mz)cos(ry) on Vh (Th,P0) when the mesh Th is
a 4 x 4-grid of [~1,1]? as in Fig. [6.2

6.3.2 Pl-element

ky Iy

Figure 6.1: P; and P, degrees of freedom on triangle T},

For each vertex ¢', the basis function ¢; in Vh (Th, P1) is given by

¢i(z,y) = af + bz + cfy for (z,y) € Ty,
di(d") =1, ¢i(¢?)=0ifi#j

The basis function ¢y, (x,y) with the vertex ¢* in Fig. |6.1{a) at point p = (x,y) in triangle T}
simply coincide with the barycentric coordinates )\’f (area coordinates) :

area of triangle(p, ¢*2, ¢*3)

= )\r =
Pk, (7, ) 1(z,y) area of triangle(qk1, gk, ¢ks)
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If we write

Vh (Th,P1); Vh fh=g(z.y);

then

Uz

£h = fu(z,y) = Y f(d)ei(x,y)

=1

See Fig. [6.4] for the projection of f(z,y) = sin(rz) cos(ry) into Vh (Th,P1).
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Figure 6.2: Test mesh Th for projection Figure 6.3: projection to Vh (Th, P0O)

6.3.3 P2-element

For each vertex or midpoint ¢’. the basis function ¢; in Vh (Th, P2) is given by

dilwy) = af +fx + cfy + dfa® + efay + f]y? for (z,y) € T,
0i(¢) =1, ¢i(¢)=0ifi#

The basis function ¢y, (z,y) with the vertex ¢t in Fig. [6.1b) is defined by the barycentric coordi-
nates:

Oy (2,y) = M (2, ) (2M] (2,y) — 1)
and for the midpoint ¢*2

bry (2, y) = AN (2, y) Ny (2, )

If we write

Vh (Th,P2); Vh fh=f(x.y);

then
M

th = fp(z,y) = Z f(¢"oi(x,y) (summation over all vetex or midpoint)
i=1

See Fig. for the projection of f(z,y) = sin(mz) cos(my) into Vh (Th, P2).
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10

Figure 6.4: projection to Vh (Th, P1) Figure 6.5: projection to Vh (Th, P2)

6.4 P1 Nonconforming Element

Refer to [23] for details; briefly, we now consider non-continuous approximations so we shall lose
the property
wy, € Vi, € HY(Q)

If we write

Vh (Th,P1lne); Vh fh=f(z.y);
then

th = fu(z,y) Z f(m")¢i(z,y) (summation over all midpoint)
Here the basis function ¢; associated with the midpoint m? = (¢¥i + ¢¥i+1)/2 where ¢* is the i-th

point in T}, and we assume that j +1 =0 if j = 3:

¢i(z,y) = af + iz + cFy for (z,y) € Ty,
pi(m') =1, ¢i(m!)=0ifi+#j

Strictly speaking 0¢;/0x, d¢; /0y contain Dirac distribution pdgr, . The numerical calculations will
automatically ignore them. In [23], there is a proof of the estimation

o 1/2
(Z ; |V — th|2d:vdy) = O(h)
k=1 k

The basis functions ¢ have the following properties.

1. For the bilinear form a defined in (2.6)) satisfy

a(@i ¢i) >0, a(di¢;) <0 ifij

Ny

> al¢i, ¢r) > 0

k=1

2. f>20=u,>0
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3. If i # j, the basis function ¢; and ¢; are L?-orthogonal:
/¢i¢jdxdy20 1fz7é]
Q

which is false for P;-element.

See Fig. for the projection of f(z,y) = sin(wz)cos(my) into Vh (Th,Plnc). See Fig. for
the projection of f(z,y) = sin(wx) cos(my) into Vh (Th, P1lnc).

190

Figure 6.6: projection to Vh (Th, P1nc) Figure 6.7: projection to Vh (Th, P1Db)

6.5 Other FE-space

For each triangle T}, € Tp, let g, (2, y), Ak, (2, y), Aks(2,y) be the area cordinate of the triangle
(see Fig. [6.1), and put

called bubble function on T}. The bubble function has the feature:
1. ﬂk(ac,y) =0 if (x,y) € 8Tk.
2. Br(g™) = 1 where ¢* is the barycenter M.
If we write
Vh (Th,P1b); Vh fh=f(z.y);
then

£h = fu(z,y) Zf Vi, y) + Y F(d")Br(x,y)

See Fig. for the projection of f(z,y) = sin(mz) cos(my) into Vh (Th, P1b).
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6.6 Vector valued FE-function

Functions from R? to RY with N = 1 is called scalar function and called vector valued when N > 1.
When N =2

fespace Vh (Th, [PO,P1]) ;

make the space
Vi, =A{w = (w1, w2)| w1 € Vi, (Th, o), w2 € Vi,(Th, P1)}

6.6.1 Raviart-Thomas element

In the Raviart-Thomas finite element RT0, the degree of freedom are the fluxes across edges e of
the mesh, where the flux of the function f : R? — R? is fe f.ne, ne is the unit normal of edge e.
This implies a orientation of all the edges of the mesh, for example we can use the global numbering
of the edge vertices and we just go from small to large numbers.

To compute the flux, we use a quadrature with one Gauss point, the middle point of the edge.
Consider a triangle T} with three vertices (a,b,c). Let denote the vertices numbers by i, ip, ic,
and define the three edge vectors e!, €2, €3 by sgn(iy—i.)(b—c), sgn(ic—is)(c—a), sgn(i,—iy)(a—b),
We get three basis functions,

g sgnliy —ic) gk sgnlic —ia) gk sgnlia —ip),
¢1 - W(X a)7 d)Q - 2|Tk‘ (X b)7 ¢3 - 2’Tk| (X C)7 (624>

where |T}| is the area of the triangle Tj. If we write

Vh (Th,RT0); Vh [flh, f2h]l=[f1(z.y), f2(z,y)];
then
nt 6 )
fh= fp(z,y) = Z Znizjl|ell|fjl (m") i,
k=1 l=1

where n;,j, is the jj-th component of the normal vector n;,,

( - b+c a+c b+a
mi,maz, M3y = 2 ) 2 ) 2

and iy = {1,1,2,2,3,3}, ji = {1,2,1,2,1,2} with the order of .

Figure 6.8: normal vectors of each edge
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Example 6.1 mesh Th=square(2,2);
fespace Xh (Th,P1);

fespace Vh (Th,RTO) ;

Xh uh, vh;

Vh [Uxh,Uyh];

[Uxh,Uyh] = [sin(x),cos(y)];
vh= x"2+y”~2;

Th = square(5,5);

uh = x"2+y"2;
Uxh = x; //

vh = Uxh;
//
plot (uh, ps="onoldmesh.eps");

uh = uh; //

plot (uh, ps="onnewmesh.eps");
vh([x-1/2,y])= x"2 + y~2;

N

Figure 6.9:  vh Iso on mesh 2 x 2
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// ok vectorial FE function
// vh

// change the mesh

// Xh is unchange

// compute on the new Xh

impossible to set only 1 component

// of a vector FE function.
// ok

// and now uh use the 5x5 mesh

but the fespace of vh is alway the 2x2 mesh

// figure

do a interpolation of vh (old) of 5x5 mesh

to get the new vh on 10x10 mesh.
// figure [6.10
interpolate vh = ((z —1/2)?+y?)

Figure 6.10:  vh Iso on mesh 5 x 5

To get the value at a point x = 1,y = 2 of the FE function uh, or [Uxh, Uyh],one writes

real value;
value = uh(2,4);
value = Uxh(2,4);

x=1;y=2;

value = uh;
value = Uxh;
value = Uyh;

// get value= uh(2,4)
// get value= Uxh(2,4)

/) mmm or —————-
// get value= uh(1,2)
// get value= Uxh(1,2)

// get value= Uyh(1,2).

To get the value of the array associated to the FE function uh, one writes
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real value = uh[][0] ; // get the value of degree of freedom 0
real maxdf = uh[].max; // maximum value of degree of freedom
int size = uh.n; // the number of degree of freedom
real[int] array(uh.n)= uh[]; // copy the array of the function uh

Note 6.2 For a none scalar finite element function [Uxh, Uyh] the two array Uxh[] and Uyh[]
are the same array, because the degree of freedom can touch more than one component.

6.7 A Fast Finite Element Interpolator

In practice one may discretize the variational equations by the Finite Element method. Then there
will be one mesh for £2; and another one for €23. The computation of integrals of products of
functions defined on different meshes is difficult. Quadrature formulae and interpolations from one
mesh to another at quadrature points are needed. We present below the interpolation operator
which we have used and which is new, to the best of our knowledge. Let 77? = U,T?, 7;3 = Ukal

be two triangulations of a domain 2. Let
V(T3) ={C°() = flgy € o}, i=0.1

be the spaces of continuous piecewise affine functions on each triangulation.
Let f € V(7). The problem is to find g € V(7;}) such that

9(a) = f(a) Vg vertex of Ty

Although this is a seemingly simple problem, it is difficult to find an efficient algorithm in practice.
We propose an algorithm which is of complexity N'log N°, where N is the number of vertices of
5, and which is very fast for most practical 2D applications.

Algorithm

The method has 5 steps. First a quadtree is built containing all the vertices of mesh 77? such that
in each terminal cell there are at least one, and at most 4, vertices of 77? .

For each ¢!, vertex of 7;3 do:

Step 1 Find the terminal cell of the quadtree containing ¢'.

Step 2 Find the the nearest vertex q? to ¢! in that cell.

Step 3 Choose one triangle T; ,g € 7710 which has q;-) for vertex.

Step 4 Compute the barycentric coordinates {\;};=12,3 of ¢' in Tp.

e — if all barycentric coordinates are positive, go to Step 5

e — else if one barycentric coordinate \; is negative replace T,? by the adjacent triangle
opposite qzo and go to Step 4.

e — else two barycentric coordinates are negative so take one of the two randomly and
replace Tk? by the adjacent triangle as above.
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Step 5 Calculate g(g') on T} by linear interpolation of f:

9d) = > Nf(d)

=123

End

Figure 6.11:  To interpolate a function at ¢° the knowledge of the triangle which contains
¢° is needed. The algorithm may start at ¢ € T} and stall on the boundary (thick line)
because the line ¢°¢' is not inside . But if the holes are triangulated too (doted line) then
the problem does not arise.

Two problems need to be solved:

o What if ¢* is not in Q% ¢ Then Step 5 will stop with a boundary triangle. So we add a step
which test the distance of ¢' with the two adjacent boundary edges and select the nearest,
and so on till the distance grows.

o What if 92 is mot convexr and the marching process of Step 4 locks on a boundary? By
construction Delaunay-Voronoi mesh generators always triangulate the convex hull of the
vertices of the domain. So we make sure that this information is not lost when 72, 77} are
constructed and we keep the triangles which are outside the domain in a special list. Hence
in step 5 we can use that list to step over holes if needed.

Note 6.3 Some time in rare case the interpolation process miss some point, we cane change the
seach algorithm through global variable searchMethod

searchMethod=0; // default value for fast search algorithm
searchMethod=1; // safe seach algo, use brute force in case of missing
point
// (warning can be very expensive in case of lot point of ouside domain)
searchMethod=2; // use alway the brute force very very expensive

Note 6.4 Step 3 requires an array of pointers such that each vertex points to one triangle of the
triangulation.
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Note 6.5 The operator = is the interpolation operator of FreeFem++ , The continuous finite func-
tions are extended by continuity to the outside of the domain. Try the following example

mesh Ths= square(10,10);

mesh Thg= square (30,30, [x*x3-1,y*3-11);

plot (Ths, Thg,ps="overlapTh.eps",wait=1);

fespace Ch(Ths,P2); fespace Dh(Ths,P2dc);

fespace Fh (Thg,P2dc);

Ch us= (x-0.5)%*(y-0.5);

Dh vs= (x-0.5)%(y=-0.5);

Fh ug=us,vg=vs;

plot (us,ug,wait=1,ps="us-ug.eps"); // see figure [6.1]
plot (vs,vg,wait=1,ps="vs-vg.eps"); // see figure [6.13

Figure 6.12: Extension of a continuous FE- Figure 6.13: Extention of discontinuous FE-
function function, see warning [0]

6.8 Keywords: Problem and Solve

For FreeFem++ a problem must be given in variational form, so we need a bilinear form a(u,v) ,
a linear form £(f,v), and possibly a boundary condition form must be added.

problem P (u,v) =
a(u,v) - L(f,v)
+ (boundary condition);

Note 6.6 When you want to formulate the problem and to solve it in the same time, you can use
the keywork solve.
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6.8.1 Weak form and Boundary Condition

To present the principles of Variational Formulations or also called weak forms fr the PDEs, let us
take a model problem : a Poisson equation with Dirichlet and Robin Boundary condition .
The problem is: Find u a real function defined on domain € of R? (d = 2,3) such that

—V.(kVu)=f, in Q, au—l—ﬂg—b on I'y, u=g on Iy (6.25)
n

where

o if d =2 then V.(kVu) = 0,(k0,u) + 0y(k0yu) with d,u = g“ and Jyu = gZ

e if d = 3 then V.(kVu) = 0,(k0,u) + Oy(kOyu) + 0, (k0 u) Wlthau—a %u-%and
Dou = 2
0z

e the border I' = 99 is split in 'y and T, such that 'yN T, =0 and 'y UT,, = 09,
e x is a given positive function, such that dkg € R, 0 < kg < k.

e ¢ a given non negative function,

b a given function.

Note 6.7 This is the well known Neumann boundary condition if a = 0, and if Iy is empty. In
this case the function appears in the problem just by its derivatives, so it is defined only up to a
constant (if u is a solution then u + c is also a solution).

Let v a regular test function null on I'y , by integration by parts we get

—/V.(ﬁVu)vdw:/an.Vudw—/v/iau d’y,:/fvdw (6.26)
Q Q r on Q

where if d = 2 the Vv.Vu = (94 9V + gz g;’) , where if d = 3 the Vo.Vu = (4490 4 gZ gz + udvy
and where m is the unitary outside normal of 0f2.
Now we note that mg—z =—au+gonl,and v=0onTIyand 02 =IyUT, thus

— vn— auvy — v
on . .
The problem becomes:

Find u € V; = {v € H(Q)/v = g on 'y} such that

//in.Vudw—i-/ auvdfy:/fvdw—k/ bvdy, Yvel (6.27)
Q Q Ty

T

where Vo = {v € HY(Q)/v=0o0n 'y}
Except in the case of Neumann conditions everywhere, the problem ([6.27) is well posed when
Kk > kg > 0.

Note 6.8 If we have only Neumann boundary condition, linear algebra tells us that the right hand
side must be orthogonal to the kernel of the operator for the solution to exist. One way of writing

the compatibility condition is:
/ fdw+ / bdy =20
Q r
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and a way to fix the constant is to solve for u € H'(Q) such that:
/suv dw + kVu.Vudw = / fodw +/ body, Yve HY(Q) (6.28)
Q Q Ty

where ¢ is a small parameter ( ~ 10710 ).

Remark that if the solution is of order % then the compatibility condition is unsatisfied, otherwise we
get the solution such that fQ u = 0, you can also add a Lagrange multiplier to solver the real mathe-
maical probleme like in the examples++-tutorial/Laplace-lagrange-mult .edp example.

In FreeFem++, the bidimensional problem ((6.27)) becomes

problem Pw(u,v) =

(
int2d (Th) ( kappax*( dx(u)*dx(u) + dy(u)xdy(u)) ) // fQK,V?}.Vwa
+ intld (Th,gn) ( a * u*v ) // 'ﬁ}auwdv
~ int2d(Th) (f*v) // Jo fvdw
- intld(Th,gn) ( b * v ) // Jr, budy
+ on(gd) (u= g) ; // u=g on Iy

where Th is a mesh of the the bidimensional domain €2, and gd and gn are respectively the boundary
label of boundary I'y and I',.
And the the three dimensional problem ([6.27]) becomes

macro Grad (u) [dx(u),dy(u),dz(u) 1// EOM : definition of the 3d Grad macro
problem Pw (u, V)

(
(
int3d (Th) ( kappax ( Grad(u)’*Grad(v) ) ) // j&HVULVudw
+ int2d(Th,gn) ( a * uxv ) // fl auwv dry
~ int3d(Th) (£+v) /0 g fodw
- int2d(Th,gn) ( b * v ) // Jr, bvdy
+ on(gd) (u= g) ; // u=g on I'y

where Th is a mesh of the three dimensional domain €2, and gd and gn are respectively the boundary
label of boundary I'y and T',,.

6.9 Parameters affecting solve and problem

The parameters are FE functions real or complex, the number n of parameters is even (n = 2 x k),
the k first function parameters are unknown, and the k last are test functions.

Note 6.9 If the functions are a part of vectoriel FE then you must give all the functions of the
vectorial FE in the same order (see laplaceMixte problem for example).

Note 6.10 Don’t miz complex and real parameters FE function.

Bug: 1 The mixing of fespace with different periodic boundary condition is not implemented. So
all the finite element spaces used for test or unknown functions in a problem, must have the same
type of periodic boundary condition or no periodic boundary condition. No clean message is given
and the result is impredictible, Sorry.

The parameters are:
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solver= LU, CG, Crout,Cholesky,GMRES,sparsesolver, UMFPACK ...

eps=

init=

The default solver is sparsesolver ( it is equal to UMFPACK if not other sparce solver is
defined) or is set to LU if no direct sparse solver is available. The storage mode of the matrix
of the underlying linear system depends on the type of solver chosen; for LU the matrix
is sky-line non symmetric, for Crout the matrix is sky-line symmetric, for Cholesky the
matrix is sky-line symmetric positive definite, for CG the matrix is sparse symmetric positive,
and for GMRES, sparsesolver or UMFPACK the matrix is just sparse.

a real expression. € sets the stopping test for the iterative methods like CG. Note that if ¢ is
negative then the stopping test is:

[ Az — b]| < [e]
if it is positive then the stopping test is

€]

Az - bl <« —M—MmM—
142 =8l < Tz =3

boolean expression, if it is false or 0 the matrix is reconstructed. Note that if the mesh
changes the matrix is reconstructed too.

precon= name of a function (for example P) to set the preconditioner. ~The prototype for the

tgv=

function P must be
func real[int] P(real[int] & xx) ;

Huge value (103%) used to implement Dirichlet boundary conditions, see page for descrip-
tion.

tolpivot= set the tolerence of the pivot in UMFPACK (10~!) and, LU, Crout, Cholesky factorisa-

tion (10720).

tolpivotsym= set the tolerence of the pivot sym in UMFPACK

strategy= set the integer UMFPACK strategy (0 by default).

6.10 Problem definition

Below v is the unknown function and w is the test function.
After the ”=" sign, one may find sums of:

identifier(s); this is the name given earlier to the variational form(s) (type varf ) for possible
reuse.

Remark, that the name in the ”varf” of the unknow of test function is forgotten, we just used
the order in argument list to recall name as in a C++ function, see note [6.15

the terms of the bilinear form itself: if K is a given function,

- int3d(Th) ( Kxv+w) :Z Kvw
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- 1int3d(Th, 1) ( Kxvxw) = /Kvw
TETh,TCO
- int2d(Th) ( Kxvsxw) = /Kvw
TETh
- 1int2d(Th, 1) ( Kxvxw) = /Kvw
TeTh,TCO
- intl1d(Th,2,5) ( Kxvw) Z/ Kow
TETh BTUF FQUFE,
- dintalledges (Th) ( Kxvsxw) = Z Kow
Tetn” 9T
- intalledges(Th,1) ( Kxv*w) = Z Kow
TeTh,TCN or

they contribute to the sparse matrix of type mat rix which, whether declared explicitly
or not is contructed by FreeFem++ .

e the right handside of the PDE, volumic terms of the linear form: for given functions K, f:

int3d(Th) ( K+w) = Z/Kw

Teth /T
- int2d(Th) ( Kxw) = Z/Kw
Tetn /T
- int1d(Th,2,5) ( K*w) = / Kw
e J (@TUM)N(I2UTs)
- intalledges (Th) ( fxw) Z fw
TETh
- a vector of type real [int]
e The boundary condition terms :
— An 7on” scalar form (for Dirichlet ) :  on(1, u = g )

The meaning is for all degree of freedom 7 of the boundary refered by ”1”, the diagonal
term of the matrix a;; = tgv with the terrible geant value tgv (=10%° by default) and
the right hand side b[i| = 7 (I g)[i]” x tgv, where the " (II,g)g[i]” is the boundary node
value given by the interpolation of g.

remark, if tgv < 0 then we put to 0 all term of the line ¢ in the matrix, except diagonal
term a;; = 1, and b[i] =7 (IIpg)[i]”. (version ; 3.10) .

— An 7on” vectorial form (for Dirichlet ) : on(1l,ul=gl,u2=g2) If you have vec-
torial finite element like RTO, the 2 components are coupled, and so you have : b[i] =
" (I (g1, 92))[i]” x tgv, where IIj, is the vectorial finite element interpolant.

— alinear formonI" (for Neumannin2d ) -int1d(Th)) ( f£+w) or -intld(Th,3)) (
fxw)
— abilinear form on " or 'y (for Robinin 2d) int1d(Th)) ( K+xv*w) or intld(Th,2)) (

Kxv+w).
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— alinear formon I (for Neumannin3d) -int2d(Th)) ( £xw) or -int2d(Th,3)) (
fxw)

— abilinear form on I or I'y (for Robinin 3d) int2d(Th)) ( K+xv*w) or int2d(Th,2)) (
Kxv+w).

Note 6.11

e If needed, the different kind of terms in the sum can appear more than once.

e the integral mesh and the mesh associated to test function or unknown function can be dif-
ferent in the case of linear form.

e N.x, N.y and N. z are the normal’s components.

Important: it is not possible to write in the same integral the linear part and the bilinear part such
asin intld(Th) ( Kxvxw — fxw)

6.11 Numerical Integration

Let D be a N-dimensional bounded domain. For an arbitrary polynomial f of degree r, if we can
find particular (quadrature) points £;, j = 1,---,J in D and (quadrature) constants w; such that

L
[ 1@ =X ase) (6.29)
D =1

then we have an error estimate (see Crouzeix-Mignot (1984)), and then there exists a constant
C > 0 such that,

< C|D|hH (6.30)

|/f Zwefﬁz

for any function r + 1 times continuously differentiable f in D, where h is the diameter of D and
|D| its measure (a point in the segment [¢’¢’] is given as

{(z,9)| 2= (1 - )} +tal, y = (1 —t)g, +tq), 0 <t < 1}).
For a domain Qp = ;| T, Tr, = {T%}, we can calculate the integral over I'j, = 98, by

f(x)ds = intl1d(Th) (f)

= 1intld(Th, gfe=x) (f)
int1ld(Th, gforder=x) (f)

where * stands for the name of the quadrature formula or the precision (order) of the Gauss formula.
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Quadature formula on an edge
L ‘ (gfe=) ‘ gforder= ‘ point in [¢'¢?](= t) ‘ Wy ‘ exact on Py, k =
1 af1pE 2 1/2 |gigj | 1
2 qf2pE 3 (1+£+/1/3)/2 lg'q?|/2 3
3 af3pE 6 (1+£+/3/5)/2 (5/18)|q'q’| 5
1/2 (8/18)lq'¢’|
525+701/30 — »
4| qf4pE 8 (14 V32HT0VE0) g | 18=v/30, i) 7
- o
(1+ \/52535 0\/%)/2‘ 18-%/%|qzq1’
245+14/70 _ i
5| qof5pE 10 (14 V25H14V70) o 32213150@\{1@” 9
1/2 225’qij|
\/245-14v/70 »
(L VEOSVT0)/y | 325800 g1
2 | qflpElump 2 0 lg"q?|/2 1
+1 lg'¢’|/2

where |¢’q’| is the length of segment g¢iqi. For a part 'y of I';, with the label “1”, we can calculate
the integral over I'y by

f(z,y)ds

Iy

= 1intld(Th,1) (f)

= 1intld(Th,1,gfe=qf2pE) (£f)

The integrals over I'y, I's are given by

/ f(z,y)ds = int1d (Th, 1, 3) (f)
I'ul's

For each triangle T, = [qqu’”q’%] , the point P(x,y) in T} is expressed by the area coordinate as

P(&,n):

T | =

1 qk1
1 X
B 1 gy
1 q];?’
D1/ [Tk

g
q%Q
s

Iy

1
n= §D2/\Tk|

1 = y

Log2 g2 | D

1 q£3 qy3

1
=11 z y
1

k1

k
4y !

y

k3

qr q§3

1
then 1 — & —n = - Ds/|Ti|

D3 =

Loay gy
1 q52 q,°
1 =z Y

For a two dimensional domain or a border of three dimensional domain Qp, = Y ;" | T, Tn, = {Tx},
we can calculate the integral over 0 by

Qpn

= 1int2d(Th) (f)

= 1int2d(Th, gft=x) (f)
= 1int2d(Th,gforder=x) (f)

where * stands for the name of quadrature formula or the order of the Gauss formula.
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Quadature formula on a triangle

L ‘ qft= ‘ gforder= ‘ point in T} ‘ Wy ‘ exact on Py, k =
1 qf1pT 2 (3.1 T 1
3 af2pT 3 (%,%) |T:|/3 2
(0,3) |T|/3
7 qf5pT 6 (3. 3) 0.225[T| 5
6 \/15 6— \/i§> (155—+/15)| T} |
» 21 1200
6 vﬁg 9+2vf* (155—+/15)| T}
) 1200
9+2vﬁ* 6— Vf’ (155—+/15)|T%|
) 1200
6+\/*5 6+¢E> (155+1;/0§)\Tk|
6+V[7 9— zvf* (155+v/15) | Ty
) 1200
9— QVﬁE 6+vﬁ7 (155-++/15)[ T,
) 1200
3 | gflpTlump 0,0) |T%|/3 1
(1,0) IT31/3
9 | qf2pT4P1 (4. 3) |Ty| /12 1
(31 14]/12
(0.4) 74]/12
(g,o) T/ 12
(%7?) Tk |/12
(%7%) |T|/6
15 qf7pT 8 see [38] for detail 7
21 qfopT 10 see [38] for detail 9

For a three dimensional domain Q) = Yt Tk, Tp, = {T%}, we can calculate the integral over €,

by
f(z,y) = int3d(Th) (f)
Qp,
int3d (Th, gfV=«) (£)
= 1int3d(Th,gforder=x) (f)
where * stands for the name of quadrature formula or the order of the Gauss formula.
Quadature formula on a tetrahedron
L ‘ qfv= ‘ gforder= ‘ point in 7}, € R? \ wy \ exact on Py, k =
T avi 2 CLD) T I
qfV2 3 G4(0.58...,0.13...,0.13...) |Tx|/4 2
14 qfVs 6 G4(0.72...,0.092...,0.092...) | 0.073...|Tk| 5
G4(0.067...,0.31...,0.31...) | 0.11...|T}|
G6(0.45...,0.045...,0.45...) | 0.042...|T}|
4 | qfV1lump G4(1,0,0) |T%|/4 1




6.11. NUMERICAL INTEGRATION 169

Where G4(a, b, b) such that a + 3b =1 is the set of the four point in barycentric coordinate
{(a’ b’ b’ b)7 (b’ a? b’ b)? (b7 b? a’ b)’ (b7 b’ b’ a)}
and where G6(a,b,b) such that 2a 4+ 2b = 1 is the set of the six points in barycentric coordinate

{(a,a,b,b), (a,b,a,b),(a,b,b,a),(b,b,a,a),(bab,a),(baab)}.

Note 6.12 These tetrahedral quadrature formulae come from http://www.cs.kuleuven.be/
~nines/research/ecf/mtables.html

Note 6.13 By default, we use the formula which is exact for polynomials of degree 5 on triangles
or edges (in bold in three tables).

This possible to add an own quadrature formulae with using plugin "gf11to25" on segment |,
triangle or Tetrahedron. The quadrature formulae in D dimension is a bidimentional array of size
N, x (D + 1) such that the D + 1 value of on row i =0, ..., N, — 1 are w', &%, ..., 2%, where

w' is the weight of the quadrature point, and 1 — Zszl a%};, 2., jcé) is the barycentric coordinate
the quadrature point.

// just for test ... (version 3.19-1)
load "gfllto25" // load plugin
// Quadrature on segment
real[int,int] ggl=][
[0.5,01,
[0.5,111;
QF1 gfl(1,q9q9l); // def of quadrature formulae gfl on segment
// remark:
// 1 is the order of the quadrature exact for polynome of degree < 1)
// Quadrature on triangle
real[int,int] gg2=[
[l~/3lolo]r
[1./3.,1,01,
[1./3.,0,111;
QF2 gf2(1,q992); // def of quadrature formulae gf2 on triangle
// remark:
// 1 is the order of the quadrature exact for polynome of degree < 1)
// so must have = ) w'=1
// Quadrature on Tetrahedron
real[int,int] qgg3=[
[1./4,0,0,07,
[l-/4-rlrolo]l
(1./4.,0,1,01,
[(1./4.,0,0,111;
QF3 gf3(1,9q93); // def of quadrature formulae gf3 on get.

// remark:
// 1 is the order of the quadrature exact for polynome of degree < 1)


http://www.cs.kuleuven.be/~nines/research/ecf/mtables.html
http://www.cs.kuleuven.be/~nines/research/ecf/mtables.html
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// verification in 1d end 2d..
real I1 = intld(Th,gfe=qgfl) (x"2) ;
real I11 = intld(Th,gfe=gflpElump) (x"2) ;

real I2 = int2d(Th,qft=qf2) (x"2) ;
real I21 = int2d(Th,gft=gflpTlump) (x"2) ;

cout << Il << " == " << TI11 << endl;
cout << I2 << " == " << I21 << endl;
assert ( abs (I1-I11) < 1le-10);
assert ( abs (I2-I21) < 1le-10);

the output is

1.67 == 1.67
0.335 == 0.335

6.12 Variational Form, Sparse Matrix, PDE Data Vector

In FreeFem++ it is possible to define variational forms, and use them to build matrices and vectors
and store them to speed-up the script (4 times faster here).

For example let us solve the Thermal Conduction problem of section [3.4

The variational formulation is in L?(0,T; H'(Q)); we shall seek u™ satisfying

n_ ,n—1
Yw € Vy; / YU W + kVu"Vw) + / a(u" — uye)w =0
Q at r

where Vo = {w € H'(Q) /wr,, = 0}.
So the to code the method with the matrices A = (A;;), M = (M;;), and the vectors u™, b™, b, b”, by
( notation if w is a vector then wj; is a component of the vector).

b”z‘ if 1€y

1
n _ A—1pn /I n—1 » o no_
u = A", b'=0by+ Mu""", b = . bet, b; { B, elseif ¢l (6.31)
Where with % =tgv =103 :
% ifi € gq,andj =1
A = e ., (6.32)
wjw; /dt + k(Vw;.Vw;) + awjw; else if i € I'og,0rj # 14
Q INE
1 if i € T'yy,andj =4
My = / wjw;/dt else if i & T'og,0r] # i (6.33)
Q
bo;i = / QUyeW; (6.34)
INE}

by = u’ the initial data (6.35)
// file thermal-fast.edp in examples++-tutorial

func ful0 =10+90%x/6;



6.12. VARIATIONAL FORM, SPARSE MATRIX, PDE DATA VECTOR 171
func k = 1.8%(y<0.5)+0.2;
real ue = 25. , alpha=0.25, T=5, dt=0.1 ;
mesh Th=square (30,5, [6*x,V]);
fespace Vh (Th,P1);
Vh u0=£fu0l0, u=u0;
Create three variational formulation, and build the matrices A, M.
varf vthermic (u,v)= int2d(Th) (uxv/dt + kx (dx(u) =* dx(v) + dy(u) * dy(v)))
+ intld(Th,1, 3) (alpha*u*v) + on(2,4,u=1);
varf vthermicO (u,v) = intld(Th, 1, 3) (alphax*uex*v) ;
varf vMass (u,v)= int2d(Th) ( u*v/dt) + on(2,4,u=1);
real tgv = 1e30;
matrix A= vthermic (Vh,Vh, tgv=tgv, solver=CG) ;
matrix M= vMass (Vh,Vh) ;
Now, to build the right hand size we need 4 vectors.
real[int] b0 = vthermicO(0,Vh); // constant part of the RHS
real[int] bcn = vthermic (0,Vh); // tgv on Dirichlet boundary node ( !=0 )
// we have for the node i : 1€y <<  benli] #0
real[int] Dbcl=tgvxul[]; // the Dirichlet boundary condition part

Note 6.14 The boundary condition is implemented by penalization and vector bcn contains the
contribution of the boundary condition u=1 , so to change the boundary condition, we have just to
multiply the vector be[] by the current value f of the new boundary condition term by term with the
operator . . Section[9.6.9 Examples++-tutorial/StokesUzawa.edp gives a real example of

using all this features.
And the new version of the algorithm is now:

ofstream ff ("thermic.dat");
for (real t=0;t<T;t+=dt) {

real[int] b = b0 ; // for the RHS

b += Mxul]; // add the the time dependent part
// lock boundary part:

b =Dbcn ? bcl : b ; // do Vi: b[i] = bcn[i] ? bcl[i] bl[i] ;

ul] = A"=1«b;

ff << t <<" "<<u(3,0.5)<<endl;

plot (u);

}
for (int 1=0;1<20;i++)
cout<<dy (u) (6.0x1/20.0,0.9) <<endl;
plot (u, fill=true,wait=1,ps="thermic.eps");
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Note 6.15 The functions appearing in the variational form are formal and local to the varf defi-
nition, the only important thing is the order in the parameter list, like in

varf vbl([ul,u2],q) = int2d(Th) ( (dy(ul)+dy (u2)) =g) + int2d(Th) (1xq);
varf vb2 ([vl,v2],p) = int2d(Th) ( (dy (v1l)+dy (v2)) #*p) + int2d(Th) (1p);

To build matrix A from the bilinear part the variational form a of type warf simply write:

A = a(Vh,Wh [, ...]1 );
// where
// Vh is "fespace" for the unknow fields with a correct number of component

// Wh is "fespace" for the test fields with a correct number of component
Possible named parametersin " [, ... ] " are
solver= LU, CG, Crout, Cholesky, GMRES, sparsesolver, UMFPACK ...

The default solver is GMRES.

The storage mode of the matrix of the underlying linear system depends on the type of
solver chosen; for LU the matrix is sky-line non symmetric, for Crout the matrix is sky-
line symmetric, for Cholesky the matrix is sky-line symmetric positive definite, for CG the
matrix is sparse symmetric positive, and for GMRES, sparsesolver or UMFPACK the matrix
is just sparse.

factorize = if true then do the matrix factorization for LU, Cholesky or Crout, the default value
is false.

eps= a real expression. ¢ sets the stopping test for the iterative methods like CG. Note that if ¢ is
negative then the stopping test is:

[ Az — b]| < [e]
if it is positive then the stopping test is

el

Ar - bl < ——Mm—
142 =l < Tz =3

precon= name of a function (for example P) to set the preconditioner. The prototype for the
function P must be

func real[int] P(real[int] & xx) ;

tgv= Huge value (103°) used to implement Dirichlet boundary conditions.

tolpivot= set the tolerance of the pivot in UMFPACK (10~1) and, LU, Crout, Cholesky factori-
sation (10729).

tolpivotsym= set the tolerance of the pivot sym in UMFPACK

strategy= set the integer UMFPACK strategy (0 by default).

Note 6.16 The line of the matriz corresponding to the space Wh and the column of the matrix
corresponding to the space Vh.
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To build the dual vector b (of type real[int]) from the linear part of the variational form a do simply

real b (Vh.ndof);
b = a(0,Vh);

A first example to compute the area of each triangle K of mesh Th, just do:

fespace Nh (Th,PO); // the space function constant / triangle
Nh areak;

varf varea (unused, chiK) = int2d(Th) (chikK);

etaK[]= varea (0,Ph);

Effectively, the basic functions of space Nh, are the characteristic function of the element of Th,
and the numbering is the numeration of the element, so by construction:

etaK|i] :/1Ki :/ 1;
K;

Now, we can use this to compute error indicators like in examples AdaptResidualErrorIndi-
cator.edp in directory examples++-tutorial.

First to compute a continuous approximation to the function h ”density mesh size” of the mesh
Th.

fespace Vh (Th,P1);

Vh h ;

real[int] count (Th.nv) ;

varf vmeshsizen (u,v)=intalledges (Th, gfnbpE=1) (v);

varf vedgecount (u,v)=intalledges (Th, gfnbpE=1) (v/lenEdge) ;

// computation of the mesh size
/) e
count=vedgecount (0, Vh) ; // number of edge / vertex
h[]=vmeshsizen (0, Vh) ; // sum length edge / vertex
h{]=h[]./count; // mean lenght edge / vertex

To compute error indicator for Poisson equation :

ou
nKz/ h%(|<f+Auh>|2+/ el )P
K oK n

where h is size of the longest edge ( hTriangle), h is the size of the current edge ( lenEdge),
n the normal.

fespace Nh(Th,PO0); // the space function contant / triangle
Nh etak;
varf vetaK (unused, chiK) =

intalledges (Th) (chiKxlenEdgex*square (jump (N.x+xdx (u) +N.y*dy (u) ) ))

+int2d (Th) (chiKxsquare (hTrianglex (f+dxx (u) +dyy(u))) );

etak[]= vetaK(0,Ph);

We add automatic expression optimization by default, if this optimization creates problems, it can
be removed with the keyword optimize as in the following example :

varf a(ul,u2)= int2d(Th,optimize=false) ( dx(ul)s*dx(u2) + dy(ul)xdy(u2) )
+ on(l,2,4,ul=0) + on(3,ul=l) ;
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Remark, it is all possible to build interpolation matrix, like in the following example:

mesh TH = square(3,4);
mesh th square (2, 3) ;
mesh Th square (4,4);

fespace VH(TH,P1);
fespace Vh(th,P1l);
fespace Wh(Th,P1);

matrix B= interpolate (VH,Vh); //
matrix BB= interpolate (Wh, Vh); //

build interpolation matrix Vh->VH
build interpolation matrix Vh->Wh

and after some operations on sparse matrices are available for example

int N=10;
real [int,int] A(N,N);
real [int] a(N),b(N);
A =0;
for (int i=0;i<N;i++)
{
A(i,1)=1+1i;

if(i+1 < N) A(i,i+1)=-1;
alil=i;
}
b=AxDb;

cout << "xxxx\n";

matrix sparseA=A;

cout << sparseA << endl;

sparseA = 2xsparseAtsparselA’;

sparseA = 4xsparseAtsparselAx*5;

matrix sparseB=sparseA+sparseAt+sparselh;

// a full matrix

cout << "sparseB = " << sparseB(0,0) << endl;

6.13 Interpolation matrix

It is also possible to store the matrix of a linear interpolation operator from a finite element space

V3, to another W, to interpolate (Wy, Vi, .. .)

a function. Note that the continuous finite

functions are extended by continuity outside of the domain.

The named parameters of function interpolate are:

inside= set true to create zero-extension.
t= set true to get the transposed matrix

op= set an integer written below

0 the default value and interpolate of the function

1 interpolate the 0,
2 interpolate the 9,
3 interpolate the 0,
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U2Ve= set the which is the component of W), come in V}, in interpolate process in a int array so
the size of the array is number of component of W}, if the put —1 then component is set to
0, like in the following example: (by default the component number is unchanged).

fespace V4h (Th4, [P1,P1,P1,P1]);
fespace V3h (Th, [P1,P1,P1]);

int[int] u2ve=[1,3,-11; // -1 => put zero on the component

matrix IV34= interpolate (V3h,V4h,inside=0,U2Vc=u2vc);
V4h [al,a2,a3,a4]=[1,2,3,4]1;

V3h [bl,b2,b3]1=[10,20,30];

bl[]1=IV34xall];

So here we have: bl == 2, b2 == 4, b3 == 0
Example 6.2 (mat_interpol.edp)

mesh Th=square (4,4);

mesh Th4=square (2,2, [xx0.5,y*x0.5])

plot (Th, Th4,ps="ThTh4.eps",wait=1);

fespace Vh (Th,P1); fespace Vh4 (Th4,P1);
fespace Wh (Th,PO); fespace Wh4 (Th4,PO0);

14

matrix IV= interpolate (Vh,Vhi4); //
//

cout << " IV Vh<-Vh4 " << IV << endl;

Vh v, vv; Vhi vi=xxy;

v=vi4; vv[]= IV*xv4[];

real[int] diff= vv[] - vI[];

cout << " || v - vv || =" << diff.linfty << endl;

assert ( diff.linfty<= le-6);

matrix IVO= interpolate (Vh,Vh4,inside=1); //

cout << " IV Vh<-Vh4 (inside=1) " << IVO << endl;
matrix IVt0O= interpolate(Vh,Vh4,inside=1,t=1);

cout << " IV Vh<-Vh4"t (inside=1) " << IVt0 << endl;
matrix IV4tO= interpolate (Vh4,Vh);

cout << " IV Vh4<-Vh"t " << IV4t0 << endl;

matrix IW4= interpolate (Wh4,Wh);

cout << " IV Wh4<-Wh " << IW4 << endl;

matrix IW4V= interpolate (Wh4,Vh);

cout << " IV Wh4<-Vh " << IW4 << endl;

// V3h <- V4h

here the function 1is
exended by continuity

// here v == vv =>

here the function 1is
// exended by zero

Build interpolation matrix A at a array of points (zz[j], yy[j]),7 = 0,2 here

aij = dop(wi(zx[j], yylj]))

where w; is the basic finite element function, ¢ the component number, dop the type of diff operator

like in op def.

real[int] xx=[.3,.4],yy=[.1,.4];

int c¢=0,dop=0;

matrix Ixx= interpolate (Vh, xx,yy, op=dop, composante=c) ;
cout << Ixx << endl;

Vh ww;

real[int] dd=[1,2];

ww(]= Ixx*xdd;
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6.14 Finite elements connectivity

Here, we show how to get informations on a finite element space Wj,(7,, *), where “*” may be P1,
P2, Plnc, etc.

e Wh.nt gives the number of element of W},

e Wh.ndof gives the number of degrees of freedom or unknown

e Wh.ndofK gives the number of degrees of freedom on one element
e Wh(k,i) gives the number of ith degrees of freedom of element k.

See the following example:

Example 6.3 (FE.edp) mesh Th=square (5, 5) ;
fespace Wh (Th,P2);

cout << " nb of degree of freedom : " << Wh.ndof << endl;
cout << " nb of degree of freedom / ELEMENT : " << Wh.ndofK << endl;

int k= 2, kdf= Wh.ndofK ;; // element 2
cout << " df of element " << k << ":" ;

for (int i=0; i<kdf;i++) cout << Whi(k,i) << " ",

cout << endl;

The output is:

Nb Of Nodes = 121

Nb of DF = 121

FESpace:Gibbs: old skyline = 5841 new skyline = 1377
nb of degree of freedom : 121

nb of degree of freedom / ELEMENT : 6

df of element 2:78 95 83 87 79 92
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Visualization

Results created by the finite element method can be a huge set of data, so it is very important to
render them easy to grasp. There are two ways of visualization in FreeFem++ : One, the default
view, supports the drawing of meshes, isovalues of real FE-functions and of vector fields, all by
the command plot (see Section below). For publishing purpose, FreeFem++ can store these
plots as postscript files.

Another method is to use external tools, for example, gnuplot (see Section , medit (see Section
7.3) using the command system to launch them and/or to save the data in text files.

7.1 Plot

With the command plot, meshes, isovalues of scalar functions and vector fields can be displayed.
The parameters of the plot command can be , meshes, real FE functions , arrays of 2 real FE
functions, arrays of two arrays of double, to plot respectively a mesh, a function, a vector field, or
a curve defined by the two arrays of double.

Note 7.1 The length of an arrow is always bound to be in [5%0,5%)| of the screen size, to see
something (else it will only look like porcupine).

The parameters are

wait= boolean expression to wait or not (by default no wait). If true we wait for a keyboard event
or mouse event, they respond to an event by the following characters
enter try to show plot
p previous plot (10 plots saved)
? show this help
+,— zoom in/out around the cursor 3/2 times
= reset vue
r refresh plot
up, down, left, right special keys to tanslate
3 switch 3d/2d plot keys :

z,2) focal zoom unzoom
H, h switch increase or decrease the Z scale of the plot

mouse motion

177
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- left button rotate
- right button zoom (ctrl4+-button on mac)
- right button +alt tanslate (alt+ctrl+button on mac)

a, A increase or decrease the arrow size

B switch between show border meshes or not

i, I update or not: the min/max bound of the functions to the window
n,N decrease or increase the number of iso value array

switch between black and white or color plotting

b

g switch between grey or color plotting
£ switch between filling iso or iso line
1

switch between lighting or not
v switch between show or not the numerical value of colors
m switch between show or not meshes
w window dump in file ffglutXXXX.ppm
* keep/unkeep viewpoint for next plot
k complex data / change view type
ESC close the graphics process before version 3.22, after no way to close.

otherwise do nothing.

ps= string expression for the name of the file to save the plot in postscript (sorry no save of 3d
plot)

coef= the vector arrow size between arrow unit and domain unit.

£ill= fill color between iso-values (mandatory of PO finite element).

cmm= string expression to write the graphic window into

value= to plot the value of isolines and the value of vector arrows.
aspectratio= boolean to be sure that the aspect ratio of plot is preserved or not.

bb= array of 2 array ( like [[0.1,0.2],[0.5,0.6]11), to set the bounding box and specify a
partial view where the box defined by the two corner points [0.1,0.2] and [0.5,0.6].

nbiso= (int) sets the number of isovalues (20 by default)

nbarrow= (int) sets the number of colors of arrow values (20 by default)
viso= sets the array of isovalues (an array reallint] of increasing values)
varrow= sets the array of color arrows values (an array real[int])

bw= (bool) sets or not the plot in black and white color.

grey= (bool) sets or not the plot in grey color.
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hsv= (array of float) to defined color of 3*n value in HSV color model declared for example by

real[int] colors = [hl,sl,vl,... , hn, vn, vn];

where hi, si, vi is the ith color to defined the color table.
boundary= (bool) to plot or not the boundary of the domain (true by default).
dim= (int) sets dim of the plot 2d or 3d (2 by default)
add= <b> Not used
prev= <b> set the default graphic state to the previous state
ech= <d> Not used
ZScale= <d> Not used
WhiteBackground= <b> Not used
OpaqueBorders= <b> Not used
BorderAsMesh= <b> Not used
ShowMeshes= <b> Not used
ColorScheme= <1> Not used
ArrowShape= <1> Not used
ArrowSize= <d> Not used
ComplexDisplay= <1> Not used
LabelColors= <b> Not used
ShowAxes= <b> Not used
CutPlane= <b> Not used
CameraPosition= Not used
CameraFocalPoint= Not used
CameraViewUp= Not used
CameraViewAngle= <d> Not used
CameraClippingRange= Not used
CutPlaneOrigin= Not used
CutPlaneNormal= Not used

WindowIndex= set glut window for display for multi windows graphics.
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For example:

real[int] xx(10),yy(10);
mesh Th=square (5,5);
fespace Vh (Th,P1);

Vh uh=x*x+yxy,vh=-y " 2+x72;

int i;
// compute a cut
for (i=0;i<10;1i++)
{
x=1/10.; y=1/10.;
xx[1]1=1i;
yy[1i]=uh; // value of uh at point (i/10. , 1/10.)
}
plot (Th, uh, [uh, vh],value=true, ps="three.eps",wait=true); // figure
// zoom on box defined by the two corner points [0.1,0.2] and [0.5,0.6]
plot (uh, [uh,vh],bb=[10.1,0.2]1,[0.5,0.611,
wait=true,grey=1, fill=1,value=1,ps="threeg.eps"); // figure
plot ([xx,yy],ps="likegnu.eps",wait=true); // figure
- ;;2{\i§2§\~ ‘mmgzé .......
/\\‘~; ‘1” ii”'
pa v I
5 %4 uuuuuuu
S SO i
/ : i
A % h!
/ p - )44 A
/ / A /!

Figure 7.1:  mesh, isovalue, and vector Figure 7.2: enlargement in grey of isovalue,
and vector

To change the color table and to choose the value of iso line you can do :

// from: |http://en.wikipedia.org/wiki/HSV_color_space

// The HSV (Hue, Saturation, Value) model,

// defines a color space in terms of three constituent components:
//

// HSV color space as a color wheel [/.4
// Hue, the color type (such as red, blue, or yellow):

// Ranges from 0-360 (but normalized to 0-100% in some applications Here)
// Saturation, the "vibrancy" of the color: Ranges from 0-100%

// The lower the saturation of a color, the more "grayness" 1is present
// and the more faded the color will appear.

// Value, the brightness of the color:
// Ranges from 0-100%


http://en.wikipedia.org/wiki/HSV_color_space
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Figure 7.3: Plots a cut of uh. Note that a refinement of the same can be obtained in
combination with gnuplot

//

real[int] colorhsv=] // color hsv model
4./6., 1 , 0.5, // dark blue
4./6., 1 , 1, // blue
5./6., 1, 1, // magenta
1, 1. , 1, // red
1, 0.5, 1 // light red

1
real[int] viso(31);

for (int i=0;i<viso.n;i++)
viso[i]=1ix0.1;

plot (uh, viso=viso(0:viso.n-1),value=1,£fill=1,wait=1, hsv=colorhsv);

Value

B
<8

ENEEEEEEEEEEEEEENNEENEEEEEEEEER
IPIMIIIIIIVIIINNONI -4t 2 = = OO 0000000
OONDUIRWNI—  ODNRULN=  O~DUTRWNI—

Figure 7.4: hsv color cylinder Figure 7.5: isovalue with an other color table
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7.2 link with gnuplot

Example 3.2]shows how to generate a gnu-plot from a FreeFem++ file. Let us present here another
technique which has the advantage of being online, i.e. one doesn’t need to quit FreeFem++ to
generate a gnu-plot. But this work only if gnuplotﬂ is installed , and only on unix computer.

Add to the previous example:

{ // file for gnuplot
ofstream gnu("plot.gp");
for (int i=0;i<=n;i++)

{

gnu << xx[i] << " " << yy[i] << endl;
}
} // the file plot.gp is close because the variable gnu 1is delete
// to call gnuplot command and wait 5 second (thanks to unix command)

// and make postscript plot
exec ("echo 'plot \"plot.gp\" w 1 \
pause 5 \
set term postscript \
set output \"gnuplot.eps\" \
replot \
quit’ | gnuplot");

Plot.op” ——

Figure 7.6: Plots a cut of uh with gnuplot

7.3 link with medit

As said above, medit E| is a freeware display package by Pascal Frey using OpenGL. Then you may
run the following example.

Remark: Now medit software is include in FreeFem++ under ffmedit name.
Now with version 3.2 or better

load "medit"

mesh Th=square (10,10, [2*xx-1,2xy-1]);
fespace Vh (Th,P1l);

Vh u=2-x*x-y*y;

medit ("mm", Th,u) ;

Thttp://www.gnuplot.info/
2http://www-rocq.inria.fr/gamma/medit/medit.html


http://www.gnuplot.info/
http://www-rocq.inria.fr/gamma/medit/medit.html
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[~

Figure 7.7: medit plot

Before:

mesh Th=square (10,10, [2*xx-1,2xy-1]);

fespace Vh (Th,P1);

Vh u=2-x*x-y=*xy;
savemesh (Th, "mm", [x,vy,u*x.5]);

/7

{

ofstream file("mm.bb");

file << "2 1 1 "<< ufll]l.n << " 2 \n";
for (int j=0; j<ul]l.n ; J++)

file << ul][3j] << endl;

exec ("ffmedit mm");

//
exec ("rm mm.bb mm. faces mm.points") ;

Y

// for medit

// build a mm.bb file

/S

call medit command

clean files on unix OS

183

save mm.points and mm.faces file
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Chapter 8

Algorithms and Optimization

The complete example is in algo.edp file.

8.1 conjugate Gradient/GMRES

Suppose we want to solve the Euler problem (here x has nothing to do with the reserved variable
for the first coordinate in FreeFem++ ): find € R™ such that

V() = (gw']i (m)) ~0 (8.1)

where J is a functional (to minimize for example) from R" to R.

If the function is convex we can use the conjugate gradient to solve the problem, and we just need
the function (named dJ for example) which compute V.J, so the parameters are the name of that
function with prototype

func real[int] dJ (real[int] & xX);

which compute VJ, and a vector x of type ( of course the number 20 can be changed)
real[int] x(20);

to initialize the process and get the result.

Given an initial value :13(0), a maximum number iy, of iterations, and an error tolerance 0 < € < 1:
Put z = z(© and write

NLCG(VJ, x, precon= M, nbiter= im.x, €ps=E¢€);

will give the solution of & of V.J(x) = 0. We can omit parameters precon, nbiter, eps. Here
M 1is the preconditioner whose default is the identity matrix. The stopping test is

IVI()|p < e|VI()|p
Writing the minus value in eps=, i.e.,
NLCG (VJ, @, precon= M, nbiter=imax, €ps= —¢€);

we can use the stopping test
IV (@)[IF < e

The parameters of these three functions are:

nbiter= set the number of iteration (by default 100)

185
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precon= set the preconditioner function (P for example) by default it is the identity, remark the
prototype is func real[int] P (reall[int] &x).

eps= set the value of the stop test ¢ (= 107% by default) if positive then relative test ||VJ(2)||p <
e||VJ(x0)||p, otherwise the absolute test is ||V.J(z)||% < [e].

veps= set and return the value of the stop test, if positive then relative test ||VJ(z)|lp <
e|[VJ(x0)||p, otherwise the absolute test is ||[V.J(z)||% < |¢|. The return value is minus
the real stop test (remark: it is useful in loop).

Example 8.1 (algo.edp) For a given function b, let us find the minimizer u of the functional

w = g [ fava?) - [ w

T 1
z) = ar+x—In(l+x ") =a+4+ —— "g) = ————
(@) (e, F@=atii @)=
under the boundary condition u = 0 on 0f2.
func real J(real[int] & u)
{
Vh w;w[]=u; // copy array u in the finite element function w
real r=int2d(Th) (0.5+f( dx(w)*dx(w) + dy(w)xdy(w) ) - bx*w) ;
cout << "J(u) =" << r << " " << u.min << " " << u.max << endl;
return r;
}
/) mm e
Vh u=0; // the current value of the solution
Ph alpha; // of store df(|Vul?)
int iter=0;
alpha=df ( dx (u)+dx (u) + dy (u)*dy(u) ); // optimization
func real[int] dJ(real[int] & u)
{
int verb=verbosity; verbosity=0;
Vh w;w([]=u; // copy array u in the finite element function w
alpha=df ( dx (w)xdx (w) + dy (w)=*dy(w) ); // optimization
varf au(uh,vh) = int2d(Th) ( alphax* ( dx(w)*dx(vh) + dy(w)=xdy(vh) ) - bxvh)
+ on(l,2,3,4,uh=0);
u= au(0,Vh);
verbosity=verb;
return u; // warning no return of local array

We want to construct also a preconditioner C with solving the problem: find up € Von, such that
Y, € Von, /OzVuh.Vvh = / buy,
Q Q
where o = f'(|Vul?). */

varf alap(uh,vh)= 1int2d(Th) ( alpha *( dx(uh)*dx(vh) + dy(uh)*dy(vh) ))
+ on(l,2,3,4,uh=0);
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varf amass (uh)= int2d(Th) ( uh=*vh) + on(l,2,3,4,uh=0);

matrix Amass = alap(Vh,Vh, solver=CG) ; //
matrix Alap= alap(Vh,Vh, solver=Cholesky, factorize=1); //
// the preconditionner function

func real[int] C(real[int] & u)
{
real[int] w = Amassx*u;
u = Alap ™ —1+*w;
return u; // no return of local array variable

}

/* To solve the problem, we make 10 iteration of the conjugate gradient, recompute the precondi-
tioner and restart the conjugate gradient: */

verbosity=5;

int conv=0;

real eps=le-6;

for (int 1=0;1<20;i++)

{

conv=NLCG (dJ,u[], nbiter=10, precon=C, veps=eps) ; //
if (conv) break; // if converge break loop
alpha=df ( dx(u) *dx (u) + dy(u)=*dy(u) ); // recompute alpha optimization
Alap = alap(Vh,Vh, solver=Cholesky, factorize=1);
cout << " restart with new preconditionner " << conv

<< " eps =" << eps << endl;

plot (u,wait=1,cmm="solution with NLCG");

For a given symmetric positive matrix A, consider the quadratic form

1
J(x) = inA:B —blx

then J(zx) is minimized by the solution  of Ax = b. In this case, we can use the function
LinearCG

LinearCG(A, x, precon= M, nbiter=ip.x, eps= te€);

If A is not symmetric, we can use GMRES(Generalized Minimum Residual) algorithm by
LinearGMRES (A, «, precon= M, nbiter=in.x, eps= *te);

Also, we can use the non-linear version of GMRES algorithm (the functional J is just convex)
LinearGMRES (VJ, «, precon= M, nbiter=imax, eps= *e€);

For detail of these algorithms, refer to [14][Chapter IV, 1.3].
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8.2 Algorithms for Unconstrained Optimization

Two algorithms of COOOL a package [27] are interfaced with the Newton Raphson method (call
Newton) and the BFGS method. These two ones are directly available in FreeFem (no dynamical
link to load). Be careful with these algorithms, because their implementation uses full matrices.
We also provide several optimization algorithms from the NLopt library [42] as well as an interface
for Hansen’s implementation of CMAES (a MPI version of this one is also available). These last
algorithms can be found as dynamical links in the example++-1oad folder as the f f-NLopt and
CMA ES files (CMA_ES MPI from the example++-mpi folder for the mpi version).

8.2.1 Example of utilization for BFGS or CMAES

real[int] b(10),u(10);
func real J(real[int] & u)

{
real s=0;
for (int i=0;i<u.n;i++)
s +=(i+1l)*ul[i]*u[i1i]*x0.5 — b[i]*uli];
cout << "J ="<< s << " u =" << u[0] << " " << ull] << "...\n" ;
return s;

// the grad of J (this is a affine version (the RHS is in )
func real[int] DJ(real[int] &u)

{

for (int i=0;i<u.n;i++)

uli]=(i+1l)*ulil-b[i];
return u; // return of global variable ok
bi
b=1; u=2; // set right hand side and initial gest
BFGS (J,dJ,u,eps=1l.e-6,nbiter=20,nbiterline=20);
cout << "BFGS: J(u) = " << J(u) << endl;

Using the CMA evolution strategy is almost the same, except that, as it is a derivative free op-
timizer, the dJ argument is omitted and there are some other named parameters to control the
behaviour of the algorithm. With the same objective function as above, an example of utilization
would be (see cmaes-VarIneq.edp for a complete example):

load "ff-cmaes"

... // define J, u and all here
real min = cmaes (J,u, stopTolFun=le-6, stopMaxIter=3000);

cout << "minimal wvalue is " << min << " for u = " << u << endl;

This algorithm works with a normal multivariate distribution in the parameters space and try to
adapt its covariance matrix using the information provides by the successive function evaluations
(see [43] for more details). Thus, some specific parameters can be passed to control the starting
distribution, size of the sample generations etc... Named parameters for this are the following :

seed= Seed for random number generator (val is an integer). No specified value will lead to a
clock based seed initialization.
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initialsStdDev= Value for the standard deviations of the initial covariance matrix (val is a
real). If the value o is passed, the initial covariance matrix will be set to 0. The expected
initial distance between initial X and the argmin should be roughly initialStdDev. Default
is 0.3.

initialStdDevs= Same as above except that the argument is an array allowing to set a value
of the initial standard deviation for each parameter. Entries differing by several orders of
magnitude should be avoided (if it can’t be, try rescaling the problem).

stopTolFun= Stops the algorithm if function values differences are smaller than the passed one,
default is 10712

stopTolFunHist= Stops the algorithm if function value differences of the best values are smaller
than the passed one, default is 0 (unused).

stopTolX= Stopping criteria triggered if step sizes in the parameters space are smaller than this
real value, default is 0.

stopTolXFactor= Stopping criteria triggered when the standard deviation increases more than
this value. The default value is 103.

stopMaxFunEval= Stops the algorithm when stopMaxFunEval function evaluations have been
done. Set to 900(n + 3)? by default, where n is the parameters space dimension .

stopMaxIter= Integer stopping the search when stopMaxIter generations has been sampled.
Unused by default.

popsize= Integer value used to change the sample size. The default value is 4+ |31n(n) |, see [43]
for more details. Increasing the population size usually improves the global search capabilities
at the cost of an at most linear reduction of the convergence speed with respect to popsize.

paramFile= This string type parameter allows the user to pass all the parameters using an ex-
tern file as in Hansen’s original code. More parameters related to the CMA-ES algorithm can
be changed with this file. A sample of it can be found in the examples++-1load/ffCMAES/
folder under the name initials.par. Note that the parameters passed to the CMAES
function in the FreeFem script will be ignored if an input parameters file is given.

8.3 IPOPT

The ff-Ipopt package is an interface for the IPOPT [44] optimizer. IPOPT is a software library
for large scale, non-linear, constrained optimization. Detailed informations about it are in [44] and
https://projects.coin-or.org/Ipopt. It implements a primal-dual interior point method
along with filter method based line searchs. IPOPT need a direct sparse symmetric linear solver. If
your version of FreeFem has been compiled with the -——enable-downlad tag, it will automatically
be linked with a sequential version of MUMPS. An alternative to MUMPS would be to download the
HSL subroutines (see http://www.coin-or.org/Ipopt/documentation/nodel6.html)
and place them in the /ipopt/Ipopt—-3.10.2/ThirdParty/HSL directory of the FreeFem+-+
downloads folder before compiling.


https://projects.coin-or.org/Ipopt
http://www.coin-or.org/Ipopt/documentation/node16.html
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8.3.1 Short description of the algorithm

In this section, we give a very brief glimpse at the underlying mathematics of IPOPT. For a deeper
introduction on interior methods for nonlinear smooth optimization, one may consults [45], or [44]
for more IPOPT specific elements. IPOPT is designed to perform optimization for both equality
and inequality constrained problems. Though, nonlinear inequalities are rearranged before the
beginning of the optimization process in order to restrict the panel of nonlinear constraints to
those of the equality kind. Each nonlinear inequality ones are transformed into a pair of simple
bound inequality and nonlinear equality constraint by the introduction of as many slack variables
as is needed : ¢;(x) < 0 becomes ¢;(x)+s; = 0 and s; < 0, where s; is added to the initial variables
of the problems z;. Thus, for convenience, we will assume that the minimization problem does not
contain any nonlinear inequality constraint. It means that, given a function f : R" — R, we want
to find :
xo = argmin f(z)
zeV (82)
with V ={z € R" | ¢(x) =0 and z; <z < x,}

Where ¢ : R" — R™ and x;, x,, € R™ and inequalities hold componentwise. The f function as well
as the constraints ¢ should be twice-continuously differentiable.
As a barrier method, interior points algorithms try to find a Karush-Kuhn-Tucker point for
by solving a sequence of problems, unconstrained with respect to the inequality constraints, of the
form :

for a given 4 > 0, find x, = argmin  B(x, ) (8.3)
z€R™ | c(z)=0

n m
Where 4 is a positive real number and B(z,u) = f(x) — ,uZln(a:W- —x;) — uZln(a;i —x1).
i=1 1=1

The remaining equality constraints are handled with the usual Lagrange multipliers method. If the
sequence of barrier parameters p converge to 0, intuition suggests that the sequence of minimizers
of converge to a local constrained minimizer of . For a given p, is solved by finding
(xy, Ay) € R™ x R™ such that :

VB(xy, 1) + Z)\W'Vci(xu) = VB(zu,p) + Je(x,)" A, =0 and c(z,) =0 (8.4)
i=1

The derivations for VB only holds for the x variables, so that :

1/ (Tua — 1) w/(x1 —z11)
VB(a, 1) = Vf(2) + ; . ;
1/ (Tun — Tn) w/(xn — xl,n)

If we respectively call z,(x, 1) = (u/(zu1 —x1),. .., 1/ (Tyn — zn)) and z(z, p) the other vector
appearing in the above equation, then the optimum (x,, ) satisfies :

Vi) + Je(zn) Ny + 2u(@p, 1) — z1(2p, ) =0 and  c(z,) =0 (8.5)

In this equation, the z; and z, vectors seems to play the role of Lagrange multipliers for the
simple bounds inequalities, and indeed, when p — 0, they converge toward some suitable Lagrange
multipliers for the KKT conditions, provided some technical assumptions are fulfilled (see [45]).

Equation is solved by performing a Newton method in order to find a solution of for each
of the decreasing values of . Some order 2 conditions are also taken into account to avoid conver-
gence to local maximizer, see [45] for precision about them. In the most classical IP algorithms, the
Newton method is directly applied to . This is in most case inefficient due to frequent com-
putation of infeasible points. These difficulties are avoided in Primal-Dual interior points methods
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where ({8.4) is transformed into an extended system where z, and z; are treated as unknowns and
the barrier problems are finding (z, A, 2y, 2;) € R™ x R™ x R™ x R™ such that :

V(@) + Je(@) A+ 2u— 2 =
co(x) =

(Xy — X)zy — pe =

(X — X))z —pe =

(8.6)

o O o o

Where if a is a vector of R"”, A denotes the diagonal matrix A = (a;0ij)1<ij<n and e € R" =
(1,1,...,1). Solving this nonlinear system by the Newton methods is known as being the primal-
dual interior points method. Here again, more details are available in [45]. Most actual implemen-
tations introduce features in order to globalize the convergence capability of the method, essentially
by adding some line-search steps to the Newton algorithm, or by using trust regions. For the pur-
pose of IPOPT, this is achieved by a filter line search methods, the details of which can be found
in [?].

More IPOPT specific features or implementation details can be found in [44]. We will just retain
that IPOPT is a smart Newton method for solving constrained optimization problem, with global
convergence capabilities due to a robust line search method (in the sense that the algorithm will
convergence no matter the initializer). Due to the underlying Newton method, the optimization
process requires expressions of all derivatives up to the order 2 of the fitness function as well as
those of the constraints. For problems whose hessian matrices are difficult to compute or lead to
high dimensional dense matrices, it is possible to use a BFGS approximation of these objects at
the cost of a much slower convergence rate.

8.3.2 IPOPT in FreeFem++

Calling the IPOPT optimizer in a FreeFem++ script is done with the TPOPT function included in
the £f-Ipopt dynamic library. IPOPT is designed to solve constrained minimization problem in
the form :

find zg = argminf(z)
z€R™
ot { Vi<n, 2P <a; < apb (simple bounds) (8.7)

Vi <m, c}ib < ¢i(z) < cyb (constraints functions)

Where ub and lb stand for ”upper bound” and ”lower bound”. If for some 7,1 < ¢ < m we have
clP = ¢ it means that ¢; is an equality constraint, and an inequality one if ci® < .

There are different ways to pass the fitness function and constraints. The more general one is to
define the functions using the keyword func. Any returned matrix must be a sparse one (type
matrix, not a real [int, int]):

func real J(realfint] &X) {...} // Fitness Function, returns a scalar
func real[int] gradJ(real[int] &X) {...} // Gradient is a vector
func real[int] C(real[int] &X) {...} // Constraints
func matrix jacC(real[int] &X) {...} // Constraints jacobian

Warning 1 : in the current version of FreeFem-++, returning a matrix object local to a function
block leads to undefined results. For each sparse matrix returning function you define, an extern
matrix object has to be declared, whose associated function will overwrite and return on each call.
Here is an example for jaccC :

matrix jacCBuffer; // just declare, no need to define yet
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func matrix jacC(real[int] é&X)

{
// fill jacCBuffer
return jacCBuffer;

}

Warning 2: IPOPT requires the structure of each matrix at the initialization of the algorithm. Some
errors may occur if the matrices are not constant and are built with the matrix A = [I,J,C]
syntax, or with an intermediary full matrix (real[int, int]), because any null coefficient is
discarded during the construction of the sparse matrix. It is also the case when making matrices
linear combinations, for which any zero coefficient will result in the suppression of the matrix from
the combination. Some controls are available to avoid such problems. Check the named parameters
descriptions (checkindex, structhess and structjac can help). We strongly advice to use
varf as much as possible for the matrix forging.

The hessian returning function is somewhat different because it has to be the hessian of the la-
m

grangian function : (z,07,\) = o, V2f(z) + Z A\ V2¢;(z) where A € R™ and o € R. Your hessian
i=1

1=
function should then have the following prototype :

matrix hessianLBuffer; // just to keep it in mind
func matrix hessianl (real[int] &X,real sigma,real[int] &lambda) {...}

If the constraints functions are all affine, or if there are only simple bounds constraints or no
constraint at all, the lagrangian hessian is equal to the fitness function hessian, one can then omit
the sigma and lambda parameters :

matrix hessianJBuffer;
func matrix hessianJ(real[int] &X) {...} //  Hessian prototype when
constraints are affine

When these functions are defined, IPOPT is called this way :

real[int] Xi = ... ; // starting point
IPOPT (J,gradd, hessianL, C, jacC,Xi, /+some named parametersx*/ );

If the hessian is omitted, the interface will tell IPOPT to use the (L)BFGS approximation (it can
also be enabled with a named parameter, see further). Simple bounds or unconstrained problems
do not require the constraints part, so the following expressions are valid :

IPOPT (J,gradJd,C, jacC,Xi, ... ); // IPOPT with BFGS
IPOPT (J,gradd, hessiand, Xi, ... ); // Newton IPOPT without constraints
IPOPT (J,gradJd,Xi, ... ); // BFGS, no constraints

Simple bounds are passed using the 1b and ub named parameters, while constraints bounds are
passed with the c1b and cub ones. Unboundedness in some directions can be achieved by using
the 1e' and —1e'” values that IPOPT recognizes as 400 and —oo :

real[int] x1lb(n),xub(n),clb(m), cub (m);

... // fill the arrays...

IPOPT (J, gradJd, hessianL, C, jacC, Xi, 1b=x1b, ub=xub, clb=clb, cub=cub, /*some other
named parametersx/ );
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P2 fitness function and affine constraints function : In the case where the fitness function or
constraints function can be expressed respectively in the following forms :

Vx € R", f(z)

=1 (Az,z) + (b,z) (A,b) € Mpyn(R) x R”
or, C(z) =

Axr+b (A,b) € My m(R) x R™
where A and b are constant, it is possible to directly pass the (A,b) pair instead of defining 3 (or
2) functions. It also indicates to IPOPT that some objects are constant and that they have to be

evaluated only once, thus avoiding multiple copies of the same matrix. The syntax is :

// Affine constraints with "standard" fitness function

matrix A= ... ; // Linear part of the constraints
real[int] b = ... ; // Constant part of constraints
IPOPT (J,gradd, hessiand, [A,b] ,Xi, /xbounds and named paramsx/);

// [b,A] would work as well... Scatterbrains pampering...

Note that if you define the constraints in this way, they doesn’t contribute to the hessian, so the
hessian should only take one real [int] as argument.

// Affine constraints and P2 fitness func:

matrix A= ... ; // Bilinear form matrix
real[int] b = ... ; // Linear contribution to f
matrix Ac= ... ; // Linear part of the constraints
real[int] bc= ... ; // Constant part of constraints

IPOPT([A,b], [Ac,bc] ,Xi, /xbounds and named paramsx/);

If both objective and constraints functions are given this way, it automatically activates the IPOPT
mehrotra_algorithm option (better for linear and quadratric programming according to the
documentation). Otherwise, this option can only be set through the option file (see the named
parameters section).

A spurious case is the one of defining f in this manner while using standard functions for the

constraints :
matrix A= ... ; // Bilinear form matrix
real[int] b = ... ; // Linear contribution to f
func real[int] C(real[int] &X) {...} // Constraints
func matrix jacC(real[int] &X) {...} // Constraints jacobian

IPOPT([A,b],C, jacC,Xi, /*bounds and named params=*/);

Indeed, when passing [A,Db] in order to define f, the lagrangian hessian is automatically build
has the constant x — A function, with no way to add possible constraints contributions, leading
to incorrect second order derivatives. So, a problem should be defined like that in only two cases :
1) constraints are nonlinear but you want to use the BFGS mode (then add bfgs=1 to the named
parameter), 2) constraints are affine, but in this case, why not passing them in the same way?
Here are some other valid definitions of the problem (cases when f is a pure quadratic or linear
form, or C' a pure linear function, etc...) :

// Pure quadratic f — A is a matrix:
IPOPT (A, /*constraints argsx/, Xi, /xbounds and named paramsx/);
// Pure linear f — b 1 a reall[int]
IPOPT (b, /*constraints argsx/, Xi, /*bounds and named paramsx/);
// linear constraints — Ac 1s a matrix
IPOPT (/+xfitness func args=*/, Ac, Xi, /+*bounds and named params=*/);
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Returned Value : The IPOPT function returns an error code of type int. A zero value is obtained
when the algorithm succeeds and positive values reflects the fact that IPOPT encounters minor
troubles. Negative values reveals more problematic cases. The associated IPOPT return tags are
listed in the table below. The IPOPT pdf documentation provides more accurate description of
these return status :

Success Failures

0 Solve_Succeeded -1  Maximum_Iterations_Exceeded

1 Solved.To Acceptable Level -2 Restoration Failed

2 Infeasible Problem Detected -3 Error_In_Step_Computation

3 Search Direction_Becomes_Too_Small -4 Maximum_CpuTime_Exceeded

4 Diverging_Iterates

9 User_Requested_Stop

6 Feasible Point_Found

Problem definition issues Critical errors

-10 Not_Enough_Degrees_Of Freedom -100 Unrecoverable Exception
-11 Invalid_ Problem.Definition -101 NonIpopt_Exception_Thrown
-12 Invalid Option -102 Insufficient Memory
-13 Invalid Number_Detected -199 Internal Error

Named Parameters : The available named parameters in this interface are those we thought to be
the most subject to variations from one optimization to another, plus a few ones that are interface
specific. Though, as one could see at http://www.coin-or.org/Ipopt/documentation/
node59.html) there are many parameters that can be changed within IPOPT, affecting the
algorithm behaviour. These parameters can still be controlled by placing an option file in the
execution directory. Note that IPOPT’s pdf documentation may provides more informations than
the previously mentioned online version for certain parameters. The in-script available parameters
are :

1b, ub : real[int] for lower and upper simple bounds upon the search variables, must be of size
n (search space dimension). If two components of same index in these arrays are equal then
the corresponding search variable is fixed. By default IPOPT will remove any fixed variable
from the optimization process and always use the fixed value when calling functions. It can
be changed using the fixedvar parameter.

clb, cub : real [int] of size m (number of constraints) for lower and upper constraints bounds.
Equality between two components of same index ¢ in clb and cub reflect an equality con-
straint.

structjacc: To pass the greatest possible structure (indexes of non null coefficients) of the
constraints jacobian under the form [I, J] where I and J are two integer arrays. If not
defined, the structure of the constraints jacobian, evaluated in X1i, is used (no issue if the
jacobian is constant or always defined with the same varf, hazardous if it is with triplet
array or if a full matrix is involved).

structhess : Same as above but for the hessian function (unused if f is P2 or less and constraints
are affine). Here again, keep in mind that it is the hessian of the lagrangian function (which
is equal to the hessian of f only if constraints are affine). If no structure is given with
this parameter, the lagrangian hessian is evaluated on the starting point, with ¢ = 1 and
A= (1,1,...,1) (it is safe if all the constraints and fitness function hessians are constant or
build with varf, and here again less reliable if built with triplet array or full matrix).


https://projects.coin-or.org/Ipopt/browser/stable/3.10/Ipopt/doc/documentation.pdf?format=raw
http://www.coin-or.org/Ipopt/documentation/node59.html
http://www.coin-or.org/Ipopt/documentation/node59.html
https://projects.coin-or.org/Ipopt/browser/stable/3.10/Ipopt/doc/documentation.pdf?format=raw

8.3. IPOPT 195

checkindex : A bool that triggers an index dichotomic search when matrices are copied from
FreeFem functions to IPOPT arrays. It is used to avoid wrong index matching when some
null coefficients are removed from the matrices by FreeFem. It will not solve the problems
arising when a too small structure has been given at the initialization of the algorithm.
Enabled by default (except in cases where all matrices are obviously constant).

warmstart : If set to true, the constraints dual variables A, and simple bounds dual variables
are initialized with the values of the arrays passed to 1m, 1z and uz named parameters (see
below).

Im: real[int] of size m, which is used to get the final values of the constraints dual variables
A and/or initialize them in case of a warm start (the passed array is also updated to the last
dual variables values at the end of the algorithm).

lz,uz : real[int] of size n to get the final values and/or initialize (in case of warm start) the
dual variables associated to simple bounds.

tol: real, convergence tolerance for the algorithm, the default value is 1078,
maxiter : int, maximum number of iterations with 3000 as default value.

maxcputime : real value, maximum runtime duration. Default is 10° (almost 11 days and a
half).

bfgs : bool enabling or not the (low-storage) BFGS approximation of the lagrangian hessian. It
is set to false by default, unless there is no way to compute the hessian with the functions
that have been passed to IPOPT.

derivativetest : Used to perform a comparison of the derivatives given to IPOPT with finite
differences computation. The possible st ring values are: "none" (default), "first-order",
"second-order" and "only-second-order". The associated derivative error tolerance
can be changed via the option file. One should not care about any error given by it before
having tried, and failed, to perform a first optimization.

dth: Perturbation parameter for the derivative test computations with finite differences. Set by
default to 1078,

dttol : Tolerance value for the derivative test error detection (default value unknown yet, maybe
1079).

optfile: string parameter to specify the IPOPT option file name. IPOPT will look for a
ipopt.opt file by default. Options set in the file will overwrite those defined in the FreeFem
script.

printlevel : An int to control IPOPT output print level, set to 5 by default, the possible
values are from 0 to 12. A description of the output informations is available in the pdf
documentation of IPOPT.

fixedvar : string for the definition of simple bounds equality constraints treatment : use
"make parameter" (default value) to simply remove them from the optimization process
(the functions will always be evaluated with the fixed value for those variables), "make_constraint"
to treat them as any other constraint or "relax bounds" to relax fixing bound constraints.

mustrategy : a string to choose the update strategy for the barrier parameter . The two possi-
ble tags are "monotone", to use the monotone (Fiacco-McCormick) strategy, or "adaptive"
(default setting).


https://projects.coin-or.org/Ipopt/browser/stable/3.10/Ipopt/doc/documentation.pdf?format=raw
https://projects.coin-or.org/Ipopt/browser/stable/3.10/Ipopt/doc/documentation.pdf?format=raw
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muinit : real positive value for the barrier parameter initialization. It is only relevant when
mustrategy has been set to monotone.

pivtol : real value to set the pivot tolerance for the linear solver. A smaller number pivots for
sparsity, a larger number pivots for stability. The value has to be in the [0, 1] interval and is
set to 1076 by default.

brf : Bounds relax factor : before starting the optimization, the bounds given by the user are
relaxed. This option sets the factor for this relaxation. If it is set to zero, then the bounds
relaxation is disabled. This real has to be positive and its default value is 1075,

objvalue : An identifier to a real type variable to get the last value of the objective function
(best value in case of succes).

mumin : Minimal value for the barrier parameter ;, a real with 107! as default value.

linesearch : A boolean which disables the line search when set to false. The line search is
activated by default. When disabled, the method becomes a standard Newton algorithm
other the primal-dual system. The global convergence is then no longer assured, meaning
that many initializers could lead to diverging iterates. But on the other hand, it can be useful
when trying to catch a precise local minimum without having some out of control process
making the iterate caught by some other near optimum.

8.4 Some short examples using IPOPT

Example 8.2 (IpoptVI.edp) A very simple example consisting in, given two functions f and g (de-
1
fined on Q C R?), minimizing J(u) = 2/ |Vu)? —/ fu , with u < g almost everywhere :
Q Q

load "ff-Ipopt"; // load the interface
int nn=20; // mesh quality
mesh Th=square (nn,nn); // build a square mesh
fespace Vh(Th,P1); // finite element space
func £ = 1.; // rhs function
real r=0.03,s=0.1; // some parameters for g
func g = r - r/2+exp(-0.5% (square (x-0.5) +square (y-0.5))/ square(s));

// g 1s constant minus a gaussian
macro Grad(u) [dx(u),dy(u)] // the gradient operator
varf vP (u,v) = int2d(Th) (Grad(u)’ «*Grad(v)) — int2d(Th) (fx*v);

Here we build the matrix and second member associated to the functional to minimize once and for
all. The [A,b] syntax for the fitness function is then used to pass it to IPOPT.

matrix A = vP (Vh,Vh, solver=CG);
real[int] b = vP(0,Vh);

We use simple bounds to impose the boundary condition u = 0 on 052, as well as the u < g condition.

Vh lb=-1.el9; // lower—-unbounded in the interior
Vh ub=g; // upper—-bounded by g in the interior
varf vGamma (u,v) = on(l,2,3,4,u=1);
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real[int] onGamma=vGamma (0, Vh) ;

ub[] = onGamma ? 0. : ubl[]; // enforcing the boundary condition
1b[] = onGamma ? 0. : 1b[];

Vh u=0; // starting point
IPOPT ([A,b],ul],lb=1b[],ub=ubl[]); // solve the problem

plot (u,wait=1);

Example 8.3 (IpoptVI2.edp) Let Q be a domain of R?, f1, fo € L?(Q) and g1,g0 € L*(09) four
given functions with g1 < go almost everywhere. We define the space :

V = {(v1,v2) € H ()% v1]aq = g1, v2]00 = g2,v1 < v2 ace. }

as well as the functional J : H*(Q)? — R:

1 1
J(U1,U2)=2/ |VU1!2—/f1U1+2/ |VU2|2—/f2U2
Q Q Q Q

The problem consists in finding (numerically) two functions (ui,ug) = argmin J (v, va).

(v1,v2)EV

load "ff-IpOpt";
mesh Th=square(10,10);
fespace Vh(Th, [P1,P1] );
fespace Wh(Th, [P1] );
int iter=0;
func f1 = 10; // right hand sides
func f2 = -15;
func gl = -0.1; // Boundary conditions functions
func g2 = 0.1;
while (++iter) // mesh adaptation loop
{
macro Grad(u) [dx(u),dy(u)] // gradient macro
varf vP ([ul,u2], [vl,v2]) = int2d(Th) (Grad(ul)’ *Grad(vl)+ Grad(u2)’+Grad(v2))
— int2d(Th) (fl1xv1+£2+v2);
matrix A = vP (Vh,Vh); // Fitness function matrix...
real[int] b = vP(0,Vh); // and linear form
int[int] II1=[0],II2=[1]; // Constraints matrix
matrix Cl = interpolate (Wh,Vh, U2Ve=II1l);
matrix C2 = interpolate (Wh,Vh, U2Ve=II2);
matrix CC = -1%Cl + C2; // u2 - ul >0
Wh c1=0; // constraints lower bounds (no upper bounds)

// Boundary conditions
varf vGamma ([ul,u2], [vl,v2]) = on(l,2,3,4,ul=1,u2=1);

real[int] onGamma=vGamma (0, Vh) ;

Vh [ubl,ub2]=[gl,qg2];

Vh [1bl,1b2]=[gl,qg2];

ubl[] = onGamma ? ubl[] : 1lel9 ; // Unbounded 1in interior
1bl[] = onGamma ? 1lbl[] : -1lel9 ;
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Figure 8.1: Numerical Approximation of the Variational Inequality

Vvh [ul,u2]1=[0,0]; // starting point
IPOPT ([b,A],CC,ul[],1lb=1bl[],ub=ubl[],clb=cl([]);

plot (ul,u2,wait=1,nbiso=60,dim=3);

if(iter > 1) break;

Th= adaptmesh (Th, [ul,u2],err=0.004,nbvx=100000) ;
}

8.5 3D constrained minimal surface with IPOPT

8.5.1 Area and volume expressions

This example aimed at numerically solving some constrained minimal surface problems with the
IPOPT algorithm. We restrain to C* (k > 1), closed, spherically parametrizable surfaces, i.e.
surfaces S such that :

p(0, )
Jp € CF([0,27] x [0,7])[S = ¢ X = 0 ,(0,0) € [0,27] x [0,7]
0

Where the components are expressed in the spherical coordinate system. Let’s call 2 the [0, 27] x
[0, 7] angular parameters set. In order to exclude self crossing and opened shapes, the following
assumptions upon p are made :

p>0 and ¥,p(0,¢) = p(2,¢)

For a given function p the first fundamental form (the metric) of the defined surface has the following
matrix representation :

2 1.2 2
_ [ p°sin®(¢) + (Dop)®  DppOyp
= ( Qpdsp P+ (Oop)? (8.8)

This metric is used to express the area of the surface. Let g = det(G), then we have :

A = [ 100X £0,X11 = [ Vi= [ 5000+ psin®(6) + p(0up)sint )b (89
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The volume of the space enclosed within the shape is easier to express :

(0,6)
wmzéﬂp ﬂm@mwm:ééﬁm@wm (8.10)

8.5.2 Derivatives

In order to use a newton based interior point optimization algorithm, one must be able to evaluate
the derivatives of A and V with respect to rho. Concerning the area we have the following result :

[ 1dg(p)(v)
WECMQ%<¢MM”%142V@

Where g is the application mapping the (0, ¢) — g(6, ¢) scalar field to p. This leads to the following
expression, easy to transpose in a freefem script using :

dode

Vv e CY Q) , (dA(p),v) = Aﬁ%%m%@+p@wf+p@wfﬁﬁwﬂv

(8.11)
—i—/ p20ppdpu + p*dgp sin2(q5)8¢v
Q
With a similar approach, one can derive an expression for second order derivatives. Though com-
porting no specific difficulties, the detailed calculus are tedious, the result is that these derivatives
can be write using a 3 x 3 matrix B whose coefficients are expressed in term of p and its derivatives
with respect to 6 and ¢, such that :

v
Y(w,v) € CH(Q) , d>A(p)(w,v) :/ (w Gpw Opw )B | Opv | dOdg (8.12)
Q 6¢v

Deriving the volume function derivatives is again an easier task. We immediately get the following
expressions :

Yo, (dV(p),v) = /Q,o2sin(¢)v dfde

Yw,v ,d*V(p)(w,v) = /Zpsin(gb)wv dfde
Q

(8.13)

8.5.3 The problem and its script :

The whole code is available in IpoptMinSurfVol.edp. We propose to solve the following problem

Example 8.4 Given a positive function popject piecewise continuous, and a scalar Vmax > V(pobject)
find po such that :

po = argmin A(p) ; 8.t po > Pobject and V(pO) < Viax
peC1(Q)

If pobject is the spherical parametrization of the surface of a 3-dimensional object (domain) O, it can
be interpreted as finding the surface with minimal area enclosing the object with a given maximal
volume. If Vinax is close to V(pobject ), 50 should be pg and popject. With higher values of Viax, p
should be closer to the unconstrained minimal surface surrounding O which is obtained as soon as
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Vinax > %7‘(’” Pobject||>s (sufficient but not necessary).

It also could be interesting to solve the same problem with the constraint V(pp) > Viin which lead
to a sphere when Vi, > %ﬂdiam((’))?’ and move toward the solution of the unconstrained problem
as Vmin decreases.

We start by meshing the domain [0, 27] x [0, 7], then a periodic P1 finite elements space is defined.

load "msh3";
load "medit";
load "ff-Ipopt";

int np=40; // initial mesh quality parameter
mesh Th = square (2xnp,np, [2*xpi*x,pixy]);

fespace Vh (Th,P1l,periodic=[[2,v], [4,y]]);
Vh startshape=5; // initial shape

We create some finite element functions whose underlying arrays will be used to store the values of
dual variables associated to all the constraints in order to reinitialize the algorithm with it in the
case where we use mesh adaptation. Doing so, the algorithm will almost restart at the accuracy
level it reached before mesh adaptation, thus saving many iterations.

Vh uz=1.,1z=1.; // Simple bounds dual variable
real[int] 1m=[1]; // dual variable for volume constraint

Then, follows the mesh adaptation loop, and a rendering function, P1ot 3D, using 3D mesh to
display the shape it is passed with medit (the movemesh23 procedure often crashes when called
with ragged shapes).

int nadapt=1;

for (int kkk=0; kkk<nadapt; ++kkk) // Mesh adaptation loop
{

int iter=0; // iterations count
func sin2 = square(sin(y)); // a function that will be often used

func int Plot3D (real[int] &rho,string cmm,bool ffplot) {...} // see the .edp
file

Here are the functions related to the area computation and its shape derivative, according to

equations and :

func real Area(real[int] &X)
{
Vh rho;
rho[] = X;
Vh rho2 = square(rho);
Vh rho4 = square(rho2);
real res = int2d(Th) ( sqgrt( rho4d*sin2
+ rho2+square (dx (rho))
+ rho2xsin2xsquare (dy (rho)) )

++iter;
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func real[int] GradArea (real[int] &X) //

{

}

plot (rho, ... /xsome parameters*/ ... );
return res;

The gradient

Vh rho, rho2;

rho[] = X;

rho2[] = square (X);

Vh sqgrtPsi,alpha; // Psi is actually det (G)
{ // some optimizations

Vh dxrho2 = dx(rho)*dx(rho), dyrho2 = dy(rho)xdy(rho);
sqrtPsi = sqrt( rho2+xrho2xsin2 + rho2+xdxrho2 + rho2xdyrho2xsin2 );
alpha = 2.xrho2*rhoxsin2 + rhoxdxrho2 + rhoxdyrho2xsin2;
}
varf dSurface (u,v)
int2d (Th) (1./sgrtPsi* (alpha*v+rho2+dx (rho) xdx (v) +rho2+dy (rho) xsin2xdy (v)) ) ;
real[int] grad = dSurface(0,Vh);
return grad;

The function returning the hessian of the area for a given shape is a bit blurry, thus we won’t show
here all of equation [8.12] coefficients definition, they can be found in the edp file.

matrix hessianA; // The global matrix buffer

func matrix HessianArea (real[int] &X)

{

}

Vh rho, rho2;
rho[] = X;
rho2 = square (rho);
Vh sgrtPsi, sqrtPsi3,Cc00,C01,C02,C1l1,Cl1l2,C22,A;
{
// definition of the above functions
}
varf d2Area (w, V)
int2d (Th) (
1./sgrtPsi * (Axw*v + 2+rho*dx(rho)*dx (w)*v + 2+rho*dx(rho) xw*dx (v)
+ 2xrhoxdy (rho) xsin2xdy (w) »v + 2xrhoxdy (rho) xsin2+wxdy (v)
+ rho2xdx (w) *dx (v) + rho2xsin2xdy (w) xdy(v))
+ 1./sgrtPsi3 * (COO0*wxv + COl*dx(w)+*v + COl*wxdx(v) + CO02+dy (w)*v
+ CO02+wxdy (v) + Cllxdx(w) *dx (V)
+ Cl2xdx (w) *xdy (v) + Cl2xdy (w)*dx(v) + C22xdy (w) xdy (v))

) // end of int2d and varf
hessianA d2Area (Vh,Vh) ;

return hessianh;

And the volume related functions :

func real Volume (real[int] &X)

{

Vh rho;

rho[]=X;

Vh rho3=rhoxrhoxrho;

real res = 1./3.%int2d(Th) (rho3*sin(y));
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return res;

func real[int] GradVolume (real[int] &X)
{
Vh rho;
rho[]=X;
varf dvolume (u,v) = int2d(Th) (rhoxrhoxsin(y) *v);
real[int] grad = dvVolume (0,Vh);
return grad;

matrix hessianV; // buffer
func matrix HessianVolume (real[int] &X)
{

Vh rho;

rho[]=X;

varf d2Volume (w,v) = int2d(Th) (2+«rhoxsin (y) *v*w) ;

hessianV = d2Volume (Vh, Vh);

return hessianV;

}

If we want to use the volume as a constraint function we must wrap it and its derivatives in some
FreeFem++ functions returning the appropriate types. It is not done in the above functions in
case where one wants to use it as fitness function. The lagrangian hessian also have to be wrapped
since the Volume is not linear with respect to p, it has some non-null second order derivatives.

func real[int] ipVolume (real[int] &X) {real[int] vol = [Volume (X)]; return vol;}
matrix mdv; // buffer
func matrix ipGradvVolume (real[int] &X)
{ // transforms a vector into a sparse matrix
real[int,int] dvol (1,Vh.ndof);
dvol (0, :)=GradVolume (X) ;
mdV=dvol;

return mdv;

matrix HLagrangian; // buffer
func matrix ipHessianlag(real[int] &X,real objfact,real[int] &lambda)
{

HLagrangian = objfactxHessianArea (X) + lambda[0]xHessianVolume (X) ;

return HLagrangian;

}

The ipGradvolume function could bring some troubles during the optimization process because
the gradient vector is transformed in a sparse matrix, so any null coefficient will be discarded. We
are here obliged to give IPOPT the structure by hand and use the checkindex named-parameter
to avoid bad indexing during copies. This gradient is actually dense, there is no reason for some
components to be constantly zero :

// sparse structure of a dense vector
int[int] gvi (Vh.ndof),gvj=0:Vh.ndof-1;
gvi=0; // only one line
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These two arrays will be passed to IPOPT with structjacc=[gvi,gvj]. The last remaining
things are the bounds definition. The simple lower bounds must be equal to the components of the
P1 projection of popject.- And we choose a € [0,1] to set Vinax to (1 — @)V (pobject) + a%w”pobjectﬂgo

real e=0.1,r0=0.25, rr=2-r0;
real E=1./(e*e),RR=1./(rrxrr);
// An indented disc
func discl = sqrt(l./(RR+(E-RR)*cos(y)*cos(y)))* (1+0.1xcos (9xx));
// Almost a standard disc

func disc2 = sqrt(l./ (RR+(E-RR) *xcos (x) xcos (x) *sin2)) ;

Vh 1b = max(discl, disc2); // glue the object parts
real Vobj = Volume (1b[]); // object volume
real Vnvc = 4./3.+pixpow(1lb[].linfty, 3); // V for no volume constraint

real alpha=0.1;
Plot3D(1lb[], "object_inside",0);
real[int] clb=0.,cub=[ (l-alpha)*Vobj + alphaxVnvc];

Calling TPOPT :

IPOPT (Area, GradArea, ipHessianlLag,

ipVolume, ipGradvolume, rcl[], // functions and starting point

ub=ub[],lb=1b[], e¢lb=clb, cub=cub, // simple bounds and volume bounds

checkindex=1, structjacc=[gvi,gvj], // for safe matrices copies

maxiter=kkk<nadapt-1 ? 40:150, // accurate optim only for last mesh
adaptation iteration

warmstart=kkk,lm=1m,uz=uz([],lz=1z[], // warmstart handling

tol=0.00001) ;

Plot3D(rc[], "Shape_at_"+kkk, 0); // displays current solution

At last, before closing the mesh adaptation loop, we have to perform the said adaptation. The
mesh is adaptated with respect to the X = (p,0,0) (in spherical coordinates) vector field, not
directly with respect to p, otherwise the true curvature of the 3D-shape would not be well taken
into account.

if (kkk<nadapt-1)
{
Th = adaptmesh (Th,

rcxcos (x) *sin(y), // X
rc*sin (x) xsin(y), // Y
rcxcos (y), // Z
nbvx=50000,
periodic=[[2,vy], [4,v]]); // keeps mesh peridicity
plot (Th);
startshape = rc; // shape interpolation on the new mesh
uz=uz; // dual variables interpolation
1lz=1z;
} // end 1if
} // en of mesh adaptation loop

Here are some pictures of the resulting surfaces obtained for decreasing values of o (and a slightly
more complicated object than two orthogonal discs). We get back the enclosed object when oo =0
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mO0 Medit - [Shape_at 2] #1 80 Medit - [shape_at 2] #1 200 Medis - [Shage_at 2] #1

04<a<l1 a=0.3 a=0.2

®00 Medit - [Shage_ a1 2] #1 Medit - [Shape_a1.2] #1 200 Medit - [Shaps an_2] #1

a = 0.05

8.6 The nlOpt optimizers

The f£-NLopt package provides a FreeFem interface to the free/open-source library for nonlinear
optimization, thus easing the use of several different free optimization (constrained or not) routines
available online along with the PDE solver. All the algorithms are well documented in [42], thus
no exhaustive informations concerning their mathematical specificities will be found here and we
will focus on the way they are called in a FreeFem script. One needing detailed informations about
these algorithms should visit the said cite where a description of each of them is given, as well
as many bibliographical links. Most of the gradient based algorithm of nlOpt uses a full matrix
approximation of the hessian, so if you’re planing to solve a large scale problem, our advise would
be to use the IPOPT optimizer which definitely surpass them. Finally, an examples of use can be
found in the examples++-1oad/ directory under the name VarIneq2.edp

All the nlOpt features are called that way :

load "ff-NLopt"
// define J, u, and maybe grad(J), some constraints etc...

real min = nloptXXXXXX(J,u, // unavoidable part
grad = <name of grad(J)> , // if needed

1b = // lower bounds array

ub= // upper bounds array

// some optional arguments :

// constraints functions names,
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// stopping criterions,
// algo. specific parameters,
// etc. ..

)i

XXXXXX refers to the algorithm tag (not necessarily 6 characters long). u is the starting position
(a real[int] type array) which will be overwritten by the algorithm, the value at the end being
the found argmin. And as usual, J is a function taking a real [int] type array as argument and
returning a real. grad, 1b and ub are "half-optionnal” arguments, in the sense that they are
obligatory for some routines but not all.

The possible optional named parameters are the following, note that they are not used by all al-
gorithm s (some does not supports constraints, or a type of constraints, some are gradient-based
and other are derivative free, etc...). One can refer to the table after the parameters description to
check which are the named parameters supported by a specific algorithm. Using an unsupported
parameter will not stop the compiler work and seldom breaks runtime, it will just be ignored. That
said, when it is obvious you are missusing a routine, you will get a warning message at runtime (for
exemple if you pass a gradient to a derivative free algorithm, or set the population of a non-genetic
one, etc...). In the following description, n stands for the dimension of the search space.

Half-optional parameters :

grad= The name of the function which computes the gradient of the cost function (prototype
should be real[int] — real[int], both argument and result should have the size
n). This is needed as soon s a gradient-based method is involved, ignored if defined in
a derivative free context.

1b/ub = Lower and upper bounds arrays (real[int] type) of size n. Used to define the
bounds within which the search variable is allowed to move. Needed for some algorithms,
optional or unsupported for others.

subOpt : Only enabled for the Augmented Lagrangian and MLSL method who need a sub-
optimizer in order to work. Just pass the tag of the desired local algorithm with a
string.

Constraints related parameters (optional - unused if not specified):

IConst/EConst : Allows to pass the name of a function implementing some inequality
(resp. equality) constraints on the search space. The function type must be real [int]
— real [int ] where the size of the returned array is equal to the number of constraints
(of the same type - it means that all the constraints are computed in one vectorial
function). In order to mix inequality and equality constraints in a same minimization
attempt, two vectorial functions have to be defined and passed. See example ??7 for
more details about how these constraints have to be implemented.

gradIConst/gradEConst : Use to provide the inequality (resp. equality) constraints gra-
dient. These are real [int] — real[int, int] type functions. Assuming we have
defined a constraint function (either inequality or equality) with p constraints, the size
of the matrix returned by its associated gradient must be p x n (the i-th line of the
matrix is the gradient of the i-th constraint). It is needed in a gradient-based context
as soon as an inequality or equality constraint function is passed to the optimizer and
ignored in all other cases.
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tolIConst/tolEConst : Tolerance values for each constraint. This is an array of size
equal to the number of inequality (resp. equality) constraints. Default value os set to
10~'2 for each constraint of any type.

Stopping criteria :

stopFuncValue : Makes the algorithm end when the objective function reaches this real
value.

stopRelXTol : Stops the algorithm when the relative moves in each direction of the search
space is smaller than this real value.

stopAbsXTol : Stops the algorithm when the moves in each direction of the search space
is smaller than the corresponding value in this real [int] array.

stopRelFTol : Stops the algorithm when the relative variation of the objective function is
smaller than this real value.

stopAbsFTol : Stops the algorithm when the variation of the objective function is smaller
than this real value.

stopMaxFEval : Stops the algorithm when the number of fitness evaluations reaches this
integer value.

stopTime : Stops the algorithm when the otpimization time in second exceeds this real
value. This is not a strict maximum: the time may exceed it slightly, depending upon
the algorithm and on how slow your function evaluation is.

Note that when an AUGLAG or MLSL method is used, the meta-algorithm and the sub-
algorithm may have different termination criteria. Thus, for algorithms of this kind, the
following named parameters has been defined (just adding the SO prefix - for Sub-Optimizer)
to set the ending condition of the sub-algorithm (the meta one uses the ones above) :
SOStopFuncValue, SOStopRelXTol, and so on... If these ones are not used, the sub-
optimizer will use those of the master routine.

Other named parameters :

popSize : integer used to change the size of the sample for stochastic search methods.
Default value is a peculiar heuristic to the chosen algorithm.

SOPopSize : Same as above, but when the stochastic search is passed to a meta-algorithm.

nGradStored : The number (interger type) of gradients to "remember” from previous
optimization steps: increasing this increases the memory requirements but may speed
convergence. It is set to a heuristic value by default. If used with AUGLAG or MLSL,
it will only affect the given subsidiary algorithm.

The following table sums up the main characteristics of each algorithm, providing the more im-
portant information about which features are supported by which algorithm and what are the
unavoidable arguments they need. More details can be found in [42].
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1d Tag Full Name Bounds radent gy chastic qua‘l’i:‘ys"rl:::::iw o
DIRECT Dividing rectangles o
DIRECTL I;:;z;:)gzisased dividing PY
DIRECTLRan  [riimessioctyiesd
DIRECTNoScal Dividing rectangles - no scaling [
DIRECTLNoScal  |ebietdrins o
DIRECTLRandNoScal |sonized iocaly biased dvidng. - g
OrigDIRECT g(i:?;nnzllilabonsky’s dividing °
orgDRECTL SO ety
seco o o
SocoRmna Il o o
LBFGS Low-storage BFGS o
PRAXIS Principal AXIS
v e
R e R
TNewton Truncated Newton [
TNowtonRestart 552 et esarns o
TNewtonPrecond :?ES Cig;ﬁ:ﬂgﬁnnw o
TNewtonRestartrecond SSePeertomssirs .
CRS2 I?)gz}rs]lj{ja{;rl\jdom search with PY
MMA Method of moving asymptots o
coBvLA |Corsced omizaton s
NEWUOA NEWUOA
NEWUOABound  |(E000 forbounded
NelderMead Nelder-Mead simplex
Sbplx Subplex
BOBYQA BOBYQA
fsRES ot o
sisop (S o
MLSL Multi-level single-linkage [
MLSLLDS I;i(r:‘\glg_iﬁﬁ:(ea;;ncy multi-level PY PY
AUGLAG gg?:;;aii;:s augmented PY
AUGLAGEQ Fagt:::;yi;onstraims augmented PY
Legend : Supported and optional
Should be supported and optional, may
lead to weird behaviour though.
Intrinsic characteristic of the algorithm
which then need one or more unavoidable
° parameter to work (for stochastic

algorithm, the population size always have
a default value, they will then work if it is
ommited)

For routines with subsidiary algorithms
only, indicates that the corresponding
feature will depend on the chosen sub-
optimizer.
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8.7 Optimization with MPI

The only quick way to use the previously presented algorithms on a parallel architecture lies in
parallelizing the used cost function (which is in most real life case, the expensive part of the
algorithm). Somehow, we provide a parallel version of the CMA-ES algorithm. The parallelization
principle is the trivial one of evolving/genetic algorithms : at each iteration the cost function has to
be evaluated N times without any dependence at all, these N calculus are then equally distributed
to each processes. Calling the MPI version of CMA-ES is nearly the same as calling its sequential
version (a complete example of use can be found in the cmaes-mpi-VarIneq.edp file).:

load "mpi-cmaes"

... // define J, u and all here
real min = cmaesMPI (J,u, stopTolFun=le-6, stopMaxIter=3000);

cout << "minimal value is " << min << " for u = " << u << endl;

If the population size is not changed using the popsize parameter, it will use the heuristic value
slightly changed to be equal to the closest greater multiple of the size of the communicator used
by the optimizer. The FreeFem mpicommworld is used by default. The user can specify his own
MPI communicator with the named parameter ” comm=", see the MPI section of this manual for
more informations about communicators in FreeFem++.



Chapter 9

Mathematical Models

Summary This chapter goes deeper into a number of problems that FreeFem++ can solve. It is
a complement to chapter 3 which was only an introduction. Users are invited to contribute to make
this data base of problems grow.

9.1 Static Problems

9.1.1 Soap Film

Our starting point here will be the mathematical model to find the shape of soap film which is
glued to the ring on the zy—plane

C ={(x,y); x =cost, y =sint, 0 <t < 27}.

We assume the shape of the film is described by the graph (z,y, u(z,y)) of the vertical displacement
u(x,y) (:E2 +y? < 1) under a vertical pressure p in terms of force per unit area and an initial tension
1 in terms of force per unit length.

Consider the “small plane” ABCD, A:(z,y,u(z,y)), B:(z,y, u(x+dz,y)), C:(z,y, u(x+dz,y+dy))
and D:(z,y,u(x,y + dy)). Denote by n(z,y) = (n.(z,y), ny(x,y),n:(x,y)) the normal vector of
the surface z = u(x,y). We see that the vertical force due to the tension p acting along the edge
AD is —ung(z,y)dy and the the vertical force acting along the edge AD is

Ona

%) (z,)dy.

png (x4 0z, y)0y ~ p <nx($, y) + 9

Similarly, for the edges AB and DC we have

r u(x+8x,y+8y)

u(x,y+3y)

(Ou/Ox)dx
o) T uGsry)

—pny(z,y)ox,  p(ny(z,y) + Ony/dy) (z,y)ox.
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The force in the vertical direction on the surface ABCD due to the tension u is given by
p (Ong /0x) dxdy + T (Ony/O0y) dydx.

Assuming small displacements, we have

ve = (0u/0z)/\/1+ (0u/0x)?+ (Ou/dy)? ~ Ou/ox,
vy = (0u/dy)/\/1+ (0u/dx)? + (0u/dy)? ~ du/dy.

Letting dz — dz, dy — dy, we have the equilibrium of the vertical displacement of soap film on
ABCD by p
pdxdyd®u)0x? + pdrdyd*u/dy? + pdzdy = 0.

Using the Laplace operator A = §%/9x2 + 0% /0y?, we can find the virtual displacement write the
following
—Au=f inQ (9.1)

where f = p/u, Q = {(x,); 2% +3? < 1}. Poisson’s equation ([2.1)) appears also in electrostatics
taking the form of f = p/e where p is the charge density, e the dielectric constant and u is named
as electrostatic potential. The soap film is glued to the ring 9Q2 = C, then we have the boundary
condition

u=0 on 0N (9.2)

If the force is gravity, for simplify, we assume that f = —1.

Example 9.1 (a_tutorial.edp)

1 : border a(t=0,2xpi){ x = cos(t); y = sin(t);label=1;};

2

3 : mesh disk = buildmesh (a(50));

4 : plot (disk);

5 fespace fempl (disk,P1l);

6 fempl u,v;

7 func £ = -1;

8 : problem laplace(u,v) =

9 int2d(disk) ( dx(u)*dx(v) + dy(u)*dy(v) ) // bilinear form
10 — int2d(disk) ( fxv ) // linear form
11 + on(1l,u=0) ; // boundary condition
12 func ue = (x"2+y~2-1)/4; // ue: exact solution
13 laplace;

14 fempl err = u - ue;

15

16 : plot (u,ps="aTutorial.eps",value=true,wait=true);

17 : plot (err,value=true,wait=true);

18 :

19 : cout << "error L2=" << sqgrt (int2d(disk) ( err”"2) )<< endl;
20 : cout << "error H10=" << sqrt( int2d(disk) ((dx(u)-x/2)"2)
21 + int2d (disk) ((dy(u)-y/2) "2))<< endl;
22
23 : disk = adaptmesh (disk,u,err=0.01);
24 : plot(disk,wait=1);
25
26 laplace;
27
28 : plot (u,value=true,wait=true);
29 : err = u - ue; // become FE-function on adapted mesh
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30 : plot (err,value=true,wait=true);

31 : cout << "error L2=" << sqgrt (int2d(disk) ( err”2) )<< endl;

32 : cout << "error H10=" << sqgrt (int2d(disk) ((dx(u)-x/2)"2)

33 + int2d(disk) ((dy(u)-y/2) "2)) << endl;

Figure 9.2: a side view of u

Figure 9.1: isovalue of u

In 19th line, the L?-error estimation between the exact solution .,

1/2
0,0 = </ |up — u6]2d:1:dy>
Q

and from 20th line to 21th line, the H'-error seminorm estimation

|un — ue

1/2
lup, — ue|1.0 = </ |Vuy, — Vue|2dxdy>
0

are done on the initial mesh. The results are ||up, — ucl|o,0 = 0.000384045, |up, — uc|1,0 = 0.0375506.
After the adaptation, we hava ||up — ucllo,o = 0.000109043, |up, — uel1,0 = 0.0188411. So the
numerical solution is improved by adaptation of mesh.

9.1.2 Electrostatics

We assume that there is no current and a time independent charge distribution. Then the electric
field E satisfies

divE = p/e, curlE =0 (9.3)

where p is the charge density and e is called the permittivity of free space. From the second equation
in (9.3), we can introduce the electrostatic potential such that E = —V¢. Then we have Poisson’s
equation —A¢ = f, f = —p/e. We now obtain the equipotential line which is the level curve of ¢,
when there are no charges except conductors {C;}; ... k. Let us assume K conductors C1,--- ,Cxk
within an enclosure Cy. Each one is held at an electrostatic potential ¢;. We assume that the
enclosure CO is held at potential 0. In order to know ¢(z) at any point x of the domain Q, we
must solve

—Ap =0 1inQ, (9.4)



212 CHAPTER 9. MATHEMATICAL MODELS

where Q is the interior of Cy minus the conductors C;, and I' is the boundary of €2, that is ZZJ\L 0 Cs.
Here g is any function of x equal to ¢; on C; and to 0 on Cy. The boundary equation is a reduced
form for:

p=p;onC;, i=1.N,o=0on Cp. (9.5)

Example 9.2  First we give the geometrical informations; Co = {(z,y); 2>+ y*> = 52}, C1 =
{(z,y) : ﬁ(:c -2)2+ 3%y2 =1}, Cy = {(z,y) : ﬁ(m—i—Q)Q + 3%y2 = 1}. Let Q be the
disk enclosed by Cy with the elliptical holes enclosed by C1 and Cy. Note that Cy is described
counterclockwise, whereas the elliptical holes are described clockwise, because the boundary must be
oriented so that the computational domain is to its left.

// a circle with center at (0 ,0) and radius 5
=5 %x cos(t); vy =5 sin(t); }
2+0.3 % cos(t); y = 3xsin(t); }
-2+0.3 * cos(t); y = 3xsin(t); }

border CO (t=0,2xpi) {
border C1 (t=0,2*pi) {
border C2 (t=0,2*pi) {

XXX
I

mesh Th = buildmesh (CO (60)+C1 (-50)+C2(-50));

plot (Th,ps="electroMesh") ; // figure
fespace Vh (Th,P1); // P1 FE-space
Vh uh, vh; // unknown and test function.
problem Electro (uh,vh) = // definition of the problem
int2d (Th) ( dx (uh) *dx (vh) + dy (uh) «dy (vh) ) // bilinear
+ on (C0, uh=0) // boundary condition on Cj
+ on(Cl,uh=1) // +1 volt on (4
+ on(C2,uh=-1) ; // -1 volt on Oy
Electro; // solve the problem, see figure for the solution
plot (uh, ps="electro.eps",wait=true); // figure
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Figure 9.3: Disk with two elliptical holes  Figure 9.4: Equipotential lines, where C] is
located in right hand side
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9.1.3 Aerodynamics

Let us consider a wing profile S in a uniform flow. Infinity will be represented by a large circle I' .
As previously, we must solve

Ap=0 in Q, (P‘S =c, @’Foo = Ucolz — Uoco2x (9'6>

where ) is the area occupied by the fluid, us is the air speed at infinity, ¢ is a constant to
be determined so that 0, is continuous at the trailing edge P of S (so-called Kutta-Joukowski
condition). Lift is proportional to c¢. To find ¢ we use a superposition method. As all equations in
are linear, the solution ¢, is a linear function of ¢

Pc = $0 + Y1, (97)

where g is a solution of with ¢ = 0 and ¢, is a solution with ¢ = 1 and zero speed at infinity.
With these two fields computed, we shall determine ¢ by requiring the continuity of d¢/0n at the
trailing edge. An equation for the upper surface of a NACA0012 (this is a classical wing profile in
aerodynamics; the rear of the wing is called the trailing edge) is:

y = 0.17735+/z — 0.075597x — 0.2128362% + 0.173632° — 0.062542*. (9.8)
Taking an incidence angle « such that tan o = 0.1, we must solve
—Ap=0 in , olr, =y —0.1z, o|r, =c, (9.9)
where 'y is the wing profile and T'; is an approximation of infinity. One finds ¢ by solving:

—Apo =0 in Q, wolr, =y — 0.1z, o|p, =0, (9.10)
—ASOI =0 in Qa 901’1_‘1 = 07 §01|F2 =1 (911>

The solution ¢ = g+ cp; allows us to find ¢ by writing that 0,¢ has no jump at the trailing edge
P = (1,0). We have Onp — (o(PT) — ¢(P))/§ where PT is the point just above P in the direction
normal to the profile at a distance §. Thus the jump of d,¢ is (wo|p+ + c(@1|p+ — 1)) + (wo|p- +
c(p1]p- — 1)) divided by 6 because the normal changes sign between the lower and upper surfaces.

Thus

c= — QOOIPJF +()00|P7 (912>

(e1]p+ + @i1lp- —2)°

which can be programmed as:

©0(0.99,0.01) + ¢0(0.99, —0.01)

= — . 9.13

(¢1(0.99,0.01) + 1(0.99, —0.01) — 2) (9.13)

Example 9.3 // Computation of the potential flow around a NACAQ0012 airfoil.
// The method of decomposition is used to apply the Joukowski condition

// The solution is seeked in the form psiO + beta psil and beta 1is

// adjusted so that the pressure 1is continuous at the trailing edge

border a (t=0,2x*pi) { x=5%cos(t); y=5*sin(t); }; // approximates infinity

border upper (t=0,1) { x = t;
y = 0.17735%xsqgrt (t)-0.075597xt
- 0.212836%x(t"2)4+0.17363*%(t"3)-0.06254x(t"4); }
border lower (t=1,0) { x = t;
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y= —(0.17735%sqrt (t)-0.075597«t
-0.212836%(t"2)+0.17363%(£"3)-0.06254x(t"4)); }
border c (t=0,2xpi) { x=0.8%cos(t)+0.5; y=0.8xsin(t); }

wait = true;

mesh Zoom = buildmesh (c (30) tupper (35)+lower (35));

mesh Th = buildmesh (a (30) tupper (35) +lower (35));

fespace Vh (Th,P2); // P1 FE space
Vh psiO,psil, vh; // unknown and test function.
fespace 7ZVh (Zoom,P2);

solve JoukowskiO (psi0O,vh) = // definition of the problem
int2d (Th) ( dx(psi0) *dx (vh) + dy (psi0) xdy (vh) ) // bilinear form
+ on(a,psil=y-0.1*x) // boundary condition form

+ on (upper, lower, psi0=0);
plot (psiO);

solve Joukowskil (psil,vh) = // definition of the problem
int2d (Th) ( dx(psil)*dx(vh) + dy(psil)*dy (vh) ) // bilinear form
+ on(a,psil=0) // boundary condition form

+ on (upper, lower,psil=1l);
plot (psil);

// continuity of pressure at trailing edge
real beta = psi0(0.99,0.01)+psi0(0.99,-0.01);
beta = -beta / (psi1(0.99,0.01)+ psil(0.99,-0.01)-2);

Vh psi = betax*psil+psiO;

plot (psi);

ZVh Zpsi=psi;

plot (Zpsi,bw=true);

ZVh cp = —-dx(psi) "2 - dy(psi) "2;
plot (cp);

ZVh Zcp=cp;

plot (Zcp,nbiso=40) ;

Figure 9.5:  isovalue of cp = —(0,)? — Figure 9.6: Zooming of ¢p
(Oy)?
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9.1.4 Error estimation

There are famous estimation between the numerical result u;, and the exact solution u of the problem
and If triangulations {7} 0 is regular (see Section , then we have the estimates

[Vu—Vuploo < Cih (9.14)

lu—uplloq < Coh? (9.15)

with constants Cy, Co independent of h, if u is in H2(Q). It is known that u € H?(Q2) if Q) is convex.
In this section we check (9.14]) and (9.15). We will pick up numericall error if we use the numerical
derivative, so we will use the following for (9.14]).

/ |Vu — Vup|? dedy = / Vu-V(u—2up)dedy + / Vup, - Vup, dedy
Q Q Q

= /f(u—zuh)dxder/fUhdxdy
Q Q

The constants C1, Cy are depend on 7p, and f, so we will find them by FreeFem++ . In general, we
cannot get the solution u as a elementary functions (see Section |4.8]) even if spetical functions are
added. Instead of the exact solution, here we use the approximate solution ug in V4 (7p, P2), h ~ 0.

Example 9.4

1 : mesh ThO = square(100,100);
2 : fespace VOh(ThO,P2);
3 : VOh u0,v0;
4 func f = xx*y; // sin(pix*x)*cos (pi*y);
5
6 solve PoissonO (u0,v0) =
7 int2d (Th0) ( dx(u0) »dx (v0) + dy (u0) xdy(v0) ) // bilinear form
8 — int2d(ThO) ( f£*v0 ) // linear form
9 + on(l,2,3,4,u0=0) ; // boundary condition
10 :
11 : plot (u0);
12 :
13 : real[int] errL2(10), errH1(10);
14 :
15 : for (int i=1; i<=10; i++) {
16 : mesh Th = square (5+ix3,5+1%3);
17 : fespace Vh (Th,P1l);
18 : fespace Ph (Th,PO);
19 : Ph h = hTriangle; // get the size of all triangles
20 : Vh u,v;
21 : solve Poisson(u,v) =
22 int2d (Th) ( dx (u) *dx (v) + dy(u)*dy(v) ) // bilinear form
23 — int2d (Th) ( f£*v ) // linear form
24 + on(l,2,3,4,u=0) ; // boundary condition
25 : vVOoh uu = u;
26 : errL2[i-1] = sqrt( int2d(ThO) ((uu - u0)"2) )/h[].max"2;
27 errHl1[i-1] = sqrt( int2d(ThO) ( f£x (u0-2+uutuu) ) )/h[].max;
28 : }
29 : cout << "Cl = " << errl2.max <<" ("<<errL2.min<<")"<< endl;
30 : cout << "C2 = " << errHl.max <<" ("<<errHl.min<<")"<< endl;

We can guess that C; = 0.0179253(0.0173266) and Cy = 0.0729566(0.0707543), where the numbers
inside the parentheses are minimum in calculation.
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9.1.5 Periodic Boundary Conditions
We now solve the Poisson equation

—Au = sin(x + 7/4.) * cos(y + 7/4.)

on the square ]0, 27 [ under bi-periodic boundary condition u(0, y) = u(27,y) for all y and u(x,0) =
u(x,2m) for all z. These boundary conditions are achieved from the definition of the periodic finite
element space.

Example 9.5 (periodic.edp)

mesh Th=square (10,10, [2xxxpi, 2*xy*pi]);

// defined the fespacewith periodic condition
// label : 2 and 4 are left and right side with y the curve abscissa
// 1 and 2 are bottom and upper side with x the curve abscissa

fespace Vh (Th,P2,periodic=[1[2,vy],[4,v],[1,x],I[3,x11);
Vh uh, vh; // unknown and test function.
func f=sin(x+pi/4.)*cos (y+pi/4.); // right hand side function
problem laplace (uh,vh) = // definion of the problem
int2d (Th) ( dx (uh) xdx (vh) + dy (uh) xdy (vh) ) // bilinear form
+ int2d(Th) ( —f*vh ) // linear form

14

laplace; // solve the problem plot (uh); // to see the result

plot (uh, ps="period.eps", value=true) ;

Figure 9.7: The isovalue of solution u with periodic boundary condition

The periodic condition does not necessarily require parallel boundaries. Example give such
example.

Example 9.6 (periodic4.edp)

real r=0.25;
// a diamond with a hole
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border a(t=0,1) {x=-t+1; y=t;label=1;};

border b (t=0,1){ x=-t; y=1-t;label=2;};

border c (t=0,1){ x=t-1; y=-t;label=3;};

border d(t=0,1){ x=t; y=-1+t;label=4;};

border e (t=0,2xpi){ x=r+*cos(t); y=-rxsin(t);label=0;};
int n = 10;

mesh Th= buildmesh (a(n)+b (n)+c(n)+d(n)+e(n));
plot (Th,wait=1);

real r2=1.732;

func abs=sqgrt (x"2+y~2);

// warning for periodic condition:
// side a and c
// on side a (label 1) xz€]0,1] or z—ye[-1,1]
// on side c¢ (label 3) xz€[-1,0] or x —y € [-1,1]
// so the common abscissa can be respectively x and x+1
// or you can can try curviline abscissa x —y and x —y
// 1 first way
// fespace Vh(Th,P2,periodic=[[2,1+x], [4,x],[1,x],[3,1+x]]);
// 2 second way

fespace Vh(Th,P2,periodic=[[2,x+y], [4,x+y], [1,x-yv], [3,x-y]]);
Vh uh, vh;

func f=(y+x+1)x (y+x—1) * (y—x+1) * (y—x—-1) ;
real intf = int2d(Th) (f);
real mTh = int2d(Th) (1) ;
real k = intf/mTh;
problem laplace (uh,vh) =
int2d (Th) ( dx (uh) *dx (vh) + dy (uh)*xdy (vh) ) + int2d(Th) ( (k—-f)*vh ) ;
laplace;
plot (uh,wait=1,ps="period.eps");

Figure 9.8: The isovalue of solution u for Au = ((y +z)?* + 1)((y — z)* + 1) — k, in Q and
O,u = 0 on hole,and with two periodic boundary condition on external border

An other example with no equal border, just to see if the code works.
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Example 9.7 (periodic4bis.edp)

// irregular boundary condition.
// to build border AB
macro LINEBORDER(A,B,lab) border A#B(t=0,1) {real tl=1.-t;
x=A#x+t1+B#x+t; y=A#y*t1+B#y*t; label=1ab; } //  EOM
// compute ||AB|| a=(ax,ay) et B =(bx,by)
macro dist (ax,ay,bx,by) sqgrt (square((ax)-(bx))+ square((ay)-(by))) // EOM
macro Grad(u) [dx(u),dy(u)] // EOM
real Ax=0.9,Ay=1; real Bx=2,By=1;
real Cx=2.5,Cy=2.5; real Dx=1,Dy=2;
real gx = (Ax+Bx+Cx+Dx)/4.; real gy = (Ay+By+Cy+Dy)/4.;
LINEBORDER (A, B, 1)
LINEBORDER (B, C, 2)
LINEBORDER (C, D, 3)
LINEBORDER (D, A, 4)
int n=10;
real 11=dist (Ax,Ay,Bx,By);
real 12=dist (Bx,By,Cx,Cy);
real 13=dist (Cx,Cy,Dx,Dy);
real 14=dist (Dx,Dy,Ax,Ay);
func sl=dist (Ax,Ay,x,y)/11; // absisse on AB = ||AX]||/||AB]|]
func s2=dist (Bx,By,x,vy)/12; // absisse on BC = |[|BX/||/]|BC]/|
func s3=dist (Cx,Cy,x,y)/13; // absisse on CD = ||CX||/]|]|CD]]
func s4=dist (Dx,Dy,x,vy)/14; // absisse on DA = ||DX||/||DA]|
mesh Th=buildmesh (AB (n)+BC (n)+CD (n)+DA (n), fixeborder=1); //
verbosity=6; // to see the abscisse value pour the periodic condition.

fespace Vh(Th,Pl,periodic=[[1,s1],[3,s31,1[2,s2]1,1[4,s411);
verbosity=1;

Vh u,v;

real cc=0;

cc= int2d(Th) ((x-gx) * (y—gy)—cc) /Th.area;

cout << " compatibility =" << int2d(Th) ((x—-gx) * (y—gy)-cc) <<endl;

solve Poission(u,v)=int2d(Th) (Grad(u)’ *xGrad(v)+ le-10xuxv)
—int2d (Th) (10%v* ( (x—gx) * (y—gy) —cc) ) ;
plot (u,wait=1,value=1);

Example 9.8 (Period-Poisson-cube-ballon.edp)

verbosity=1;
load "msh3"
load "tetgen"
load "medit"

bool buildTh=0;
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mesh3 Th;

try { // a way to build one time the mesh an read if the file exist.
Th=readmesh3 ("Th-hex-sph.mesh") ;
}

catch(...) { buildTh=1;}

if( buildTh ) {

put the code example page // 5.11.1[128]
without the first line
}

fespace Ph(Th,PO);

verbosity=50;

fespace Vh(Th,Pl,periodic=[[3,x,2z],[4,%x,21,[1,v,21,(2,v,2],15,%x,v1,16,%,v11);//
back and front

verbosity=1;

Ph reg=region;

cout << " centre = " << reg(0,0,0) << endl;

cout << " exterieur = " << reg(0,0,0.7) << endl;

macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
Vh uh, vh;

real x0=0.3,y0=0.4,2z0=06;
func f= sin (x*2xpi+x0)*sin(y*2xpi+ty0)*sin(zx2%xpi+z0);
real gn = 1.;
real cf= 1;
problem P (uh,vh)=
int3d(Th, 1) ( Grad(uh)’ *Grad(vh)+100)
+ int3d(Th, 2) ( Grad(uh)’ *xGrad (vh) *x2)
+ int3d(Th) (vhxf)

14

P;
plot (uh,wait=1, nbiso=6);
medit (" uh ", Th, uh);

9.1.6 Poisson Problems with mixed boundary condition

Here we consider the Poisson equation with mixed boundary conditons: For given functions f and
g, find u such that

—Au = f in
u = g onlp, OJu/On=0 onTy (9.16)

where T'p is a part of the boundary I and I'y = I' \ I'p. The solution u has the singularity at
the points {v1,72} = Tp NTx. When Q = {(z,y); -1 <2<1,0<y <1}, Ty = {(z,y); -1 <
x<0,y=0}, I'p=00\Ty, the singularity will appear at v; = (0,0), v2(—1,0), and u has the
expression

u = Kyus + ug, up € H*(near v;), i = 1,2
1/2

with a constants K;. Here ug = r;""sin(6;/2) by the local polar coordinate (r;,0; at 7; such that
(r1,601) = (r,0). Instead of poler coordinate system (r,0), we use that r = sqrt ( x2+y2 ) and

f = atan2 (y, x) in FreeFem++ .
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Figure 9.10:
Figure 9.9: view of the surface isovalue of view a the cut of the solution uh with ffmedit
periodic solution uh

Example 9.9 Assume that f = —2 x 30(z% +y?) and g = u, = 10(x? +y?)"/*sin ([tan~'(y/2)]/2) +

30(z%y?), where u.S is the ezact solution.
1 border N (t=0,1) { x=-1+t; y=0; label=1; };
2 border D1 (t=0,1){ x=t; vy=0; label=2;};
3 border D2 (t=0,1){ x=1; y=t; label=2; };
4 border D3 (t=0,2){ x=1-t; y=1; label=2;};
5 border D4 (t=0,1) { x=-1; y=1-t; label=2; };
6
7 mesh TOh = buildmesh (N (10)+D1(10)+D2(10)+D3(20)+D4(10));
8 plot (TOh,wait=true);
9 fespace VOh (TOh,P1);
10 vO0h u0, vO0;
11
12 func f=-2x30x(x"2+y"2); // given function
13 // the singular term of the solution is K#us (K: constant)
14 func us = sin(atan2(y,x)/2)*sqrt( sqrt(x"2+y~2) );
15 real K=10.;
16 func ue = Kxus + 30x%x(x"2xy"2);
17
18 solve PoissonO (u0,v0) =
19 int2d (TOh) ( dx (u0) *dx (v0) + dy (u0) *dy (v0) ) // bilinear form
20 — int2d (TOh) ( £*v0 ) // linear form
21 + on(2,ul=ue) ; // boundary condition
22
23 // adaptation by the singular term
24 mesh Th = adaptmesh (TOh, us);
25 for (int i=0;i< 5;i++)
26 {
27 mesh Th=adaptmesh (Th, us);
28 o

[\
Ne]
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30 : fespace Vh(Th, P1l);

31 : Vh u, v;

32 : solve Poisson(u,v) =

33 : int2d (Th) ( dx (u)*dx(v) + dy(u)*dy (v) ) // bilinear form
34 — int2d (Th) ( f£*v ) // linear form
35 : + on(2,u=ue) ; // boundary condition
36 :

37 : /% plot the solution =/

38 : plot (Th,ps="adaptDNmix.ps");

39 : plot (u,wait=true);

40

41 : Vh uue = ue;

42 : real Hle = sqrt( int2d(Th) ( dx(uue) "2 + dy(uue) "2 + uue™2 ) );

43

44 : /% calculate the H1 Sobolev norm =*/

45 : Vh err0 = u0 - ue;

46 : Vh err = u - ue;

47 : Vh HlerrO = int2d(Th) ( dx(err0) "2+dy (err0) "2+err0°2 );

48 : Vh Hlerr = int2d(Th) ( dx(err) "2+dy (err) "2+err”2 );

49 : cout <<"Relative error in first mesh "<< int2d(Th) (Hlerr0) /Hle<<endl;

50 : cout <<"Relative error in adaptive mesh "<< int2d(Th) (Hlerr) /Hle<<endl;

From 24th line to 28th, adaptation of meshes are done using the base of singular term. In 42th

line, Hle=l||ue|1,q is calculated. In last 2 lines, the relative errors are calculated, that is,

[0 — uellyo/Hle = 0.120421
|uf —uel1.o/Hle = 0.0150581

where u% is the numerical solution in TOh and uf is u in this program.

9.1.7 Poisson with mixte finite element

Here we consider the Poisson equation with mixed boundary value problems: For given functions

f 5 94, gn, find p such that
-Ap =1 in
p = ga onlp, Jp/on=g, only

where I'p is a part of the boundary I' and I'y =T \E
The mixte formulation is: find p and u such that

Vp+u = 0 in Q
V.u f in

p gs onl'p, Oun=g,n only

where g, is a vector such that g,.n = g,.
The variationnal formulation is,

Vv € Vo, fQ pVu+vv = / gqv.n
Ly

VqelP quV.u :/qu

ou.n =g,n only

(9.17)

(9.18)

(9.19)
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where the functionnal space are:
P=12%Q), V=H(div)={velL*Q)?*V.velL*Q)}

and
Vo={veV; vn=0 on I'y}.

To write, the FreeFem++ example, we have just to choose the finites elements spaces. here V
space is discretize with Raviart-Thomas finite element RTO and P is discretize by constant finite
element PO.

Example 9.10 (LaplaceRT.edp)

mesh Th=square (10,10);
fespace Vh (Th,RTO);
fespace Ph(Th,PO);
func gd = 1.;

func gln = 1.;

func g2n 1.;

Vh [ul,u2], [vl,v2];
Ph p,q;

problem laplaceMixte([ul,u2,pl, [Vv1,v2,q9],
solver=GMRES, eps=1.0e-10,
tgv=1e30,dimKrylov=150)
int2d (Th) ( p*gxle-15 // this term is here to be sur
// that all sub matrix are inversible (LU requirement)
+ ulxvl + u2+xv2 + px*x(dx(vl)+dy(v2)) + (dx(ul)+dy(u2))x=*q )
+ int2d(Th) ( g)

- intl1d(Th,1,2,3) ( gd* (v1I*N.x +v2*N.y)) // on I'p
+ on(4,ul=gln,u2=g2n); // on I'y
laplaceMixte;

plot ([ul,u2],coef=0.1,wait=1,ps="lapRTuv.eps",value=true);
plot (p, fill=1,wait=1,ps="1aRTp.eps",value=true);

9.1.8 Metric Adaptation and residual error indicator

We do metric mesh adaption and compute the classical residual error indicator nr on the element
T for the Poisson problem.

Example 9.11 (adaptindicatorP2.edp)  Flirst, we solve the same problem as in a previous example.

1 : border ba(t=0,1.0) {x=t; y=0; label=1;}; // see Fig,[5.15
2 : border bb(t=0,0.5) {x=1; y=t; label=2;};
3 : border bc(t=0,0.5) {x=1-t; y=0.5;1label=3;};
4 : border bd(t=0.5,1) {x=0.5; y=t; label=4;};
5 : border be (t=0.5,1) {x=1-t; y=1; label=5;};
6 : border bf (t=0.0,1) {x=0; y=1-t; label=6;};
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7 : mesh Th = buildmesh (ba(6)
8 : savemesh (Th, "th.msh");

9 : fespace Vh(Th,P2);
10 : fespace Nh(Th,PO0);
11 : Vh u,v;
12 : Nh rho;
13 : real[int] wviso(21);
14 : for (int i=0;i<viso.n;i++)
15 : viso[i]=10." (+(i-16.)/2.);
16 : real error=0.01;
17 : func f=(x-y);
18 : problem Probeml (u,v,solver=CG,eps=1.0e-6) =

+ bb(4) + bc(4) +bd(4) + be(4) + bf(6));

19 : int2d (Th, gforder=5) ( u*xv*x1.0e-10+ dx(u)*dx(v) + dy(u)x*dy(v))
20 : + int2d(Th, gforder=5) ( —-fxv);
21 1 [ xkkkkkkhkkkk*k

Now, the local error indicator nr is:

1
2

8uh
nr = | B2l f+ AunllFary + D hell [871;@] 1726

e€fK

where hp is the longest’s edge of T, Ep is the set of T edge not on I' = 02, nr is the outside unit
normal to K, he is the length of edge e, [g] is the jump of the function g across edge (left value
minus right value).

Of course, we can use a variational form to compute n%, with test function constant function in
each triangle.

29 1 kkkkAkkrkkkxk/

30

31 : wvarf indicator2 (uu,chik) =

32 : intalledges (Th) (chiKxlenEdgex*square (jump (N.x+xdx (u) +N.yxdy (u))))

33 : +int2d (Th) (chiK*square (hTrianglex* (f+dxx (u) +dyy (u))) );

34 : for (int 1=0;i< 4;i++)

35 ¢ {

36 : Probeml;

37 cout << u[].min << " " << u[].max << endl;

38 plot (u, wait=1);

39 cout << " indicator2 " << endl;

40 :

41 rho[] = indicator2 (0,Nh);

42 rho=sqgrt (rho) ;

43 cout << "rho = min " << rho[].min << " max=" << rho[].max << endl;

44 plot (rho, fill=1,wait=1, cmm="indicator density ",ps="rhoP2.eps",
value=1,viso=viso, nbiso=viso.n);

45 : plot (Th,wait=1, cmm="Mesh ",ps="ThrhoP2.eps");

46 Th=adaptmesh (Th, [dx (u) ,dy (u) ],err=error,anisomax=1) ;

47 plot (Th,wait=1);

48 u=u;

49 : rho=rho;

50 : error = error/2;

51 : }

If the method is correct, we expect to look the graphics by an almost constant function n on your
computer as in Fig. [9.11]
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Figure 9.11: Density of the error indicator with isotropic P, metric

9.1.9 Adaptation using residual error indicator

In the previous example we compute the error indicator, now we use it, to adapt the mesh.
The new mesh size is given by the following formulae:

_ hn(2)
fn(nx ()
where 7, () is the level of error at point  given by the local error indicator, hy, is the previous “mesh

size” field, and f, is a user function define by f,, = min(3, max(1/3,n,/n})) where 0 = mean(n,)c,
and c is an user coefficient generally close to one.

hn+l($)

Example 9.12 (AdaptResidualErrorIndicator.edp)
First a macro MeshSizecomputation to get a P mesh size as the average of edge length.

// macro the get the current mesh size

// parameter

// in: Th the mesh

// Vh P1 fespace on Th

// out

// h: the Vh finite element finite set to the current mesh size

macro MeshSizecomputation (Th,Vh,h)
{ /x Th mesh Vh Pl finite element space
h the Pl mesh size value */
real[int] count(Th.nv);
/+ mesh size (lenEdge = integral(e) 1 ds) «/
varf vmeshsizen (u,v)=intalledges (Th, gfnbpE=1) (v);
/* number of edge / par vertex =*/
varf vedgecount (u,v)=intalledges (Th, gfnbpE=1) (v/lenEdge) ;
/%

computation of the mesh size
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count=vedgecount (0, Vh) ;

h[]=0.;
h[]=vmeshsizen (0,Vh);
cout << " count min = "<< count.min << " " << count.max << endl;
h[]l=h[]./count;

cout << " —-- bound meshsize = " <<h[].min << " " << h[].max << endl;
Y S/ end of macro MeshSizecomputation

A second macro to remesh according to the new mesh size.

// macro to remesh according the de residual indicator
// in:

// Th the mesh

// Ph PO fespace on Th

// Vh P1 fespace on Th

// vindicator the varf of to evaluate the indicator to 2
// coef on etameam

V2

macro ReMeshIndicator (Th,Ph,Vh,vindicator, coef)

{

Vh h=0;

/*evalutate the mesh size «/

MeshSizecomputation (Th, Vh, h);

Ph etak;

etak[]=vindicator (0, Ph);

etak[]=sqgrt (etak[]);

real etastar= coefx (etak[].sum/etak[].n);

cout << " etastar = " << etastar << " sum=" << etak[].sum << " " << endl;

/* here etaK is discontinous
we use the Pl L2 projection with mass lumping . x/

Vh fn, sigma;
varf veta (unused,v)=int2d(Th) (etakxv);
varf vun (unused,v)=int2d (Th) (1xv);

fn[] = veta (0,Vh);

sigma[]= wvun(0,Vh);

fn[]= fn[]./ sigmal];

fn = max(min(fn/etastar,3.),0.3333) ;

/* new mesh size =/

h=h/ fn ;

/* plot (h,wait=1); =*/

/* build the new mesh =/

Th=adaptmesh (Th, IsMetric=1, h, splitpbedge=1, nbvx=10000) ;
}

We skip the mesh construction, see the previous example,

// FE space definition ——-—
fespace Vh(Th,P1); // for the mesh size and solution
fespace Ph(Th,PO); // for the error indicator
real hinit=0.2; // initial mesh size
Vh h=hinit; // the FE function for the mesh size

// to build a mesh with a given mesh size : meshsize
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Th=adaptmesh (Th, h, IsMetric=1, splitpbedge=1, nbvx=10000) ;
plot (Th,wait=1,ps="RRI-Th-init.eps");
Vh u,v;

func f=(x-vy);
problem Poisson (u, V)
int2d (Th, gforder=5) ( uxv*1.0e-10+ dx(u)x*dx(v) + dy(u)=*dy(v))
- int2d(Th,gforder=5) ( f£x*v);
varf indicator2 (unused,chiK) =
intalledges (Th) (chiKxlenEdgexsquare (jump (N.xxdx (u) +N.yxdy (u))))
+int2d (Th) (chiK*square (hTrianglex (f+dxx (u) +dyy (u))) );

for (int i=0;i< 10;i++)

{
u=u;
Poisson;

plot (Th,u,wait=1);

real cc=0.8;

if (i>5) cc=1;
ReMeshIndicator (Th,Ph,Vh, indicator2, cc);
plot (Th,wait=1);

}

IsoValue. IsoValue.
[

N

N
Ny
IR

AV
5aw%$%mﬁ%%g$%

416

AN

A
AVAVAVAVAVAVAVAVAVAVAVAVAV,VAVAY
‘mmgtnv‘uvmuvmv&&

S
AN

]
W23
W i2338

KASDERIAASIA
SO RSN
% VA Y AUSTAVAVAYAV S RaVAY g
AV AVAVAY, YAV VARG
VA% VAN NS
LRROREETRIX D
-
'ﬁ;mﬁéb"%ﬂ

Mo.000790851

AV
N
hai
VK

ZAVAVA
A
WY
Ko
s
QK

WA

Y4
X

0

s

o

s

V
TAVAVAYA
K
I
N
s
véi ]

V\’F
:
‘:L‘
VA
X
2

X
N
A
I/
A\
0
/\
‘8
PO
&
A

X
N

N
)
<
5
N
N
Vi

[t
<]
RN
\VAVA)
VRN
N
AN
N
mﬂﬁ%ﬁ«
<
N Y
&\
N

S

<

X
o

5

N

K\
A
SRk

£

XN
AV4

%
N
:
50
TAVAVAVaY

émm
A
A

<
SRR
KRS
=
<N

Y
AN
002
SRS
tﬂ AVa¥i

2
A

&
>
N
g

5 > X N
PR
ESNER
SRR
ARSIV
] AXSEKAOIUN¥ Y
A AV Y AVITAYA o g VN VYAV,
BN v b il
RS KT AN KRRk
N R A A TN NPT RIAN AR
A ROOANISINRHA AT TN ARSI AR NKRER
AR A SO
J AVAYAVAN NK ) ATH
I AVAY NAAAY/.VAVsY
e e RN vl
S S AT
RO RO OORI

VAN
AVAVAY

KRR
RRRASA
Q‘A‘VA
WX

V4
T
KX A

NN

\]
ORA
N/
X

VAVAY

g
X
%
S
¥
I\

AVAY

N
WA

>
0y

KK7
S\%

>
VAN
A
£
A
-
Do sVAVEN
oK/
K
58
B
%
o
pVi
K
\/)

VIV VAVAVAOuVA Ve : y
HRIRRRARI A RKNROA I A OS

N
V4

<
N
b

A
%
1
%
W
kX
)

/N

Figure 9.12: the error indicator with isotropic P, , the mesh and isovalue of the solution

9.2 Elasticity

Consider an elastic plate with undeformed shape Qx] — h,h[ in R3, Q@ C R?. By the defor-
mation of the plate, we assume that a point P(z1,x2,x3) moves to P(&1,&2,&3). The vector
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u = (u1,us,u3) = (& — x1,& — x9,&3 — x3) is called the displacement vector. By the defor-
mation, the line segment x,x + 7Ax moves approximately to x + u(x),x + 7Ax + u(x + 7Ax) for
small 7, where x = (21, 22, z3), Ax = (Azq, Axg, Azg). We now calculate the ratio between two

segments
n(r) = 7'_1|AX|_1 (Ju(x + 7AX) — u(x) + TAX| — 7|Ax|)

then we have (see e.g. [16, p.32])

limn(rt) =1+ 2eijyiuj)1/2 -1, 2e; =

7—0

Ouy Qug | (Oui Oy
Oaci 8.7}j 81‘3- 89@1

where v; = Ax;|Ax|~L. If the deformation is small, then we may consider that
(Oug/Ox;)(Quy/Ox;) =~ 0
and the following is called small strain tensor
1 au, 8Uj
fil) = 5 (axj * 8%)
The tensor e;; is called finite strain tensor.

Consider the small plane AII(x) centered at x with the unit normal direction n = (n1,ng,n3), then
the surface on AII(x) at x is

(015(x)nj, 095 (x)n;, 035 (x)n;)
where 0;;(x) is called stress tensor at x. Hooke’s law is the assumption of a linear relation between
o;; and g;; such as
0ij(X) = cijr(¥)ei; (%)
with the symmetry c;jr = cjiki, Cijkl = Cijiks Cijkl = Chiij-
If Hooke’s tensor c;jx;(x) do not depend on the choice of coordinate system, the material is called

isotropic at x. If ¢;jp; is constant, the material is called homogeneous. In homogeneous isotropic
case, there is Lamé constants A\, u (see e.g. [16, p.43]) satisfying

Oij = /\(5ijdivu + 2,u5ij (9.20)

where §;; is Kronecker’s delta. We assume that the elastic plate is fixed on I'px] — h,h[, T'p C
0. If the body force f = (fi, f2, f3) is given in Qx| — h,h| and surface force g is given in
Iy x]—h,h[,Txy = 9Q\ T'p, then the equation of equilibrium is given as follows:

_8j0ij = fz in QX]—h,h[, i:1,2,3 (921)
oin; = g onI'nx]—hh[, u;=0 onIpx]—~hh[, i=1,2,3 (9.22)

We now explain the plain elasticity.

Plain strain: On the end of plate, the contact condition ug = 0, g3 = is satisfied. In this case, we
can suppose that f3 = g3 = uz = 0 and w(x, xe, x3) = u(z, x2) for all —h < x3 < h.

Plain stress: The cylinder is assumed to be very thin and subjected to no load on the ends 3 = +h,
that is,
g3; = O, xr3 = :|:h, 1 1,2,3

The assumption leads that o3; = 0 in Qx| — h,h[ and w(xi,z2,23) = u(x1,z2) for all
—h < x3 < h.
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Generalized plain stress: The cylinder is subjected to no load at z3 = £h. Introducing the mean
values with respect to thickness,

1 h
/ U(IEl,xQ,l'?,)dxg
—h

ui(xr1,x2) =
’L( 17 2) 2h

and we derive 3 = 0. Similarly we define the mean values f,g of the body force and
surface force as well as the mean values ;; and 7;; of the components of stress and strain,
respectively.

In what follows we omit the overlines of @, f, g, g;; and g;;. Then we obtain similar equation of
equilibrium given in replacing x| — h, h[ with ©Q and changing i = 1, 2. In the case of plane
stress, 055 = N 0;dive + 2ueij, A* = (2Apn) /(A + ).

The equations of elasticity are naturally written in variational form for the displacement vector
u(z) €V as

/Q[Qﬂﬁij(u)ﬁij(v) + Aeii(u)ejj(v)] = /Q f-v+ /Fg o,V eV

where V is the linear closed subspace of H'($)2.

Example 9.13 (Beam.edp) Consider elastic plate with the undeformed rectangle shape ]0,10[x]0, 2.
The body force is the gravity force f and the boundary force g is zero on lower and upper side. On
the two vertical sides of the beam are fixed.

// a weighting beam sitting on a
int bottombeam = 2;
border a(t=2,0) { x=0; y=t ;label=1;}; // left beam
border b (t=0,10) { x=t; y=0 ;label=bottombeam;}; // bottom of beam
border c(t=0,2) { x=10; y=t ;label=1;}; // rigth beam
border d(t=0,10) { x=10-t; y=2; label=3;}; // top beam
real E = 21.5;
real sigma = O.29;
real E/ (2% (1+sigma));
real lambda = E*51gma/ (l+sigma) *x (1-2*xsigma)) ;
real gravity = -0.05;

mesh th = buildmesh( b (20)+c(5)+d(20)+a(5));
fespace Vh(th, [P1,P1]);
vh [uu,vv], [w,s];

cout << "lambda,mu,gravity ="<<lambda<< " " << mu << " " << gravity << endl;
// deformation of a beam under its own weight
real sqrt2=sqrt(2.); // see lame.edp example [3.5]
macro epsilon (ul,u2) [dx (ul),dy (u2), (dy (ul)+dx (u2)) /sqrt2] // EOM
macro div(u,v) ( dx(u)+dy(v) ) // EOM

solve bb([uu,vv], [w,s])=
int2d (th) (
lambda*div (w, s) xdiv (uu, vv)
+2.xmux* ( epsilon(w,s)’ xepsilon (uu,vv) )
)
+ int2d(th) (-gravityxs)
+ on(1l,uu=0,vv=0)

14

plot ([uu,vv],wait=1);
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plot ([uu,vv],wait=1,bb=[[-0.5,2.5]1,[2.5,-0.5]11);
mesh thl = movemesh (th, [x+tuu, y+vv]);
plot (thl,wait=1);

Example 9.14 (beam-3d.edp) Consider elastic box with the undeformed parallelepiped shape |0, 5[x]0, 1[x]0, 1].
The body force is the gravity force f and the boundary force g is zero on all face except one the one
vertical left face where the beam is fized.

include "cube.idp"

int[int] Nxyz=[20,5,5];

real [int,int] Bxyz=[[0.,5.],[0.,1.]1,[0.,1.11;
int [int,int] Lxyz=[[1,2],1[2,2],102,21];
mesh3 Th=Cube (Nxyz,Bxyz, Lxyz) ;

real E = 21.5e4, sigma = 0.29;
real mu = E/ (2% (1+sigma));
real lambda = Exsigma/ ((l+sigma) = (1-2xsigma)) ;

real gravity = -0.05;

fespace Vh (Th, [P1,P1,P1]);
Vh [ul,u2,u3], [vl,v2,v3];

cout << "lambda,mu,gravity ="<<lambda<< " " << mu << " " << gravity << endl;

real sqgrt2=sqrt(2.);

macro epsilon(ul,u2,u3) [dx (ul),dy (u2),dz (u3), (dz (u2)+dy (u3)) /sqrt2,
(dz (ul)+dx (u3)) /sqrt2, (dy (ul)+dx (u2)) /sqrt2] // EOM
macro div(ul,u2,u3) ( dx(ul)+dy(u2)+dz (u3) ) // EOM

solve Lame ([ul,u2,u3], [vl,v2,v3])=
int3d (Th) (
lambda*div (ul,u2,u3) xdiv(vl,v2,v3)
+2.xmu* ( epsilon(ul,u2,u3)’ xepsilon(vl,v2,v3) ) // 7)
)
- int3d(Th) (gravity=*v3)
+ on(l,ul=0,u2=0,u3=0)
real dmax= ul[] .max;
cout << " max displacement = " << dmax << endl;
real coef= 0.1/dmax;
int [int] ref2=[1,0,2,0];
mesh3 Thm=movemesh3 (Th, transfo=[x+tulxcoef, y+tu2+coef, z+tu3xcoef], label=ref2);
Thm=change (Thm, label=ref?2);

plot (Th, Thm, wait=1,cmm="coef amplification = "+coef ); // see fig 7?
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9.2.1 Fracture Mechanics

Consider the plate with the crack whose undeformed shape is a curve 3 with the two edges 1, 2.
We assume the stress tensor o;; is the state of plate stress regarding (x,y) € Qx = Q \ ¥. Here
() stands for the undeformed shape of elastic plate without crack. If the part I'y of the boundary
0Q is fixed and a load £ = (f,g) € L?>(Q)? x L?>(I'y)? is given, then the displacement w is the
minimizer of the potential energy functional

E(v; L,Q0y) = ; {w(z,v) - f-v} - L g

over the functional space V(Qy),
V(Qs)={ve H'(Qs)* v=0 onTp=00\Ty},
where w(z,v) = 0;(v)e;;(v)/2,
0ij(v) = Cijr(x)ep(v), ei5(v) = (0vi/0x; + Ovj/0x;)/2, (Cijrr = Hooke’s tensor).

If the elasticity is homogeneous isotropic, then the displacement w(x) is decomposed in an open
neighborhood Uy, of 7 as in (see e.g. [17])

2
w(z) = > Ki(y)ry 2S5 (0k) + wip(x) forz € Qs NUy, k=1,2 (9.23)
=1

with uy g € H*(Qx NUy)?, where Uy, k = 1,2 are open neighborhoods of 7y such that 9L, NU; =
Y15 aL'm NU; = V2, and

1 1 [2k — 1] cos(0y/2) — cos(30x/2)
Sal) = 1 G [ 2k + 1] sin(6,/2) + sin(360/2) } ’ (9.24)
S0 = 1 —[2k — 1] sin(0/2) + 3sin(36;/2)
k2\7k 4p (2m)1/2 | —[2K 4 1] cos(0),/2) + cos(30x/2)

where p is the shear modulus of elasticity, K = 3 —4v (v is the Poisson’s ratio) for plane strain and

_ 3—v
k = 37, for plane stress.

The coefficients Kj(y;) and Ka(7;), which are important parameters in fracture mechanics, are
called stress intensity factors of the opening mode (mode I) and the sliding mode (mode II),
respectively.

For simplicity, we consider the following simple crack

Q={(z,y): -1<z<l,-1<y<l1}, Y={(z,y): -1 <x<0,y=0}

with only one crack tip v = (0,0). Unfortunately, FreeFem++ cannot treat crack, so we use the
modification of the domain with U-shape channel (see Fig. |5.30) with d = 0.0001. The undeformed
crack ¥ is approximated by

e = {(zy): -1<2<-10%d,—d <y <d}
U (z,y): —10%xd<z<0,—d+01xzx<y<d—01xzx}

and I'p = R in Fig. In this example, we use three technique:

e Fast Finite Element Interpolator from the mesh Th to Zoom for the scale-up of near ~.
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e After obtaining the displacement vector u = (u,v), we shall watch the deformation of the
crack near 7 as follows,

mesh Plate = movemesh (Zoom, [xtu,y+v]);
plot (Plate);

e Adaptivity is an important technique here, because a large singularity occurs at v as shown
in ((9.23)).

The first example creates mode I deformation by the opposed surface force on B and T in the
vertical direction of 3, and the displacement is fixed on R.

In a laboratory, fracture engineers use photoelasticity to make stress field visible, which shows the
principal stress difference

01 — 09 = \/(0'11 — 0'22)2 + 40'%2 (925)

where o1 and oy are the principal stresses. In opening mode, the photoelasticity make symmetric
pattern concentrated at +.

Example 9.15 (Crack Opening, K5(7) = 0) {CrackOpen.edp}
real d = 0.0001;
int n = 5;
real cb=1, ca=1l, tip=0.0;
border L1 (t=0,ca-d) { x=-cb; y=-d-t; }
border L2 (t=0,ca-d) { x=-cb; y=ca-t; }
border B (t=0,2) { x=cbx(t-1); y=-ca; }
border C1(t=0,1) { x=-cax*x(l-t)+(tip-10xd)x*t; y=d; }
border C21(t=0,1) { x=(tip-10xd)* (1-t)+tip*t; y=d*(1-t); }
border C22(t=0,1) { x=(tip-10xd)*t+tipx (1-t); y=-d=*t; }
border C3(t=0,1) { x=(tip-10xd)=*(1l-t)-cax*t; y=-d; }
border C4 (t=0,2+d) { x=-ca; y=-d+t; }
border R (t=0,2) { x=cb; y=cbx(t-1); }
border T (t=0,2) { x=cbx(l1-t); y=ca; }
mesh Th = buildmesh (L1 (n/2)+L2(n/2)+B(n)
+C1(n)+C21(3)+C22(3)+C3(n)+R(n)+T(n));
cb=0.1; ca=0.1;
plot (Th,wait=1);
mesh Zoom = buildmesh (L1l (n/2)+L2(n/2)+B(n)+C1l (n)
+C21 (3)+C22(3)+C3(n)+R(n)+T (n));
plot (Zoom,wait=1) ;
real E = 21.5;
real sigma = 0.29;
real mu = E/ (2x (1+sigma));
real lambda = Exsigma/ ((l+sigma) * (1-2xsigma)) ;
fespace Vh(Th, [P2,P2]);
fespace zVh (Zoom,P2);
vh [u,v], [w,s];
solve Problem([u,v], [w,s]) =
int2d (Th) (
2+mu#* (dx (u) xdx (w) + ((dx (v)+dy (u) )~ (dx(s)+dy (w))) /4 )
+ lambdax (dx (u) +dy (v) ) * (dx (w) +dy (s)) /2
)
-intld(Th,T) (0.1% (4-x) *s)+intld(Th,B) (0.1% (4-x) *s)
+on (R, u=0) +on (R, v=0) ; // fixed
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zVh Sx, Sy, Sxy, N;
for (int i=1; 1i<=5; i++)

{

mesh Plate = movemesh (Zoom, [x+u, y+v]); // deformation near v
Sx = lambdax* (dx (u)+dy (v)) + 2xmuxdx(u);
Sy = lambdax (dx (u)+dy(v)) + 2xmuxdy (V) ;
Sxy = mux (dy(u) + dx(v));
N = 0.1xl*sgrt ((Sx—-Sy) "2+4%3xy~2); // principal stress difference
if (i==1) {
plot (Plate,ps="1stCOD.eps", bw=1); // Fig. [9.13
plot (N, ps="1stPhoto.eps",bw=1); // Fig.
} else if (i==5) {
plot (Plate,ps="LastCOD.eps",bw=1) ; // Fig. 9.14
plot (N, ps="LastPhoto.eps",bw=1); // Fig. 9.14
break;

}
Th=adaptmesh (Th, [u,Vv]);
Problem;

Figure 9.13: Crack open displacement Figure 9.14: COD and Principal stress dif-
(COD) and Principal stress difference in the ference in the last adaptive mesh
first mesh

It is difficult to create mode II deformation by the opposed shear force on B and T that is observed
in a laboratory. So we use the body shear force along ¥, that is, the x-component f; of the body
force f is given by

fi(z,y) = H(y —0.001) « H(0.1 —y) — H(—y — 0.001) * H(y + 0.1)

where H(t) =11ift > 0; =01if ¢ < 0.

Example 9.16 (Crack Sliding, K2(7) = 0) (use the same mesh Th)

cb=0.01; ca=0.01;

mesh Zoom = buildmesh (L1l (n/2)+L2(n/2)+B(n)+C1l (n)
+C21(3)+C22(3)+C3 (n)+R(n)+T(n));

(use same FE-space Vh and elastic modulus)

fespace Vhl (Th,P1);

Vhl fx = ((y>0.001)x(y<0.1))—-((y<=0.001)*(y>-0.1)) ;

solve Problem([u,v], [w,s]) =
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int2d (Th) (
2xmux (dx (u) *dx (W) + ((dx (v)+dy (u)) * (dx (s)+dy (w))) /4 )
+ lambdax (dx (u) +dy (v) ) * (dx (w) +dy (s) ) /2
)
—int2d (Th) (fx*w)
+on (R, u=0) +ton (R, v=0) ; // fixed

4

for (int i=1; i<=3; i++)
{

mesh Plate = movemesh (Zoom, [x+u,y+v]); // deformation near =y
Sx = lambdax* (dx (u)+dy (v)) + 2xmuxdx (u);
Sy = lambdax* (dx (u)+dy(v)) + 2xmuxdy (V) ;
Sxy = mux (dy (u) + dx(v));
N = 0.1x1lxsgrt ((Sx-Sy) "2+4xSxy~2); // principal stress difference
if (i==1) {
plot (Plate,ps="1stCOD2.eps",bw=1); // Fig.
plot (N, ps="1stPhoto2.eps",bw=1); // Fig.
} else if (i==3) {
plot (Plate, ps="LastCOD2.eps",bw=1); // Fig.
plot (N, ps="LastPhoto2.eps",bw=1); // Fig.
break;

}
Th=adaptmesh (Th, [u,Vv]);
Problem;

—

—) —€3%)

4/\

Figure 9.15: (COD) and Principal stress dif- Figure 9.16: COD and Principal stress dif-
ference in the first mesh ference in the last adaptive mesh

9.3 Nonlinear Static Problems
Here we propose to solve the following non-linear academic problem of minimization of a functional
1 2
Jw) = [ SF(VulP) —usb
Q2
where u is function of H}(Q2) and f defined by

fx)=axx+z—In(1+z), f(r)=a+ L, f(z) =

1+ (1+x)2
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9.3.1 Newton-Raphson algorithm
Now, we solve the Euler problem V.J(u) = 0 with Newton-Raphson algorithm, that is,
" =y — (V2T (u™) 7 x VI (u™)

First we introduce the two variational form vdJ and vhJ to compute respectively V.J and V2.J

// method of Newton—-Raphson to solve dJ(u)=0;
//
un+1 =" = (ad'])fl % dJ(’LLn)
Oui
/) e
Ph dalpha ; //  to store 2f"(|Vul?) optimisation
// the variational form of evaluate dJ = V.J
/) e
// dd = £’ ()#*( dx(u)+dx(vh) + dy(u)+dy (vh)
varf vdJ(uh,vh) = int2d(Th) ( alphax( dx(u)*dx(vh) + dy(u)*dy(vh) ) - bxvh)
+ on(l1l,2,3,4, uh=0);
// the variational form of evaluate ddJ = V?J
// hJ(uh,vh) = f’ () *( dx(uh) *dx(vh) + dy(uh) *dy (vh)
// + 2xf77 () ( dx(u) »dx (uh) + dy(u)*dy(uh) ) * (dx(u)*dx(vh) +
dy (u) »dy (vh))
varf vhJ(uh,vh) = int2d(Th) ( alphax* ( dx(uh)*dx(vh) + dy (uh) *dy(vh) )
+ dalphax ( dx(u)*dx(vh) + dy(u)*dy (vh) ) *x ( dx (u) xdx (uh) + dy(u)*xdy (uh) ) )
+ on(l,2,3,4, uh=0);
// the Newton algorithm
Vh v, w;
u=0;
for (int i=0;i<100;i++)
{
alpha = df ( dx(u)*dx (u) + dy(u)*dy(u) ) ; // optimization
dalpha = 2xddf ( dx(u)*dx(u) + dy(u)=*dy(u) ) ; // optimization
v[]= vdJ(0,Vh); // v=VJ(u)
real res= v[]'*v[]; // the dot product
cout << i << " residu”2 = " << res << endl;
if( res< le-12) break;
matrix H= vhJ(Vh,Vh, factorize=1, solver=LU) ; //
wl]=H"-1xv[];
ull -= wll;

}

plot (u,wait=1,cmm="solution with Newton-Raphson");

Remark: This example is in Newton . edp file of examples++-tutorial directory.
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9.4 Eigenvalue Problems

This section depends on your installation of FreeFem++; you need to have compiled (see README_arpack),
ARPACK. This tools is available in FreeFem++ if the word “eigenvalue” appear in line “Load:”,
like:

—— FreeFemt+ v1.28 (date Thu Dec 26 10:56:34 CET 2002)
file : LapEigenValue.edp
Load: lg_fem lg_mesh eigenvalue

This tools is based on the arpack++ F_-] the object-oriented version of ARPACK eigenvalue package
.

The function EigenValue computes the generalized eigenvalue of Au = ABu where sigma =o¢ is the
shift of the method. The matrix OP is defined with A — ¢ B. The return value is the number of

converged eigenvalue (can be greater than the number of eigen value nev=)
int k=EigenValue (OP,B,nev= , sigma= );
where the matrix OP = A — ¢ B with a solver and boundary condition, and the matrix B.

Note 9.1 Boundary condition and Eigenvalue Problems

The locking (Dirichlet ) boundary condition is make with exact penalization so we put 1e30=tgv on
the diagonal term of the locked degree of freedom (see equation (6.31)). So take Dirichlet boundary
condition just on A and not on B. because we solve w = OP~1 % B xv.

If you put locking (Dirichlet ) boundary condition on B matriz (with key work on) you get small
spurious modes (1073), due to boundary condition, but if you forget the locking boundary condition
on B matriz (no key work “on”) you get huge spurious (103°) modes associated to these boundary
conditons. We compute only small mode, so we get the good one in this case.

sym= the problem is symmetric (all the eigen value are real)
nev= the number desired eigenvalues (nev) close to the shift.
value= the array to store the real part of the eigenvalues
ivalue= the array to store the imag. part of the eigenvalues
vector= the FE function array to store the eigenvectors

rawvector= an array of type real [int, int] to store eigenvectors by column. (up to version
2-17).

For real non symmetric problems, complex eigenvectors are given as two consecutive vectors,
so if eigenvalue k and k+1 are complex conjugate eigenvalues, the kth vector will contain the
real part and the k 4+ 1th vector the imaginary part of the corresponding complex conjugate
eigenvectors.

tol= the relative accuracy to which eigenvalues are to be determined;
sigma= the shift value;

maxit= the maximum number of iterations allowed;

"http://www.caam.rice.edu/software/ARPACK/
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nev= the number of Arnoldi vectors generated at each iteration of ARPACK.

Example 9.17 (lapEignenValue.edp) In the first ezample, we compute the eigenvalues and the eigen-
vectors of the Dirichlet problem on square £ =)0, 7[2.
The problem is to find: X\, and Vuy in Rx H}(Q)

/Vu)\VU:)\/uv Yo € H}(Q)
Q Q

The exact eigenvalues are Ay, = (n? +m?), (n,m) € N2 with the associated eigenvectors are
Um,n = sin(nzx) * sin(my).

We use the generalized inverse shift mode of the arpack++ library, to find 20 eigenvalues and
eigenvectors close to the shift value o = 20.

// Computation of the eigen value and eigen vector of the
// Dirichlet problem on square 0,m[?
/) e
// we use the inverse shift mode
// the shift is given with the real sigma
/) T
// find A and uy € H}(Q) such that:
// / VurVou = )\/ uzv, Yo € Hy(Q)
JQ Ja

verbosity=10;
mesh Th=square (20,20, [pi*x,pi*y]);
fespace Vh(Th,P2);

Vh ul,u2;

real sigma = 20; // value of the shift
// OP = A - sigma B ; // the shifted matrix

varf op(ul,u2)= int2d(Th) ( dx(ul)*dx(u2) + dy(ul)*dy(u2) - sigmax ulxu2 )

+ on(l,2,3,4,ul=0) ; // Boundary condition
varf b ([ul], [u2]) = int2d(Th) ( ul*u2 ); // no Boundary condition see note
1
matrix OP= op (Vh,Vh,solver=Crout, factorize=1); // crout solver because the

matrix in not positive
matrix B= b (Vh,Vh,solver=CG,eps=1e-20);

// important remark:

// the boundary condition is make with exact penalization:

// we put 1e30=tgv on the diagonal term of the lock degree of freedom.
// So take Dirichlet boundary condition just on a variational form

// and not on b variational form.

/7 because we solve w=O0OP 1%xBxv

int nev=20; // number of computed eigen value close to sigma

real[int] ev(nev); // to store the nev eigenvalue
Vhlint] eV (nev); // to store the nev eigenvector

int k=EigenValue (OP, B, sym=true, sigma=sigma, value=ev,vector=eV,
tol=1le-10,maxit=0,ncv=0);
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// tol= the tolerance

// maxit= the maximum iteration see arpack doc.

// ncv see arpack doc. |http://www.caam.rice.edu/software/ARPACK/
// the return value is number of converged eigen value.

for (int i=0;i<k;i++)
{
ul=evVi[i];

real gg int2d(Th) (dx (ul) *dx (ul) + dy(ul)*dy(ul));
real mm= int2d(Th) (ul*ul) ;
cout << " ——— " <K< i< " " << ev[i]< " err= "
<<int2d(Th) (dx (ul) *dx (ul) + dy(ul)*dy(ul) - (ev[i])#*ulxul) << " —-—— "<<endl;
plot (eV[i],cmm="Eigen Vector "+i+" wvaleur =" + ev[i] ,wait=1,value=1);

The output of this example is:

Nb of edges on Mortars = 0
Nb of edges on Boundary 80, neb = 80
Nb Of Nodes = 1681
Nb of DF = 1681
Real symmetric eigenvalue problem: Axx — Bxxxlambda

Thanks to ARPACK++ class ARrcSymGenEig
Real symmetric eigenvalue problem: Axx — Bxxxlambda
Shift and invert mode sigma=20

Dimension of the system : 1681
Number of ’requested’ eigenvalues : 20
Number of ’converged’ eigenvalues : 20
Number of Arnoldi vectors generated: 41
Number of iterations taken I
Eigenvalues:

lambda[l]: 5.0002

lambda[2]: 8.00074

lambda([3]: 10.0011

lambda[4]: 10.0011

lambda[5]: 13.002

lambda[6]: 13.0039

lambda[7]: 17.0046

lambda[8]: 17.0048

lambda[9]: 18.0083

lambda[10]: 20.0096

lambda[1l1l]: 20.0096

lambda[l2]: 25.014

lambda[13]: 25.0283

lambda[1l4]: 26.0159

lambda[15]: 26.0159

lambda[1l6]: 29.0258

lambda[17]: 29.0273

lambda[18]: 32.0449

lambda[19]: 34.049
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lambda[20]: 34.0492

-——— 0 5.0002 err= -0.000225891 —-—-
-——— 1 8.00074 err= -0.000787446 ——-
-——— 2 10.0011 err= -0.00134596 ——-
10.0011 err= -0.00134619 ——-
13.002 err= -0.00227747 ——-

13.0039 err= -0.004179 -—-

17.0046 err= -0.00623649 ——-
17.0048 err= -0.00639952 ——-
18.0083 err= -0.00862954 ——-
-——— 9 20.0096 err= -0.0110483 ——-

-——— 10 20.0096 err= -0.0110696 ——-
-——— 11 25.014 err= -0.0154412 ——-

-——— 12 25.0283 err= -0.0291014 ——-
-——— 13 26.0159 err= -0.0218532 ——-
-——— 14 26.0159 err= -0.0218544 ——-
--——— 15 29.0258 err= -0.0311961 —-—-
-——— 16 29.0273 err= -0.0326472 ——-
———— 17 32.0449 err= -0.0457328 —--—-
-——— 18 34.049 err= -0.0530978 ——-

-——— 19 34.0492 err= -0.0536275 ——-

O J o O s W

Eigen Vector 11 valeur =25.014. Eigen Vector 12 valeur =25.0283

Figure 9.17:  Isovalue of 11th eigenvector Figure 9.18:  Isovalue of 12th eigenvector
Ug 3 — U3 4 Ug3 + U3 4
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9.5 Evolution Problems

FreeFem++ also solves evolution problems such as the heat equation:

— —pAu=f in Qx]0,T7], (9.26)
u(x,0) = ug(x) in (Ou/On) (x,t) =0 on 00x]0,T7.
with a positive viscosity coefficient u and homogeneous Neumann boundary conditions. We solve

(19.26) by FEM in space and finite differences in time. We use the definition of the partial derivative
of the solution in the time derivative,

B’LL IERT U(ﬂ%yat) B U(l‘,y,t B T)
a(xayat) _}_% T

which indicates that v (x,y) = u(z,y, m7) will satisfy approximatively

Ou ~ Um(:l,‘,y) B um—l(x,y)
E(xvyamT) — -

The time discretization of heat equation (9.27) is as follows:

m+1 _ . m
“ i pAy™ =t in O (9.27)
-
u’(x) = ug(x) in ou™ Jon(x) =0 on 9N, forallm=0,---,[T/7],

which is so-called backward Euler method for (9.27)). To obtain the variational formulation, multiply
with the test function v both sides of the equation:

/{umHv — rAu" Ty} = /{um +7fm e
Q Q

By the divergence theorem, we have

/{umHv +7Vu™ Vo) — 7 (Ou™ ! Jon) v = /{umv + 7 fm )
Q Q

o0

By the boundary condition du™*!/dn = 0, it follows that
/{um+1v + VU™t V) — /{umv +7fm ) = 0. (9.28)
Q Q

Using the identity just above, we can calculate the finite element approximation u}" of v™ in a
step-by-step manner with respect to t.

Example 9.18 We now solve the following example with the ezact solution u(zx,y,t) = tz*.

0
8%‘ — pAu =2t — p12ta? in Qx]0,3[, Q =]0, 12
u(z,y,0) =0 on Q, ulpg =t * xt

// heat equation Oyu= —plAu = z* — pul2tz?
mesh Th=square(16,16);
fespace Vh (Th,P1);



240 CHAPTER 9. MATHEMATICAL MODELS

Vh u,v,uu, £,9;

real dt = 0.1, mu = 0.01;

problem dHeat (u,v) =
int2d (Th) ( u*v + dtxmux (dx(u) *dx (v) + dy(u)*dy(v)))
+ int2d (Th) (- uuxv — dtxfxv )
+ on(l,2,3,4,u=q9);

real t = 0; // start from t=0
uu = 0; // u(x,y,0)=0
for (int m=0;m<=3/dt;m++)
{

t=t+dt;

f = x"4-mu*xtx12xx"2;

g = t*xx"4;

dHeat;

plot (u,wait=true);

uu = uj;

cout <<"t="<<t<<"L"2-Error="<<sqrt ( int2d(Th) ((u-t*x"4)"2) ) << endl;
}

1/2
In the last statement, the L*-error (fﬂ ’u — tx4’2) is calculated at t = mr,7 =0.1. Att=0.1,

the error is 0.000213269. The errors increase with m and 0.00628589 at t = 3.
The iteration of the backward Euler is made by for loop (see Section .

Note 9.2 The stiffness matriz in the loop is used over and over again. FreeFem++ support reuses
of stiffness matriz.

9.5.1 Mathematical Theory on Time Difference Approximations.

In this section, we show the advantage of implicit schemes. Let V., H be separable Hilbert space
and V is dense in H. Let a be a continuous bilinear form over V x V with coercivity and symmetry.
Then /a(v,v) become equivalent to the norm ||v|| of V.
Problem Ev(f,Q): For a given f € L*(0,T; V'), v’ € H

%(u(t),v)—&—a(u(t),v) — (f®w) VeV, aete[0,T] (9.29)

u(0) = u°
where V' is the dual space of V. Then, there is an unique solution v € L*>(0,T; H) N L*(0,T; V).

Let us denote the time step by 7 > 0, Ny = [T'/7]. For the discretization, we put u" = u(n7) and
consider the time difference for each 6 € [0, 1]

1
(=g 00) +a (it 00) = (77, 00) (9.30)
i:1,~--’m’ n:o77NT

u2+0 — 9u2+1 + (1 _ G)UZ, fn+6' — 0fn+1 + (1 _ Q)fn

Formula (9.30) is the forward Euler scheme if 6 = 0, Crank-Nicolson scheme if § = 1/2, the
backward Euler scheme if 6 = 1.
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Unknown vectors u” = (u}, -, ul)T in
W(2) = ufi(2) + - + uldula), b, ulh €R
are obtained from solving the matrix
(M + 0t A" = {M - (1 - 0) 7AW" +7{0f"™ + (1-0)f"} (9.31)

M = (my), mi;=(¢;¢i),  A=(ay), aij=alg;,d)
Refer [22], pp.70-75] for solvability of (9.31). The stability of (9.31) is in [22, Theorem 2.13]:

Let {7}ni0 be regular triangulations (see Section [5.4). Then there is a number
co > 0 independent of A such that,

g+ r 2 1402, 1 6 €l0,1/2)

up|? < - (9.32)
W92+ SpIS AN, ee[1/2.)
if the following are satisfied:
1. When 0 € [0,1/2), then we can take a time step 7 in such a way that
2(1 — 6)
s h? 9.33
(1—260)c3 (9:33)
for arbitrary ¢ € (0,1).
2. When 1/2 < 6 <1, we can take 7 arbitrary.
Example 9.19
mesh Th=square(12,12);
fespace Vh (Th,P1l);
fespace Ph(Th,PO);
Ph h = hTriangle; // mesh sizes for each triangle
real tau = 0.1, theta=0.;
func real f(real t) {
return x"2x (x-1) "2 4+ t* (-2 + 12xx — 11xx"2 — 2+x"3 + x74);
}
ofstream out ("err02.csv"); // file to store calculations

out << "mesh size = "<<h[].max<<", time step = "<<tau<<endl;
for (int n=0;n<5/tau;n++) \\
out<<nxtau<<",";
out << endl;
Vh u,v,o01dU;
Vh f1, £0;
problem aTau(u,v) =
int2d (Th) ( u*v + thetaxtaux* (dx(u) *dx(v) + dy(u)*dy(v) + uxv))
— int2d (Th) (0ldU*xv - (l-theta)*taux* (dx (0ldU) xdx (v) +dy (01dU) xdy (v) +01dUxVv) )
— int2d(Th) (taux ( theta*xfl+ (1-theta)*f0 )*v );

while (theta <= 1.0) {
real t = 0, T=3; // from t=0 to T
0ldUu = 0; // u(x,y,0)=0
out <<theta<<",";
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for (int n=0;n<T/tau;n++) {

t = t+tau;

fO0 = f(n*tau); fl = f((n+l)+*tau);

aTau;

0ldU = uj;

plot (u);

Vh uex = t*x"2x(1l-x)"2; // exact sol.=tx%(1—x)?
Vh err = u - uex; // err =FE-sol - exact
out<< abs (err[].max)/abs (uex[].max) <<","; // llerr|| Lo )/ |teell Lo (@)

}
out << endl;
theta = theta + 0.1;

6 method
0.16 -
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Figure 9.19: max,eq [u}(0) — ez (n7T)|/ max,eq [ter(nT)| at n =10,1,---,29

We can see in Fig. that uy (0) become unstable at § = 0.4, and figures are omitted in the case
0 <0.4.

9.5.2 Convection

The hyperbolic equation
0w+ o - Vu = f; for a vector-valued function e, (9.34)

appears frequently in scientific problems, for example in the Navier-Stokes equations, in the Convection-
Diffusion equation, etc.

In the case of 1-dimensional space, we can easily find the general solution (z,t) — u(z,t) =
u®(x — at) of the following equation, if « is constant,

0w + adzu = 0, u(z,0) = u’(z), (9.35)

because dyu + adyu = —at® + ai® = 0, where @° = du’(x)/dz. Even if o is not constant, the
construction worsk on similar principles. One begins with the ordinary differential equation (with
the convention that « is prolonged by zero apart from (0, L) x (0,7)):

X(T)z—i—&(X(T),T), T€(0,t) X(t)==
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In this equation 7 is the variable and x,t are parameters, and we denote the solution by X /(7).
Then it is noticed that (z,t) — v(X(7),7) in 7 = t satisfies the equation

O + 0,0 = 0 X0+ ad, Xv =0

and by the definition 8;X = X = 4+« and 8,X = 8,z in 7 = ¢, because if 7 = t we have X(7) ==.
The general solution of (9.35) is thus the value of the boundary condition in X ;(0), that is to say
u(z,t) = u®(X;+(0)) where X, +(0) is on the x axis, u(z,t) = u®(X;+(0)) if X;+(0) is on the axis
of t.

In higher dimension Q C R, d = 2,3, the equation for the convection is written

Odu+a-Vu=01in Q x (0,7)

where a(z,t) € R?. FreeFem++ implements the Characteristic-Galerkin method for convection
operators. Recall that the equation ((9.34) can be discretized as

Du . du ax
i = f ie. T (X(t),t) = f(X(t),t) where E(t) =a(X(t),1)

where D is the total derivative operator. So a good scheme is one step of backward convection by
the method of Characteristics-Galerkin

1
= (u™ (@) —u™(X (1)) = [ (x) (9.36)

T

where X™(x) is an approximation of the solution at ¢ = m7 of the ordinary differential equation

dX

(B = a™(X (1), X ((m+ D7) = 2.

where o (z) = (a1(x, m7),a2(x,m7)). Because, by Taylor’s expansion, we have

ot

d m )
WX () = w X ((m o Dr) — 730 S (X (4 1)) 2 (o 1)7) + o)
i=1 "
Vu™(z) + o(T) (9.37)

= u"(z) —Ta™(x) -

where X;(t) are the i-th component of X (t), u™(z) = u(x,m7) and we used the chain rule and
x =X ((m+ 1)7). From (9.37), it follows that

u™(X™(2)) = u™(z) — T (x) - VU™ (z) + o(T). (9.38)
Also we apply Taylor’s expansion for t — u™(z — & (z)t), 0 < t < 7, then
u(z —ar) =u"(z) — Ta™(x) - Vu" (x) + o(7T).

Putting
convect (o, —7,u™) =~ u"™ (x — a"'7),

we can get the approximation
u™ (X™(x)) = convect ([a]*,a5'], —7,u™) by X" =z — x — 7[a]"(x), a5’ (x)]).

A classical convection problem is that of the “rotating bell” (quoted from [14][p.16]). Let Q be
the unit disk centered at 0, with its center rotating with speed oy = y, ao = —x We consider the
problem (9.34) with f = 0 and the initial condition u(x,0) = u°(x), that is, from (9.36))

u" T (z) = u™(X™(x)) = convect (a, —7,u™).
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The exact solution is u(x,t) = u(X (t)) where X equals x rotated around the origin by an angle
6 = —t (rotate in clockwise). So, if u” in a 3D perspective looks like a bell, then u will have exactly
the same shape, but rotated by the same amount. The program consists in solving the equation
until 7" = 27, that is for a full revolution and to compare the final solution with the initial one;
they should be equal.

Example 9.20 (convect.edp) border C(t=0, 2+pi) { x=cos(t); y=sin(t); }; // the
unit circle
mesh Th = buildmesh (C(70)); // triangulates the disk
fespace Vh (Th,P1);
Vh u0 = exp(-10%((x-0.3)"2 +(y-0.3)72)); // give ud
real dt = 0.17,t=0; // time step
Vh al = -y, a2 = x; // rotation velocity
Vh uj; // Mt
for (int m=0; m<2xpi/dt ; m++) {
t += dt;
u=convect ([al,a2],-dt,u0); // um™t = ym(X™(2))
ul0=u; // m++
plot (u, cmm=" t="+t + ", min=" + ul].min + ", max=" + u[].max,wait=0);

}i

Note 9.3 The scheme convect is unconditionally stable, then the bell become lower and lower (the

mazimum of u3” is 0.406 as shown in Fig. .

convection: t=0, min=1.55289e-09, max=0.983612 convection: t=6.29, min=1.55289e-09, max=0.40659m=37
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Figure 9.20: u0 = ¢~ 10(@=03)"+(=03)9) Figure 9.21: The bell at t = 6.29

9.5.3 2D Black-Scholes equation for an European Put option

In mathematical finance, an option on two assets is modeled by a Black-Scholes equations in two
space variables, (see for example Wilmott et al[39] or Achdou et al [3]).

(o12)? 0%u  (owy)? O%u

2 Ox2 2 Oy
02 ou %

u
+ PTY Bty trSi5-+75 3y

Ou +

(9.39)

—rP =0



9.5. EVOLUTION PROBLEMS 245

which is to be integrated in (0,7) x RT x R* subject to, in the case of a put
u(x,y,T) = (K — max (z,y))" . (9.40)

Boundary conditions for this problem may not be so easy to device. As in the one dimensional
case the PDE contains boundary conditions on the axis 1 = 0 and on the axis x5 = 0, namely
two one dimensional Black-Scholes equations driven respectively by the data wu (0,4+00,T) and
u (400,0,T). These will be automatically accounted for because they are embedded in the PDE.
So if we do nothing in the variational form (i.e. if we take a Neumann boundary condition at these
two axis in the strong form) there will be no disturbance to these. At infinity in one of the variable,
as in 1D, it makes sense to impose u = 0. We take

01=03, 05=03, p=0.3, r=005 K=40, T=0.5 (9.41)

An implicit Euler scheme is used and a mesh adaptation is done every 10 time steps. To have
an unconditionally stable scheme, the first order terms are treated by the Characteristic Galerkin
method, which, roughly, approximates

ou ou ou 1, iy v o
o + a5 + aga—y = (u" (z) — u" (z — aT)) (9.42)

Example 9.21  [BlackSchol.edp]

// file BlackScholes2D.edp
int m=30,L=80,LL=80, j=100;
real sigx=0.3, sigy=0.3, rho=0.3, r=0.05, K=40, dt=0.01;
mesh th=square (m,m, [L*x,LL*y]);
fespace Vh (th,P1l);

Vh u=max (K-max (x,vy),0.);
Vh xveloc, yveloc, v,uold;

for (int n=0; nx*xdt <= 1.0; n++)
{
if (3>20) { th = adaptmesh (th,u,verbosity=1, abserror=1,nbjacoby=2,
err=0.001, nbvx=5000, omega=1.8, ratio=1.8, nbsmooth=3,
splitpbedge=1, maxsubdiv=5,rescaling=1) ;

3=0;
xveloc = —x*r+x*sigx”2+x+rhoxsigx*sigy/2;
yveloc = —-y*r+y*sigy 2+y+rhoxsigxxsigy/2;
u=u;
}i
uold=u;
solve egl (u,v,init=7j, solver=LU) = int2d(th) ( u*vs (r+1/dt)

+ dx (u) *dx (V) * (xxsigx) "2/2 + dy(u) «dy (v) * (y*sigy) "2/2
+ (dy (u) xdx (v) + dx(u)+*dy (v) ) *rhoxsigxxsigy*x*y/2)
- int2d (th) ( vxconvect ([xveloc,yveloc],dt,w)/dt) + on(2,3,u=0);

J=3+1;

}i
plot (u,wait=1,value=1);

Results are shown on Fig. .
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Figure 9.23: The level line of the European
Figure 9.22: The adapted triangulation basquet put option

9.6 Navier-Stokes Equation

9.6.1 Stokes and Navier-Stokes

The Stokes equations are: for a given f € L?(2)2,

—Au+Vp =Ff .
V.ou 0 } in Q (9.43)

where u = (uq,u2) is the velocity vector and p the pressure. For simplicity, let us choose Dirichlet

boundary conditions on the velocity, w = ur on I'.
In Temam [Theorem 2.2], there ia a weak form of (9.43)): Find v = (v1,v2) € V(Q)

V(Q) = {w € HY(Q)?| divw = 0}
which satisfy
2
Z/Vui-Vvisz-w forallveV
=17/ Q

Here it is used the existence p € H'(Q) such that u = Vp, if

/u-v:0 forallveV
Q

Another weak form is derived as follows: We put

V = H; ()% W={q€L2(Q)‘/Qq=0}
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By multiplying the first equation in (9.43)) with v € V and the second with ¢ € W, subsequent

integration over €2, and an application of Green’s formula, we have

/Vu-Vv—/divvp = /f~'v
0 Q Q
/divuq =0
Q

This yields the weak form of (9.43): Find (u,p) € V' x W such that

a(u,v) +b(v,p) = (f,v)
b(u,q) = 0

for all (v,q) € V. x W, where

2
a(u,v) = /Vu-V'v:Z/Vui'Vvi
Q = Ja
b(u,q) = —/divuq
Q

(9.46)

(9.47)

Now, we consider finite element spaces V;, C V and W), C W, and we assume the following basis

functions

Vi=Vax Vi, Vi=A{vp|vn =011+ +vrr, d0r, },
Wh =A{anl an = 11 + - + Qv P

The discrete weak form is: Find (up,pn) € Vi x Wp, such that

a(up,vy) +b(vp,p) = (f,vn), Yo €Vy
b(uh7 qh) - 07 vqh S Wh

Note 9.4 Assume that:

1. There is a constant ap, > 0 such that
a(vp,vp) > athHiQ for all vy, € Z),

where
Zp =A{vp € V| b(wp, qn) =0 for all g, € W}

2. There is a constant B, > 0 such that

> Bullanlloo  for all g, € Wy,
’UhEVh Q

Then we have an unique solution (wp,pp) of satisfying

uU—u + ||lp — <C inf |lu—wv + inf — )
Ju=wilh+ o=l < € (it o= onlao+ inf I~ arlo

VeV

with a constant C' > 0 (see e.g. [20, Theorem 10.4]).

(9.48)
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Let us denote that
A = () Ay = [ Vo Vo ig=1 My (9.49)
Q

B = (B, By;j), Brij = —/ 0¢;/0z p; By;; = —/ 09;/0y i
Q Q
ZzlavMW7j:15)MV

then is written by
(5% ) (o) =) 950
S ORI b B RN B b v

Penalty method: This method consists of replacing (9.48) by a more regular problem: Find
(v5,,p5,) € Vi, x W), satisfying

where

a(uy,vp) +b(vn,py) = (f,vn), Yo €Vy (9.51)

b(up,, qn) — €(Ph:qn) =0, Van € W,
where W), C L*(Q). Formally, we have

divuj, = epj,
and the corresponding algebraic problem
(5 %) (o )= ()
B —el {pi,} 0
Note 9.5 We can eliminate pj, = (1/€)BU} to obtain
(A+ (1/e)B*B)Uj;, = F}, (9.52)

Since the matriz A+ (1/€)B*B is symmetric, positive-definite, and sparse, can be solved by
known technique. There is a constant C' > 0 independent of € such that

lwn — uj,

l1.0 + lpn — phllog < Ce

(see e.g. [20, 17.2])

Example 9.22 (Cavity.edp) The driven cavity flow problem is solved first at zero Reynolds number
(Stokes flow) and then at Reynolds 100. The velocity pressure formulation is used first and then
the calculation is repeated with the stream function vorticity formulation.

We solve the driven cavity problem by the penalty method where ur -m =0 and ur -s =1
on the top boundary and zero elsewhere (m is the unit normal to T, and s the unit tangent to T).
The mesh is constructed by

mesh Th=square (8, 8);
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We use a classical Taylor-Hood element technic to solve the problem:

The velocity is approximated with the Py FE ( X} space), and the the pressure is approzimated with
the Py FE ( M}, space),

where
Xn={ve H'(0,1) |VK € Th vk € P2}

and
={ve H'(0,1)|VK €T, vge€P}

The FE spaces and functions are constructed by

fespace Xh(Th,P2); // definition of the velocity component space
fespace Mh (Th,P1); // definition of the pressure space
Xh u2,v2;

Xh ul,vl;

Mh p,q;

The Stokes operator is implemented as a system-solve for the velocity (ul,u2) and the pressure p.
The test function for the velocity is (v1,v2) and q for the pressure, so the variational form
in freefem language is:

solve Stokes (ul,u2,p,vl,v2,q,solver=Crout) =
int2d(Th) ( ( dx(ul)*dx(vl) + dy(ul)=*dy(vl)
+  dx (u2) xdx (v2) + dy(u2)*dy(v2) )
- p*g* (0.000001)
- pxdx (vl) - pxdy(v2)
- dx (ul) g - dy(u2)xq
)
+ on(3,ul=1,u2=0)
+ on(1l,2,4,ul=0,u2=0); // see Section [5.1.]] for labels 1,2,3,4

Each unknown has its own boundary conditions.

If the streamlines are required, they can be computed by finding ¥ such that rotyp = u or better,

—AY =V xu
Xh psi,phi;
solve streamlines (psi,phi) =
int2d (Th) ( dx (psi)*dx (phi) + dy (psi) +dy (phi))
+ int2d(Th) ( -phix* (dy (ul)-dx (u2)))

+ on(l,2,3,4,psi=0);

Now the Navier-Stokes equations are solved

?;tt—i—u Vu—vAu+Vp=0, V-u=0

with the same boundary conditions and with initial conditions u = 0.
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This is implemented by using the convection operator convect for the term % +u - Vu, giving a
discretization in time

1/, n+l n n n+1 n+1 __
=(u —u"o X") —vAu + Vp =0,
2 > ->u”+1 0 (9.53)

The term u"™ o X™(x) ~ u™(x — u™(z)7) will be computed by the operator “convect” , so we obtain

int 1=0;

real nu=1./100.;
real dt=0.1;

real alpha=1/dt;

Xh upl,up2;

problem NS (ul,u2,p,vl,v2,q,solver=Crout,init=i) =
int2d (Th) (
alphax* ( ulxvl + u2xv2)
+ nu * ( dx(ul)=xdx(vl) + dy(ul)=*dy(vl)
+  dx (u2)*dx (v2) + dy(u2)xdy(v2) )
- p*xgx (0.000001)
- pxdx (vl) - pxdy(v2)
- dx (ul) *xg — dy(u2)*g
)
int2d(Th) ( -alphax
convect ([upl,up2], -dt,upl) *vl —-alphaxconvect ([upl,up2],-dt,up2)*v2 )
+ on(3,ul=1,u2=0)
+ on(l,2,4,ul=0,u2=0)

+

for (i=0;1i<=10;1i++)

upl=ul;

up2=u2;

NS;

if ( !'(1 % 10)) // plot every 10 iteration
0.2,cmm=" [ul,u2] and p ",p, [ul,u2]);

plot (coef=
s

Notice that the stiffness matrices are reused (keyword init=1i)

9.6.2 Uzawa Algorithm and Conjugate Gradients

We solve Stokes problem without penalty. The classical iterative method of Uzawa is described by
the algorithm (see e.g.[20, 17.3], [29, 13] or [30} 13] ):

Initialize: Let p) be an arbitrary chosen element of L?().

Calculate uy,: Once pj is known, v} is the solution of
wjl = A7 (F, ~ B5)

Advance pj: Let pZH be defined by

pitt =l + puBuj,
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There is a constant a > 0 such that o < p,, < 2 for each n, then u} converges to the solution uy,
and then Bv} — 0 as n — oo from the Advance py. This method in general converges quite slowly.
First we define mesh, and the Taylor-Hood approximation. So X} is the velocity space, and My,
is the pressure space.

Example 9.23 (StokesUzawa.edp)

mesh Th=square (10,10);
fespace Xh (Th,P2),Mh(Th,P1);
Xh ul,u2,vl,v2;

Mh p, g, ppp; // ppp is a working pressure
varf bx(ul,q) = int2d(Th) ( - (dx(ul)*qg));
varf by (ul,q) = int2d(Th) ( - (dy(ul)*q));
varf a(ul,u2)= int2d(Th) ( dx(ul)*dx(u2) + dy(ul)x*dy(uz) )
+ on(3,ul=1) + on(l,2,4,ul=0) ;
// remark: put the on(3,ul=1) before on(1,2,4,ul=0)
// because we want zero on intersection %

matrix A= a (Xh, Xh, solver=CG) ;
matrix Bx= bx (Xh,Mh); // B = (Bx By)
matrix By= by (Xh,Mh);

Xh bcl; bcl[] = a(0,Xh); // boundary condition contribution on ul
Xh bc2; bc2 =0 ; // no boundary condition contribution on uZ2
Xh b;

pit — BATY(—B*p}) = —divuy, is realized as the function divup.

func real[int] divup(real[int] & pp)
{

// compute ul (pp)
b[] = Bx'xpp; bl]l *x=-1; b[] += bcl[] ; ul[] = A"-1«b[];
// compute uZ (pp)
b[] = By'xpp; bl]l *x=-1; bl[] += bc2[] ; uzl[]l = A"-1«b[];
// u" = A=Y (Ba2Tp® ByTp™)T
pppl]l = Bxxull]; // ppp = Bruy
pppl] += Byxu2l]; // +Byus
return pppl] ;
}i
Call now the conjugate gradient algorithm:
p=0;g=0; // ph =0
LinearCG (divup,pl],eps=1.e—-6,nbiter=50); // pptt = pit + Bul
// if n>50 or @Z+l—zﬁ\§ﬁUYﬁ, then the loop end.
divup(pl[]); // compute the final solution

plot ([ul,u2],p,wait=1,value=true,coef=0.1);
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9.6.3 NSUzawaCahouetChabart.edp

In this example we solve the Navier-Stokes equation past a cylinder with the Uzawa algorithm
preconditioned by the Cahouet-Chabart method (see [31] for all the details).

The idea of the preconditioner is that in a periodic domain, all differential operators commute and
the Uzawa algorithm comes to solving the linear operator V.((ald + vA)~'V, where Id is the
identity operator. So the preconditioner suggested is aA™! + vId.

To implement this, we do
Example 9.24 (NSUzawaCahouetChabart.edp)

real D=0.1, H=0.41;

real cx0 0.2, cy0 = 0.2; // center of cyl.
real xa = 0.15, ya=0.2, xe = 0.25,ye =0.2;

border frl (t=0,2.2){x=t; y=0; label=1;}

border fr2 (t=0,H) {x=2.2; y=t; label=2;}

border fr3(t=2.2,0) {x=t; y=H; label=1;}

border fr4 (t=H,0) {x=0; y=t; label=1;}

border fr5 (t=2*pi,0) {x=cx0+D*sin(t)/2; y=cyO0+Dxcos(t)/2; label=3;}

int nn=15;

mesh Th=buildmesh (frl (5*nn)+fr2(nn)+£fr3 (5*nn)+£frdd (nn)+£fr5(-nn=3));

real Um= 1.5; // max velocity (Rey 100)
func Ub = Umx2./3.;
real nu = le-3;
real Rey = Ub+*D/nu;
// Boundary condition
func Ul = 4.*Umxyx (H-y)/ (HxH) ;
func U2 = 0. ;
real T=2,t=0;
real dt = D/nn/Um; // CFL =1
cout << " dt = " << dt <<endl;
real alpha=1/dt,epspg=1le-10;
fespace Mh (Th, [P1]);
fespace Xh (Th, [P2]);
fespace Wh(Th, [P1dc]);
macro grad(u) [dx(u),dy(u)] //
macro div(ul,u2) (dx(ul)+dy(u2)) //
varf vonl ([ul,u2,p], [vl,v2,q]) = on(3,ul=0,u2=0) + on(l,ul=U01,u2=02);
// remark : the value 100 in next line is manualy fitted, because free
outlet.
varf vA(p,q) =int2d(Th) ((grad( p ) ’'=*grad(qg)) ) + intld(Th,2) (100xp*q) ;
varf vM(p,q) =int2d(Th,gft=qgf2pT) ( pxg )+ on(2,p=0);
varf vu([ul],[vl]) = int2d(Th) (alphax* (ul*vl)+nux (grad(ul)’grad(vl) ))

+ on(l,3,ul=0) ;
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varf vul ([p], [v1l]) = int2d(Th) (pxdx(vl)) ;
varf vu2 ([p]l, [v1l]) int2d (Th) (pxdy (v1)) ;

matrix pAM=vM (Mh,Mh, solver=UMFPACK) ;
matrix pAA=vA (Mh,Mh, solver=UMFPACK) ;
matrix AU=vu (Xh, Xh, solver=UMFPACK) ;
matrix Bl=vul (Mh, Xh) ;
matrix B2=vu2 (Mh, Xh) ;

Xh ul,u2;

Mh p;
varf vonul ([ul], [vl]) = on(l,ul=Ul) + on(3,ul=0);
varf vonu2 ([ul], [vl]) = on(l,ul=02) + on(3,ul=0);

real[int] brhsl = vonul (0,Xh);
real[int] brhs2 vonu2 (0, Xh) ;

varf vrhsl (uu,vv) int2d (Th) (convect ([ul,u2],-dt,ul)*vv*alpha)+vonul ;
varf vrhs2(v2,vl) = int2d(Th) (convect ([ul,u2],-dt,u2)*vlxalpha)+vonu2;

The functions to define Uzawa and the preconditioner part.

func real[int] JUzawa (real[int] & pp)
{

real[int] bl=brhsl; bl += Blx*pp;
real[int] b2=brhs2; b2 += B2x*pp;

ul[] = AU -1 x Dbl;
u2[] = AU -1 x Db2;
pp = Bl'*ulll];

pp += B2’ xu2[];

PP = —pPP;

return pp;

}

func real[int] Precon(real[int] & p)
{
real[int] pa= pAA"-1xp;
real[int] pm= pAM -1xp;
real[int] pp= alpha*pa+tnuxpm;
return pp;

The loop in time. Warning with the stop test of the conjugate gradient, because we start from the
previous solution and the end the previous solution is close to the final solution, don’t take a relative
stop test to the first residual, take an absolute stop test ( negative here)

verbosity = 0;
p=0;
Wh w; // to store vorticity

real eps=le-6;
int ndt = T/dt;
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for (int 1i=0; i<ndt; ++1)
{
brhsl = vrhsl (0,Xh);
brhs2 = vrhs2(0,Xh);
int res=LinearCG(JUzawa,pl[],precon=Precon,nbiter=100,verbosity=10, veps=eps);
assert (res==1) ;
eps = —abs(eps);
w = —dy(ul)+dx(u2);
plot (w, fill=1,wait=0, nbiso=40);

dt = min(dt, T-t);

t += dt;

if( dt < 1e-10%T) break;
}

plot (w, fill=1,wait=0, nbiso=40,ps="NScahouetChabart"); // see fig. (9.24
cout << " ul max " << ul[].linfty

<< " u2 max " << u2[].linfty

<< " p max = " << p[].max << endl;

Figure 9.24: The vorticity at Reynolds number 100 a time 2s with the Cahouet-Chabart
method.

9.7 Variational inequality

We present, a classical example of variational inequality.
Let us denote C = {u € H}(Q),u < g}
The problem is :

uzarggleig.](u)zé/QVu.Vu—/qu

where f and g are given function.
The solution is a projection on the convex C of f* for the scalar product ((v,w)) = [, Vv.Vw of
H{(Q) where f* is solution of ((f*,v)) = [ fv,Vv € Hj(2). The projection on a convex satisfy

clearly Vo € C, ((u —wv,u— f)) <0, and after expanding, we get the classical inequality

Vv edl, /QV(u—v)Vug/Q(u—v)f.

We can also rewrite the problem as a saddle point problem
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Find A, u such that:

max min  L(u,\) = ;/ Vu.Vu—/fu+/ AMu—g)*
Q Q Q

AEL2(Q),A>0 ue HY ()

where ((u — g)" = max(0,u — g)
This saddle point problem is equivalent to find u, A such that:

/ Vu.Vo + Mt dw = / fu, Vv € H}(Q)
@ Q (9.54)
/uW—@*z& Ve L(Q), 1> 0, >0,
Q

A algorithm to solve the previous problem is:
1. k=0, and choose, A\g belong H~(Q)
2. loopon k=0,.....

(a) set I, = {z € Q/ M + ¢ (ugy1 — g) < 0}
(b) Vyst1 = {v e H}(Q)/v=gon I},
(©) Vous1 = {v € HI(Q)/v =0 on I},
(d) Find ug41 € Vg1 and Mg € H~1(Q) such that

/Vuk+1-VUk+1 dw = / foret,  Voggr € Vot
Q Q

< Aptb 1,V >= / Vugy1.Vo — fodw
Q

where <,> is the duality bracket between HJ(Q2) and H~'(Q), and c is a penalty
constant (large enough).

You can find all the mathematic about this algorithm in [33].
Now how to do that in FreeFem++
The full example is:

Example 9.25 (VI.edp)

mesh Th=square (20, 20);
real eps=le-5;

fespace Vh(Th,P1); // P1 FE space
int n = Vh.ndof; // number of Degree of freedom
Vh uh, uhp; // solution and previous one
Vh Ik; // to def the set where the containt 1s reached.
real[int] rhs(n); // to store the right and side of the equation
real c=1000; // the penalty parameter of the algoritm
func f=1; // right hand side function
func f£d=0; // Dirichlet boundary condition function
Vh g=0.05; // the discret function g
real[int] Aii(n),Aiin(n); // to store the diagonal of the matrix 2 version
real tgv = 1e30; // a huge value for exact penalization

// of boundary condition
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// the variatonal form of the problem:
varf a(uh,vh) = // definition of the problem
int2d (Th) ( dx(uh) *dx (vh) + dy (uh)*dy (vh) ) // bilinear form

— int2d(Th) ( £*vh ) // linear form
+ on(1l,2,3,4,uh=fd) ; // boundary condition form

// two version of the matrix of the problem

matrix A=a (Vh,Vh,tgv=tgv, solver=CG) ; // one changing

matrix AA=a (Vh,Vh, solver:GC); // one for computing residual
// the mass Matrix construction:

varf vM(uh,vh) = int2d(Th) (uh*vh);

matrix M=vM (Vh,Vh); // to do a fast computing of L? norm : sqrt(

u’ * (w=Mxu) )
Aii=A.diag; // get the diagonal of the matrix (appear in version 1.46-1)

rhs = a(0,Vh, tgv=tgv);

Ik =0;

uhp=-tgv; // previous value is
Vh lambda=0;

for (int iter=0;iter<100;++iter)

{

real[int] b(n) ; b=rhs; // get a copy of the Right hand side
real[int] Ak (n); // the complementary of Ik ( !Ik = (Ik-1))
// Today the operator Ik- 1. 1is not implement so we do:
Ak= 1.; Ak -—-= Ik[]; // build Ak = ! Ik
// adding new locking condition on b and on the diagonal if (Ik ==1 )

b = Ik[] .x gl[]; b *= tgv; b -= Ak .* rhs;
Aiin = Ik[] * tgv; Aiin += Ak .x Aii; // set Aii= tgv i€ Ik
A.diag = Aiin; // set the matrix diagonal (appear in version 1.46-1)
set (A, solver=CG) ; // important to change preconditioning for solving
uh[] = A"-1% b; // solve the problem with more locking condition
lambda[] = AA * uhl[]; // compute the residual ( fast with matrix)
lambda[] += rhs; // remark rhs = 41ffv
Ik = ( lambda + cx( g- uh)) < 0.; // the new of locking value

plot (Ik, wait=1,cmm=" lock set ",value=l,ps="VI-lock.eps",fill=1 );
plot (uh,wait=1, cmm="uh", ps="VI-uh.eps");
// trick to compute L? norm of the variation (fast method)
real[int] diff (n),Mdiff (n);
diff= uh[]-uhp[]
Mdiff = Mxdiff;
real err = sqgrt (Mdiff’«diff);

14

cout << " [l u_{k=1} - u_{k} ||_2 " << err << endl;
if (err< eps) break; // stop test
uhp[]l=uh[] ; // set the previous solution
}
savemesh (Th, "mm", [x,y,uh*10]); // for medit plotting

Remark, as you can see on this example, some vector , or matrix operator are not implemented so
a way is to skip the expression and we use operator +=, —= to merge the result.



9.8. DOMAIN DECOMPOSITION 257

9.8 Domain decomposition

We present, three classic examples, of domain decomposition technique: first, Schwarz algorithm
with overlapping, second Schwarz algorithm without overlapping (also call Shur complement), and
last we show to use the conjugate gradient to solve the boundary problem of the Shur complement.

9.8.1 Schwarz Overlap Scheme

To solve
—Au=f, inQ=01U u’FZO

the Schwarz algorithm runs like this
—Au;ﬂrl = f in Ql u?+1’1“1 = ug
1 . 1
~Aubtt = fin Qy uhTp, = ul

where T'; is the boundary of §; and on the condition that Q7 N Qs # () and that u; are zero at

iteration 1.

Here we take € to be a quadrangle, {25 a disk and we apply the algorithm starting from zero.
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Figure 9.25: The 2 overlapping mesh TH and th

Example 9.26 (Schwarz-overlap.edp)

// inside boundary

int inside = 2
// outside boundary

r
int outside =1
border a(t=1,2)

)
)

4

;v=0; label=outside; };
( ;y=t; label=outside; };

border c(t=2,0 ;v=1; label=outside; };

border d(t=1,0){x = 1-t; yv = t;label=inside;};

border e (t=0, pi/2){ x= cos(t); y = sin(t);label=inside;};

border el (t=pi/2, 2*pi){ x= cos(t); y = sin(t);label=outside;};

int n=4;

mesh th = buildmesh( a(5*n) + b(5*n) + c(10*n) + d(5*n));

mesh TH buildmesh( e (5*n) + el (25xn) )

plot (th, TH,wait=1);

{x=t
border b (t=0,1) {x=2
{x=t

4

// to see the 2 meshes



258 CHAPTER 9. MATHEMATICAL MODELS

The space and problem definition is :

fespace vh (th,P1l);
fespace VH (TH,P1);
vh u=0,v; VH U,V;
int i=0;

problem PB(U,V,init=1i, solver=Cholesky)
int2d (TH) ( dx (U) *dx (V) +dy (U) xdy (V)

)
+ int2d(TH) ( -V) + on(inside,U = u) + on(outside,U= 0 ) ;
problem pb(u,v,init=1i, solver=Cholesky) =
int2d (th) ( dx (u) »dx (v) +dy (u) *dy (v) )
+ int2d(th) ( -v) + on(inside ,u = U) + on(outside,u = 0 ) ;

The calculation loop:

for ( 1=0 ;i< 10; i++)
{

PB;

pb;

plot (U, u,wait=true);
}i

Figure 9.26: Isovalues of the solution at iteration 0 and iteration 9

9.8.2 Schwarz non Overlap Scheme

To solve
—Au=finQ=0Q,U U‘FZO,

the Schwarz algorithm for domain decomposition without overlapping runs like this
Let introduce T; is common the boundary of ; and Qs and I = 9Q; \ T;.
The problem find A such that (u;|r, = uz|r,) where u; is solution of the following Laplace problem:

—Aui:finQi ui|pi:/\ ’U,Z“Iwézo



9.8.

DOMAIN DECOMPOSITION

PRRERS
PRI
S

V)

RARE
SRR
SRR
ARSEERRE
DO
PREEAER
2L

o
000

e Ao
XI5

TS
SRR

o

R
X
X
AY4l

1
a!
%

ARSIl
RS
RPN
OOOAASORRSRE

R RORRIEORRS
VARRRRARRRAN

259

%

K
AN

K
R

)
A

K

A

SIS,

X

A
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To solve this problem we just make a loop with upgrading\ with

(u1 —ug2)

A=At 5

where the sign + or — of + is choose to have convergence.

Example 9.27 (Schwarz-no-overlap.edp)

int inside
int outside
border
border
border
border
border
border
int n=4;
mesh th
mesh TH

buildmes
= buildmes
plot (th, TH,wait=1
fespace vh(th,P1l);
fespace VH(TH,P1);
vh u=0,v; VH U,V;
vh lambda=0;
int i=0;

problem PB(U,V,init=1i, solver=Cholesky)
int2d (TH) ( dx (U) xdx (V) +dy (U) *»dy (V)

+ int2d (TH) ( -V)

h(
h

//

=0; label=outside; };

; label=outside; };

y=1; label=outside; };

y = t;label=inside; };
y = t;label=inside; };
x= cos(t); vy sin(t)

4

+ b (5%n)
+ el (25%n)

+ c(10*n)
)i

a(5xn)
e (5+%n)

,ps="schwarz-no-u.eps");

)

schwarzl without overlapping

label=outside; };

+ d(5%*n));

+ intld(TH, inside) (lambdaxV) + on (outside,U= 0 ) ;
problem pb(u,v,init=1i, solver=Cholesky) =
int2d (th) ( dx (u) »dx (v) +dy (u) *dy (v) )
+ int2d(th) ( -v)
+ intld(th, inside) (-lambdax*v) + on (outside,u = 0 ) ;
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for ( 1=0 ;i< 10; i++)
{
PB;
pb;
lambda = lambda - (u-U)/2;
plot (U, u,wait=true);
}i

plot (U, u, ps="schwarz-no-u.eps");

Figure 9.28: Isovalues of the solution at iteration 0 and iteration 9 without overlapping

9.8.3 Schwarz-gc.edp

To solve
—Au=finQ=0QUQy ulp =0,

the Schwarz algorithm for domain decomposition without overlapping runs like this
Let introduce T'; is common the boundary of €1 and Qy and T}, = 9Q; \ T;.
The problem find A such that (u;|r, = uz|r,) where u; is solution of the following Laplace problem:

—Aui:finQi ui|ri:/\ ui‘FéZO

The version of this example for Shur componant. The border problem is solve with conjugate
gradient.
First, we construct the two domain

Example 9.28 (Schwarz-gc.edp)

// Schwarz without overlapping (Shur complenement Neumann -> Dirichet)
real cpu=clock();
int inside = 2;

int outside = 1;



9.8. DOMAIN DECOMPOSITION 261

border Gammal (t=1,2) {x=t;y=0; label=outside; };
border GammaZ2 (t=0,1) {x=2;y=t;label=outside; };
border Gamma3 (t=2,0) {x=t ;y=1;label=outside;};

border GammalInside(t=1,0){x = 1-t; y = t;label=inside;};
border GammaArc (t=pi/2, 2+pi){ x= cos(t); y = sin(t);label=outside;};

int n=4;
// build the mesh of €1 and (s

mesh Thl = buildmesh( Gammal (5*n) + GammaZ2 (5*n) + GammalInside (5*n) + Gamma3 (5*n));

mesh Th2 = buildmesh ( GammalInside (-5+*n) + GammaArc (25%n) );
plot (Thl, Th2);

// defined the 2 FE space
fespace Vvhl (Thl,P1), Vh2 (Th2,P1);

Note 9.6 It is impossible to define a function just on a part of boundary, so the lambda function
must be defined on the all domain 1 such as

Vhl lambda=0; // take \ € Vy

The two Poisson problem:

Vhl ul,vl; Vh2 u2,v2;
int i=0; // for factorization optimization
problem Pb2 (u2,v2,init=i, solver=Cholesky) =
int2d (Th2) ( dx (u2) »dx (v2) +dy (u2) xdy (v2) )
+ int2d (Th2) ( -v2)
+ intld(Th2,inside) (-lambda*v2) + on (outside,u2= 0 ) ;
problem Pbl (ul,vl,init=1i, solver=Cholesky) =
int2d (Thl) ( dx (ul) *dx (vl)+dy (ul) «dy (vl) )
+ int2d(Thl) ( -v1)
+ intl1ld(Thl, inside) (+lambdaxvl) + on (outside,ul = 0 ) ;

or, we define a border matriz , because the lambda function is none zero inside the domain q:
varf b (u2,v2,solver=CG) =intld(Thl,inside) (u2xv2);
matrix B= b (Vhl,Vhl, solver=CG);

The boundary problem function,

A — / (U1 — UQ)Ul
T;

func real[int] BoundaryProblem(real[int] &1)
{

lambdal[]=1; // make FE function form 1
Pbl; Pb2;
i++; // no refactorization i !=0
vli=—(ul-u2);

lambda[]=B*v1[];
return lambdal[] ;
}i
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Note 9.7 The difference between the two notations v1 and vI1[] is: v1 is the finite element
function and v1[] is the vector in the canonical basis of the finite element function v1 .

Vhl p=0,g=0;
// solve the problem with Conjugate Gradient
LinearCG (BoundaryProblem,p[],eps=1l.e-6,nbiter=100);
// compute the final solution, because CG works with Increment
BoundaryProblem(p[]); // solve again to have right ul,uZ

cout << " —-- CPU time schwarz-gc:" << clock()-cpu << endl;
plot (ul,u2); // plot

9.9 Fluid/Structures Coupled Problem

This problem involves the Lamé system of elasticity and the Stokes system for viscous fluids with
velocity w and pressure p:

—Au+Vp=0,V-4u=0, in Q u=ur on I'=090

where ur is the velocity of the boundaries. The force that the fluid applies to the boundaries is the
normal stress
h = (Vu+ Vu')n —pn

Elastic solids subject to forces deform: a point in the solid, at (x,y) goes to (X,Y) after. When the
displacement vector v = (v1,v2) = (X — z,Y — y) is small, Hooke’s law relates the stress tensor o
inside the solid to the deformation tensor e:

1 8% (91)]'
5((9%- * (%ci)

0ij = N0ijV.v + 2ue;), €5 =

where ¢ is the Kronecker symbol and where A, u are two constants describing the material me-
chanical properties in terms of the modulus of elasticity, and Young’s modulus.
The equations of elasticity are naturally written in variational form for the displacement vector
v(z) €V as
/ [2peij(v)eij(w) + Aeii(v)ej; (w)] = /
Q Q
The data are the gravity force g and the boundary stress h.

g-w+/h-’w,V'w€V
r

Example 9.29 (fluidStruct.edp) In our example the Lamé system and the Stokes system are coupled
by a common boundary on which the fluid stress creates a displacement of the boundary and hence
changes the shape of the domain where the Stokes problem is integrated. The geometry is that of
a vertical driven cavity with an elastic lid. The lid is a beam with weight so it will be deformed by
its own weight and by the normal stress due to the fluid reaction. The cavity is the 10 x 10 square
and the lid is a rectangle of height [ = 2.

A beam sits on a box full of fluid rotating because the left vertical side has velocity one. The beam
is bent by its own weight, but the pressure of the fluid modifies the bending.
The bending displacement of the beam is given by (uu,vv) whose solution is given as follows.
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// Fluid-structure interaction for a weighting beam sitting on a
// square cavity filled with a fluid.
int bottombeam = 2; // label of bottombeam
border a(t=2,0) { x=0; y=t ;label=1;}; // left beam
border b (t=0,10) { x=t; y=0 ;label=bottombeam;}; // bottom of beam
border c(t=0,2) { x=10; y=t ;label=1;}; // rigth beam
border d(t=0,10) { x=10-t; y=2; label=3;}; // top beam
real E = 21.5;
real sigma = 0.29;

real mu = E/ (2% (1+sigma));

real lambda = Exsigma/ ((l+sigma)* (1-2xsigma));
real gravity = -0.05;

mesh th = buildmesh( b (20)+c (5)+d(20)+a(5));
fespace Vh (th,P1l);

Vh uu,w,vv, s, fluidforce=0;

cout << "lambda,mu,gravity ="<<lambda<< " " << mu << " " << gravity << endl;
// deformation of a beam under its own welght
solve bb([uu,vv], [w,s]) =
int2d(th) (
lambdaxdiv (w, s) rdiv (uu, vv)
+2.xmux* ( epsilon(w,s)’ xepsilon (uu,vv) )
)
+ int2d(th) (-gravityss)

+ on(l,uu=0,vv=0)
+ fluidforcel];

plot ([uu,vv],wait=1);
mesh thl = movemesh (th, [x+tuu, y+vv]);
plot (thl,wait=1);

Then Stokes equation for fluids ast low speed are solved in the box below the beam, but the beam has
deformed the box (see border h):

// Stokes on square b,e,f,g driven cavite on left side g
border e (t=0,10) { x=t; y=-10; label= 1; }; // bottom
border f (t=0,10) { x=10; y=-10+t ; label= 1; }; // right
border g (t=0,10) { x=0; y=-t ;label= 2;}; // left
border h(t=0,10) { x=t; y=vv(t,0)*( £t>=0.001 )x(t <= 9.999);

label=3;}; // top of cavity deformed

mesh sh = buildmesh (h(-20)+£(10)+e (10)+g(10));
plot (sh,wait=1);

We use the Uzawa conjugate gradient to solve the Stokes problem like in example Section[9.6.9
fespace Xh(sh,P2),Mh(sh,P1l);

Xh ul,u2,vl,v2;
Mh p,q, ppp;

varf bx(ul,q) = int2d(sh) ( - (dx(ul)*q));

varf by (ul,q) int2d(sh) ( - (dy (ul)*q));
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varf Lap(ul,u2)= int2d(sh) ( dx(ul)*dx(u2) + dy(ul)*dy(u2) )
+ on(2,ul=1l) + on(l,3,ul=0) ;

Xh bcl; bcl[] = Lap(0,Xh);
Xh brhs;

matrix A= Lap (Xh,Xh, solver=CG);
matrix Bx= bx (Xh,Mh);

matrix By= by (Xh,Mh) ;

Xh bcx=0,bcy=1;

func real[int] divup(real[int] & pp)
{

int verb=verbosity;

verbosity=0;

brhs[] = Bx’*xpp; brhs[] += bcl[] .xbcx[];
ul[] = A"-1xbrhs[];

brhs[] = By’ *xpp; brhs[] += bcl[] .xbcyl[];
u2[] = A -1l+brhs|[];

pppl]l = Bxxul[];

pppl] += By=xuzl[];
verbosity=verb;
return pppl] ;

i

do a loop on the two problem
for (step=0; step<2; ++step)

{
p=0;g=0;ul=0;v1=0;

LinearCG (divup,pl],eps=1.e-3,nbiter=50);
divup (p[]);
Now the beam will feel the stress constraint from the fluid:

Vh sigmall,sigma22, sigmal2;
Vh uul=uu,vvl=vv;

sigmall ( [x+uu, y+vv]) (2+dx (ul)-p);
sigma22 ( [x+uu, y+vv]) = (2xdy(u2)-p);
sigmal2 ([x+uu,y+tvv]) = (dx(ul)+dy (u2));

which comes as a boundary condition to the PDE of the beam:

solve Dbbst ([uu,vv], [w,s],init=1) =

int2d (th) (
lambdaxdiv (w, s) rdiv (uu, vv)
+2.xmu~* ( epsilon(w,s)’ xepsilon (uu,vv) )
)
+ int2d(th) (-gravity=s)
+ intld(th,bottombeam) ( —coefx ( sigmall«N.x*w + sigma22xN.yx*s

+ sigmal2* (N.y*w+N.xxs) ) )
+ on(1l,uu=0,vv=0);
plot ([uu,vv],wait=1);
real err = sqgrt(int2d(th) ( (uu-uul) "2 + (vv-vvl) "2 ));
cout << " Erreur L2 = " << err << "—————————— \n";
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Figure 9.29:  Fluid velocity and pressure (left) and displacement vector (center) of the
structure and displaced geometry (right) in the fluid-structure interaction of a soft side and
a driven cavity

Notice that the matriz generated by bbst is reused (see init=i). Finally we deform the beam

thl = movemesh (th, [x+0.2xuu, y+0.2xvv]);
plot (thl,wait=1);
} // end of loop

9.10 Transmission Problem

Consider an elastic plate whose displacement change vertically, which is made up of three plates of
different materials, welded on each other. Let €2;, i = 1,2, 3 be the domain occupied by i-th material
with tension p; (see Section . The computational domain €2 is the interior of Q; U Qs U Q3.
The vertical displacement u(z,y) is obtained from

—piAu = fin §; (9.55)
pidpulr, = —piqulp, on QNQ; 1 <i<j<3 (9.56)

where O, ulp, denotes the value of the normal derivative d,u on the boundary I'; of the domain €;.
By introducing the characteristic function y; of €2;, that is,

xi(x) =1 ifx € Qy Xi(x) =0 ifz&Q,; (9.57)

we can easily rewrite (9.55)) and (9.56) to the weak form. Here we assume that u =0 on I' = 0.
problem Transmission: For a given function f, find u such that

a(u,v) = L(f,v) forallve HLQ) (9.58)
a(u,v)—/ﬂ,u,Vu'Vv, €(f,v)—/ﬂfv
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where u = p1x1 + pexe + psxs. Here we notice that u become the discontinuous function.

With dissipation, and at the thermal equilibrium, the temperature equation is:

This example explains the definition and manipulation of region, i.e. subdomains of the whole
domain.

Consider this L-shaped domain with 3 diagonals as internal boundaries, defining 4 subdomains:

// example using region keyword
// construct a mesh with 4 regions (sub-domains)
border a(t=0,1) {x=t;vy=0;1};
border b (t=0,0.5) {x=1;y=t;};
border c(t=0,0.5) {x=1-t;y=0.5;1};
border d(t=0.5,1) {x=0.5;y=t; };
border e (t=0.5,1) {x=1-t;y=1;};
border £ (t=0,1) {x=0;y=1-t;};
// internal boundary

border il (t=0,0.5) {x=t;y=1-t;};

border i2 (t=0,0.5) {x=t;y=t;};

border i3 (t=0,0.5) {x=1-t;y=t; };

mesh th = buildmesh (a(6) + b(4) + c(4) +d(4) + e(4) +
£(6)+1i1(6)+12(6)+13(6));

fespace Ph(th,PO0); // constant discontinuous functions / element
fespace Vh (th,P1l); // P, continuous functions / element
Ph reg=region; // defined the Py function associated to region number

plot (reg, fill=1,wait=1,value=1);

IsoValue IsoValue

3

331579
363158
W3.94737
426316
M 457895
W4.89474
M521053
W 552632
631579

Figure 9.30: the function reg Figure 9.31: the function nu

region is a keyword of FreeFem++ which is in fact a variable depending of the current position
(is not a function today, use Ph reg=region; to set a function). This variable value returned
is the number of the subdomain of the current position. This number is defined by ”buildmesh”
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which scans while building the mesh all its connected component. So to get the number of a region
containing a particular point one does:

int nupper=reg(0.4,0.9); // get the region number of point (0.4,0.9)
int nlower=reg(0.9,0.1); // get the region number of point (0.4,0.1)
cout << " nlower " << nlower << ", nupper = " << nupper<< endl;

// defined the characteristics functions of upper and lower region

Ph nu=1+5* (region==nlower) + 10x (region==nupper);
plot (nu, fill=1,wait=1);

This is particularly useful to define discontinuous functions such as might occur when one part of
the domain is copper and the other one is iron, for example.

We this in mind we proceed to solve a Laplace equation with discontinuous coefficients (v is 1, 6
and 11 below).

Ph nu=1+5% (region==nlower) + 10 (region==nupper);

plot (nu, £fill=1,wait=1);

problem lap(u,v) = int2d(th) ( nux ( dx(u)*dx (v) *xdy (u) *dy (v) ))
+ int2d(-1xv) + on(a,b,c,d,e, f,u=0);

plot (u);

IsoValue

W0.0189054
M0.020706

W0.0225065
M0.024307

W0.0261075
Wo.027908

M0.0297086
M0.0315091
M0.0333096
M0.0351101

Figure 9.32: the isovalue of the solution u
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9.11 Free Boundary Problem

The domain € is defined with:

CHAPTER 9. MATHEMATICAL MODELS

real 1=10; // longueur du domaine
real h=2.1; // hauteur du bord gauche
real hl1=0.35; // hauteur du bord droite
// maillage d’un tapeze
border a (t=0,L) {x=t;y=0;}; // bottom: T,
border b (t=0,hl) {x=L;y=t; }; // right: T
border f (t=L,0) {x=t;y=t* (hl-h)/L+h;}; // free surface: Iy
border d(t=h,0) {x=0;y=t;}; // left: Ty
int n=4;
mesh Th=buildmesh (a(10*n)+b (6*n)+f (8xn)+d(3*n));
plot (Th, ps="dTh.eps");
é“b‘ /]
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Figure 9.33: The mesh of the domain 2

The free boundary problem is:
Find u and €2 such that:

—Au=0 in
U=y on I'y
ou
— =0 onI'yUT,
o on
—inx and u=y only

o
We use a fixed point method; Q0 = Q
in two step, fist we solve the classical following problem:

K

—Auy =0 inQ"
u =y only
=0 onIjUIY

n

u =y onI‘f

The variational formulation is:
find w on V = H'(Q"), such than v =y on I'} and I

VuVu' =0, Vu' €V withe' =0on T} U Iy

Qn

and secondly to construct a domain deformation F(z,y) = [z,y — v(x,y)]
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where v is solution of the following problem:

—Av =0 in Q"
v =0 on I'}
@ =0 on 'y UTY
n
gv ou ¢ o
— =— ——=n, on
on on K f

The variational formulation is:
find v on V, such than v =0 on I'}

VoV = /
on r

Finally the new domain Q"+ = F(Q")

0
(a—z - %nx)v’, Vo' € V with v’ =0 on I'}

n
f

Example 9.30 (freeboundary.edp) The FreeFem++ :implementation is:

real g=0.02; // flux entrant
real K=0.5; //  permeabilité

fespace Vh(Th,P1l);
int j=0;

Vh u,v,uu,vv;

problem Pu(u,uu,solver=CG) = int2d(Th) ( dx(u) *dx (uu) +dy (u) »dy (uu) )
+ on(b, £f,u=y) ;

problem Pv (v,vv,solver=CG) = int2d(Th) ( dx(v) *dx (vv) +dy (v) xdy (vv) )
+ on (a, v=0) + intld(Th, f) (vvx ((gq/K)*N.y— (dx(u) *N.x+dy (u) *N.y)));

real errv=1l;
real erradap=0.001;
verbosity=1;
while (errv>1e-6)
{
Jt+i
Pu;
Pv;
plot (Th,u,v ,wait=0);
errv=int1d(Th, £f) (v*v) ;
real coef=1;

//
real mintcc = checkmovemesh (Th, [x,y])/5.;
real mint = checkmovemesh (Th, [x,y-vxcoef]);
if (mint<mintcc || 7%10==0) { // mesh to bad => remeshing

Th=adaptmesh (Th, u, err=erradap ) ;
mintcc = checkmovemesh (Th, [x,y])/5.;

while (1)
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real mint = checkmovemesh (Th, [x,y-v*xcoef]);
if (mint>mintcc) break;
cout << " min |T] " << mint << endl;
coef /= 1.5;
}

Th=movemesh (Th, [x,y—-coef*Vv]); // calcul de la deformation
cout << "\n\n"<<j <<"————m——————— errv = " << errv << "\n\n";

}

plot (Th, ps="d_Thf.eps");
plot (u,wait=1,ps="d_u.eps");

[ /
// /
/
| |
| |
| !

Figure 9.34: The final solution on the new domain Q7
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Figure 9.35: The adapted mesh of the domain Q7

9.12 Non linear Elasticity (nolinear-elas.edp)

The nonlinear elasticity problem is: find the displacement (uj,u2) minimizing J

min J(ug, ug) = / f(F2) —/ P, ug
Q r,
where F2(uy,u2) = A(FE[u1,uz], Flui,uz]) and A(X,Y") is bilinear sym. positive form with respect
two matrix X,Y. where f is a given C? function, and Efuy, us] = (Eij)i=1,2, j=1,2 is the Green-Saint
Venant deformation tensor defined with:

Eij = 0.5((8{1@ + Bjuz) + Z 8Z»uk><8juk)
k
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Denote u = (uy,u2), v = (v1,v2), w = (w1, ws).
So, the differential of J is

- [ pr2@) FF2w)) - [ P

Tp

where DF2(u)(v) =2 A( DE[u)(v), E[u] ) and DF is the first differential of E.

The second order differential is
D2Iw((v). (w)) = [ DF2(u)(v) DF2(w)(w) ' (F2(w)
+ [ DPR2we.w) FF2A)
where
D2F2(u)(v, w) = 2 A( D*Elul(v,w) , Elu] ) +2 A DE[ul(v) , DE[ul(w) ).

and D?FE is the second differential of E.

So all notations can be define with macros:

macro EL(u,v) [dx(u), (dx(v)+dy(u)),dy(v)] // is [e11,2€12, €22]
macro ENL (u,v) [

(dx (u) *dx (u) +dx (v) *dx (v) ) x0.5,

(dx (u) xdy (u) +dx (v) *dy (v) ) ’

(dy (u) *xdy (u) +dy (v) *xdy (v) ) x0.5 ] // EOM ENL
macro dENL (u,v,uu,vv) [ (dx(u)*dx(uu)+dx (v)*dx(vv)),

(dx (u) xdy (uu) +dx (v) »dy (vv) +dx (uu) »dy (u) +dx (vv) xdy (v) ),

(dy (u) *dy (uu) +dy (v) *dy (vv) ) ] //
macro E (u,v) (EL(u,v)+ENL(u,v)) // is [E11,2E12, Eos)
macro dE (u,v,uu,vv) (EL(uu,vv)+dENL (u,v,uu,vv)) //
macro ddE (u,v,uu,vv,uuu,vvv) dENL (uuu,vvv,uu,vv) //
macro F2(u,v) (E(u,v)’*A*E (u,v)) //
macro dF2 (u,v,uu,vv) (E(u,v)’*AxdE (u, v,uu,vv) *2. ) //

macro ddr2(u,v,uu,vv,uuu,vvv) (
(dE (u, v,uu,vv)’ «AxdE (u, v, uuu, vvv) )
+ (E(u,v)’*AxddE (u, v,uu, vv,uuu, vvv) ) x
The Newton Method is
choose n = 0,and up, vo the initial displacement

2.
2. ) // EOM

e loop:
o find (du, dv) : solution of

D2J (tn, vn)((w, 8), (du, dv)) = DJ (un, vp)(w,s), Yw,s
° un = un —du, vn =ovn — dv

until (du, dv) small is enough
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The way to implement this algorithm in FreeFem++ is use a macro tool to implement A and F'2,
£ L

A macro is like in ccp preprocessor of C++ , but this begin by macro and the end of the macro
definition is before the comment //. In this case the macro is very useful because the type of
parameter can be change. And it is easy to make automatic differentiation.

Figure 9.36: The deformed domain

// non linear elasticity model
// for hyper elasticity problem
// s
macro f (u) (u) // end of macro
macro df (u) (1) // end of macro
macro ddf (u) (0) // end of macro
// —— du caouchouc —--- (see the notes of Herve Le Dret.)
/) mmmmm e
real mu = 0.012e5; // kg/em?
real lambda = 0.4e5; // kg/em?
//
// o =2uE + Mr(E)Id
// A(u,v) = o(u) : E(v)
//
// (ab)
// (b c)
//
// tr+Id : (a,b,c) -> (a+c,0,a+c)
// so the associed matrix 1s:
// (1 01)
// (00 0)
// (101)
/) T v
real all= 2+mu + lambda ;
real a22= mu ; // because [0,2xt12,0]'A[0,2 x s12,0] =
// =2xmu* (t12 % s12 4 121 * $21) = 4 x mu x t12 * s12
real a33= 2+mu + lambda ;
real al2= 0 ;
real al3= lambda ;
real a23= 0 ;
// symetric part

real az2l= al2 ;
real a3l= al3 ;
real a32= a23 ;
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// the matrix A.
func A = [ [ all,al2,al3],[ a2l,a22,a23],[ a3l,a32,a33] 1;
real Pa=le2; // a pressure of 100 Pa
/) mmmmm e

int n=30,m=10;
mesh Th= square(n,m, [x,.3*y]); // label: 1 bottom, 2 right, 3 up, 4 left;
int bottom=1, right=2,upper=3,left=4;

plot (Th);

fespace Wh(Th,P1ldc);
fespace Vh(Th, [P1,P1]);
fespace Sh(Th,P1l);

Wh e2, fe2,dfe2,ddfe2; // optimisation
Wh ett,ezz,err,erz; // optimisation

vh [uu,vv], [w,s], [un,vn];

[un,vn]=[0,01]; // intialisation
[uu,vv]=[0,0];
varf vmass ([uu,vv], [w,s],solver=CG) = int2d(Th) ( uu*w + vv*s );

matrix M=vmass (Vh,Vh);
problem NonLin ([uu,vv], [w,s],solver=LU)=
int2d (Th, gforder=1) ( // (D?J(un)) part
dF2 (un,vn,uu,vv) xdF2 (un,vn, w, s) xddfe2
+ ddF2 (un,vn,w,s,uu,vv) *dfe?2
)
- intld (Th, 3) (Pax*s)
- int2d(Th, gforder=1) ( // (DJ(un)) part
dF2 (un,vn,w, s) xdfe?2 )
+ on(right, left,uu=0,vv=0);

// Newton’s method
/) mmmmmmmmmmmm o
Sh ul,vl;
for (int i=0;i<10;i++)
{
cout << "Loop " << 1 << endl;
e2 = F2(un,vn);
dfe2 = df (e2) ;
ddfe2 = ddf (e2);
cout << " e2 max " <<e2[].max << " , min" << e2[].min << endl;
cout << " de2 max "<< dfe2[].max << " , min" << dfe2[].min << endl;
cout << "dde2 max "<< ddfe2[].max << " , min" << ddfe2[].min << endl;

NonLin; // compute [uu,vv] = (D?J(un))~1(DJ(un))
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w(] = Mxuul];

real res = sqrt(w[]’  uul]); // norme L2QHUUJW]
ul = uu;

vl = vv;

cout << " L"2 residual = " << res << endl;

cout << " ul min =" <<ul[].min << ", ul max= " << ul[].max << endl;

cout << " vl min =" <<vl1l[].min << ", v2 max= " << vl1[].max << endl;

plot ([uu,vv],wait=1,com=" uu, vv " );

un[] -= uull];

plot ([un,vn],wait=1, cmm=" displacement " );

if (res<le-5) break;

}

plot ([un,vn],wait=1);
mesh thl = movemesh (Th, [x+un, y+vnl);
plot (thl,wait=1); // see figure

9.13 Compressible Neo-Hookean Materials: Computational
Solutions

Author : Alex Sadovsky mailsashas@gmail.com

9.13.1 Notation

In what follows, the symbols u, F, B, C, o denote, respectively, the displacement field, the deforma-
tion gradient, the left Cauchy-Green strain tensor B = FF7, the right Cauchy-Green strain tensor
C = FTF, and the Cauchy stress tensor. We also introduce the symbols I; := tr C and J := det F.
Use will be made of the identity

aJ

= =JCc! 9.59

50 (9.59)
The symbol I denotes the identity tensor. The symbol 2y denotes the reference configuration of the
body to be deformed. The unit volume in the reference (resp., deformed) configuration is denoted
dV (resp., dVp); these two are related by

dv = JdVj,

which allows an integral over €2 involving the Cauchy stress T to be rewritten as an integral of the
Kirchhoff stress xk = JT over €.

Recommended References

For an exposition of nonlinear elasticity and of the underlying linear- and tensor algebra, see [34].
For an advanced mathematical analysis of the Finite Element Method, see [35]. An explanation
of the Finite Element formulation of a nonlinear elastostatic boundary value problem, see http://
www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.
htm.


http://www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm
http://www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm
http://www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm
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9.13.2 A Neo-Hookean Compressible Material

Constitutive Theory and Tangent Stress Measures The strain energy density function is
given by
W =

N\t

(I, —tr I —21InJ) (9.60)

(see [32], formula (12)).
The corresponding 2nd Piola-Kirchoff stress tensor is given by

ow
Sy = o (Fp) = p(I-C* .61
o (Fa) = u(I-C7Y (961)
The Kirchhoff stress, then, is
x=FSFT = (B - 1) (9.62)
The tangent Kirchhoff stress tensor at F,, acting on 6F,,11 is, consequently,
ok
8—]?(1?“)(51?%1 = 4 [Fr(6Fps1)" + 0F i1 (Fr)'] (9.63)

The Weak Form of the BVP in the Absence of Body (External) Forces The ) we are
considering is an elliptical annulus, whose boundary consists of two concentric ellipses (each allowed
to be a circle as a special case), with the major axes parallel. Let P denote the dead stress load
(traction) on a portion 9, (= the inner ellipse) of the boundary 9€y. On the rest of the boundary,
we prescribe zero displacement.

The weak formulation of the boundary value problem is

= Jo, 8] : {(Vow)(F)"'} }

faszg P NO

For brevity, in the rest of this section we assume P = 0. The provided FreeFem++ code, however,
does not rely on this assumption and allows for a general value and direction of P.

Given a Newton approximation wu, of the displacement field u satisfying the BVP, we seek the
correction du,+1 to obtain a better approximation

Un+1 = Un + 5un+1
by solving the weak formulation
0 = Jo, flFn+0Fnp] : {(VOw)(Fp+6Fnu1) '} = [ P-No
= o, 15[Fnl + S FaloFpia g {(V @ w)(Fp + 0F, 1)}

= Jo, 1 6F] + GE[Fal6Fui1 | {(V @ w)(F,! + F,26F,,41)}
for all test functions w,

= Jo, 5lFa] - {(VOw)F 1}
- fQ : {(Ve@w)(F,?0F 1)}

+ fQO{BF FnéFnH} {(Vow)F,!}

(9.64)
where we have taken
O0F 11 =V ®du,1

Note: Contrary to standard notational use, the symbol ¢ here bears no variational context. By §
we mean simply an increment in the sense of Newton’s Method. The role of a variational virtual
displacement here is played by w.
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9.13.3 An Approach to Implementation in FreeFem++

The associated file is examples++-tutorial/nl-elast—-neo-Hookean.edp.

Introducing the code-like notation, where a string in <>’s is to be read as one symbol, the individual

components of the tensor

Ok
< TanK >:= B—F[Fn]éFnH

will be implemented as the macros < TanK11 >, < TanK12 >, .. ..
The individual components of the tensor quantities

Dy :=F,(0F,11)" + 0Fn 1 (Fn)7,
Dy = F;TéFn—I—la

D3 := (V@ w)F,20F, 1,

and
D, := (Vo w)F,!,

will be implemented as the macros

< dlAuzll >, < dlAuxl2 >, ... ,<dlAux22 >,
< d2Auzxll >, < d2Auxl2 >, ... ,<d2Aux22 >
< d3Auxll >, < d3Auxl2 >, ... ,<d3Aux22 > ’
< d4Auzxll >, < d4Auxl2 >, ... ,<d4Aux22 >

respectively.
In the above notation, the tangent Kirchhoff stress term becomes

0
%(Fn) 0F, 41 =pDy

while the weak BVP formulation acquires the form

0 = fQo k[Fyp] @ Dy
- fQO k[Fp] @ D3 for all test functions w
+ fQO {%[Fn]éFn+l} : D4

(9.65)

(9.66)

(9.67)

(9.68)



Chapter 10

MPI Parallel version

A first attempt of parallelization of FreeFem++ is made here with mpi. An extended interface with
MPT has been added to FreeFem++ version 3.5, (see the MPI documentation for the functionality
of the language at http://www.mpi-forum.org/docs/mpi2l-report.pdf).

10.1 MPI keywords

The following keywords and concepts are used:
mpiComm to defined a communication world
mpiGroup to defined a group of processors in the communication world

mpiRequest to defined a equest to wait for the end of the communication

10.2 MPI constants

mpisize The total number of processes,

mpirank the id-number of my current process in {0, ..., mpisize — 1},
mpiUndefined The MPI_Undefined constant,

mpiAnySource The MPI_ANY_SOURCE constant,

mpiCommWorld The MPI_COMM_WORLD constant ,

and all the keywords of MPI_Op for the reduce operator:

mpiMAX, mpiMIN, mpiSUM, mpiPROD, mpiLAND, mpiLOR, mpiLXOR, mpiBAND,
mpiBXOR.

10.3 MPI Constructor

int[int] procl=[1,2,3],proc2=[0,4];
mpiGroup grp (procs); // set MPI_Group to proc 1,2,3 in MPI_COMM_-WORLD
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mpiGroup grpl (comm,procl); // set MPI_Group to proc 1,2,3 in comm
mpiGroup grp2 (grp,proc?); // set MPI_Group to grp union procl
mpiComm comm=mpiCommWorld; // set a MPI_Comm to MPI_COMM_-WORLD
mpiComm ncomm (mpiCommWorld, grp); // set the MPI_Comm form grp

// MPI_COMM_WORLD
mpiComm ncomm (comm,color,key); // MPI_Comm_split (MPI_Comm comm,
// int color, int key, MPI_Comm *ncomm)
mpiComm nicomm(processor (local_comm,local_leader),
processor (peer_comm, peer_leader),taqg);
// build MPI_INTERCOMM_CREATE (local_comm, local_leader, peer_comm,
// remote_leader, tag, &nicomm)
mpiComm ncomm (intercomm,hight) ; // build using
// MPI_Intercomm_merge ( intercomm, high, &ncomm)
mpiRequest rg; // defined an MPI_Request
mpiRequest [int] arg(10); // defined an array of 10 MPI_Request
]
.4 MPI functions
mpiSize (comm) ; // return the size of comm (int)
mpiRank (comm) ; // return the rank in comm (int)
processor (i) // return processor i with no Resquest in MPI_COMM_WORLD
processor (mpiAnySource) // return processor any source

// with no Resquest in MPI_COMM_WORLD
processor (i, comm) // return processor 1 with no Resquest in comm
processor (comm, i) // return processor i1 with no Resquest in comm
processor (i, rq, comm) // return processor 1 with Resquest rq in comm
processor (i, rq) // return processor 1 with Resquest rqg 1in

// MPI_COMM_WORLD
processorblock (i) // return processor 1 in MPI_COMM_WORLD
// in block mode for synchronously communication
processorblock (mpiAnySource) // return processor any source
// in MPI_COMM_WORLD in block mode for synchronously communication
processorblock (i, comm) // return processor 1 in in comm in block mode
mpiBarrier (comm) ; // do a MPI_Barrier on communicator comm,
mpiWait (rq) ; // wait on of Request,
mpiWaitAll (arq); // wait add of Request array,
mpiWtime () ; // return MPIWtime in second (real),
mpiWtick () ; // return MPIWTick in second (real),

where a processor is just a integer rank, pointer to a MPI_comm and pointer to a MPI_Request,
and processorblock with a special MPI_Request.

10

.5 MPI communicator operator

int status; // to get the MPI status of send / recv
processor (10) << a << b; // send a,b asynchronously to the process 1,
processor (10) >> a >> b; // receive a,b synchronously from the process 10,
broadcast (processor (10, comm) , a) ; // broadcast from processor
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// of com to other comm processor
status=Send( processor (10,comm) , a); // send synchronously
Recv}
// to the process 10 the data a
status=Recv ( processor (10, comm) , a); // receive synchronously
// from the process 10 the data a;
status=Isend( processor (10,comm) , a); // send asynchronously to
// the process 10 , the data a without request
status=Isend( processor (10, rg,comm) , a) ; // send asynchronously to to
// the process 10, the data a with request
status=Irecv( processor (10,rqg) , a) ; // receive synchronously from
// the process 10, the data a;
status=Irecv( processor (10) , a) ; // Error
// Error asynchronously without request
broadcast (processor (comm, a) ) ; // Broadcast to all process of comm
where the data type of a can be of type of int,real, complex, int[int], double[int],

complex[int], int[int,int], double[int, int], complex[int, int], mesh, mesh3,

mesh[int], mesh3[int], matrix, matrix<complex>

processor (10, rqg) << a ; // send asynchronously to
// the data
processor (10, rqg) >> a ; // receive asynchronously from

// the data

the process 10
a with request
the process 10
a with request

If a, b are arrays or full matrices of int, real, or complex, we can use the following MPI functions:

mpiAlltoall (a,b[,comm]) ;
mpiAllgather (a,b[,comm]) ;

mpiGather (a,b,processor(..) ) ;
mpiScatter (a,b,processor(..)) ;
mpiReduce (a, b, processor(..),mpiMAX) ;
mpiAllReduce (a, b, comm, mpiMAX) ;
mpiReduceScatter (a,b, comm, mpiMAX) ;

See the examples++-mpi/essai.edp to test of all this functionality and Thank, to Guy-Antoine

Atenekeng Kahou, for his help to code this interface.

10.6 Schwarz example in parallel

This example is a rewritting of example schwarz-overlap in section [9.8.1

[examples++-mpi] Hecht%lamboot
LAM 6.5.9/MPI 2 C++/ROMIO - Indiana University
[examples+t+-mpi] hecht% mpirun -np 2 FreeFemt++-mpi schwarz-c.edp

// a new coding version c¢, methode de schwarz in parallele
// with 2 proc.

/) e

// F.Hecht december 2003

/) e e

// to test the broadcast instruction

// and array of mesh
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// add add the stop test
/) e

if ( mpisize != 2 ) {
cout << " sorry, number of processors !=2 " << endl;
exit (1);}

verbosity=3;

int interior = 2;
int exterior = 1;
border a(t=1,2) {x=t;y=0; label=exterior;};
border b (t=0,1) {x=2;y=t; label=exterior;};
border c (t=2,0) {x=t ;y=1;label=exterior;};
border d(t=1,0){x = 1-t; y = t;label=interior;};
border e (t=0, pi/2){ x= cos(t); y = sin(t);label=interior;};
border el (t=pi/2, 2*pi){ x= cos(t); y = sin(t);label=exterior;};
int n=4;
mesh[int] Th (mpisize);
if (mpirank == 0)
Th[0] = buildmesh( a(5*n) + b(5*n) + c(10xn) + d(5*n));
else
Th[l] = buildmesh ( e(5*n) + el (25*n) );

broadcast (processor (0),Th[0]);
broadcast (processor (1), Th[1l]);

fespace Vh (Th[mpirank],P1l);
fespace Vhother (Th[l-mpirank],P1l);

Vh u=0,v;
Vhother U=0;

int i=0;

problem pb(u,v,init=i, solver=Cholesky) =

int2d (Th[mpirank]) ( dx (u) xdx (v) +dy (u) *dy (v) )
- int2d (Th[mpirank]) ( v)
+ on(interior,u = U) + on(exterior,u= 0 ) ;

for ( i=0 ;i< 20; i++)
{

cout << mpirank << " looP " << 1 << endl;
pb;
// send u to the other proc, receive in U

processor (l-mpirank) << ufl]; processor (l-mpirank) >> U[];
real err0,errl;
err0 = intld(Th[mpirank], interior) (square (U-u)) ;

// send err0 to the other proc, receive in errl
processor (1-mpirank) <<err0; processor (l-mpirank) >>errl;
real err= sqrt (errO+errl);
cout <<" err = " << err << " err0 = " << err0

<< ", errl = " << errl << endl;

if (err<le-3) break;
}i
if (mpirank==0)
plot (u,U,ps="ul.eps");
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10.6.1 True parallel Schwarz example

This is a explanation of the two script examples++-mpi/MPIGMRES [2]D.edp, a Schwarz par-
allel with a complexity almost independent of the number of process (with a coarse grid precondi-
tioner).

Thank to F. Nataf.

To solve the following Poisson problem on domain € with boundary I' in L?(Q) :

—Au=f inQ, andu=gonT,

where f and g are two given functions of L?(Q) and of H %(F),
Let introduce (7;)i=1,..,n, a regular partition of the unity of Q, g-e-d:

NP

7 eClQ):  m>0and Zm =1.

i=1
Denote €2; the sub domain which is the support of m; function and also denote I'; the boundary of
Q;.
The parallel Schwarz method is Let £ = 0 the iterator and a initial guest u° respecting the boundary
condition (i.e. u?r =g).

Vi=1.N,: —Auf=f, in€Q;, andul=u"onT;\T,ui=gonT;NT (10.1)

ultl = fvzf’l il (10.2)

i
After discretization with the Lagrange finite element method, with a compatible mesh 7, of €2;, i.
e., the exist a global mesh 7 such that 7y, is include in 7. Let us denote:
e V), the finite element space corresponding to domain £2;,

k

70

e N}, is the set of the degree of freedom o

N, ,f; is the set of the degree of freedom of V3, on the boundary I'; of €;,

k

%

Voni = {on € Vi :Vk € Nyj, al(vy) = 0},

o7 (vy) is the value the degree of freedom k,

the conditional expression a 7 b : ¢ is defined like in C of C++ language by

if a is true then return b
a?b:c=
else return c

Remark we never use finite element space associated to the full domain 2 because it to expensive.

We have to defined to operator to build the previous algorithm: ‘
We denote ufl‘i the restriction of ufb on Vp;, so the discrete problem on {2; of problem ([10.1)) is find

uf;i € Vj; such that: where g¥ is the value of g associated to the degree of freedom k € N, ,{;
In FreeFem++, it can be written has with U is the vector corresponding to ufm. and the vector Ul

is the vector corresponding to ufn is the solution of:

real[int] Ul (Ui.n);
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real[int] b= onG .* U;
b = onG ? b : Bi ;
Ul = Ai"-1xb;

where onG[i] = (i € I'; \ I")71 : 0, and Bi the right of side of the problem, are defined by

fespace Whi (Thi,P2); // def of the Finite element space.

varf vPb (U,V)= int3d(Thi) (grad(U)’ xgrad(V)) + int3d(Thi) (FxV) +on(l,U=g) + on(10,U=G),
varf vPbon (U,V)=on(10,U=1)+on(1,U=0);

matrix Ai = vPb (Whi,Whi, solver=sparsesolver);

real[int] onG = vPbon (0,Whi);

real[int] Bi=vPb(0,Whi);

where the freefem++ label of I' is 1 and the label of I'; \ T" is 10.

To build the transfer /update part corresponding to equation on process i, let us call njpart
the number the neighborhood of domain of §2; (i.e: m; is none 0 of §;), we store in an array jpart
of size njpart all this neighborhood. Let us introduce two array of matrix, Smj[J] to defined
the vector to send from i to j a neighborhood process, and the matrix rMj[j] to after to reduce
owith neighborhood j domain.

So the tranfert and update part compute v; = miu; + e, Til and can be write the freefem-+-+
function Update:

func bool Update (real[int] &ui, real[int] &vi)
{ int n= Jjpart.n;

for (int j=0; j<njpart;++3j) Usend[]J][]1=sMj[j]=*ui;

mpiRequest [int] rg(nx2);

for (int 3=0; j<n;++7j) Irecv (processor (jpart[j]l,comm,rglj 1), Ri[j1I[]);

for (int j=0; j<n;++7j) Isend(processor (jpart[j],comm,rqgl[Jj+n]), Si[3l[]);

for (int j=0; j<n*2;++7j) int k= mpiWaitAny (rq);

// apply the unity local partition

vi = Piixui; // set to miu;
for (int j=0; j<njpart;++j) vi += rMj[jl*Vrecv[jl[]; // add mju,

return true; }

where the buffer are defined by:

InitU(njpart,Whij, Thij,aThij,Usend) // defined the send buffer
InitU(njpart,Whij, Thij,aThij, Vrecv) // defined the revc buffer

with the following macro definition:

macro InitU(n,Vh,Th,aTh,U) Vh[int] U(n); for(int j=0; j<n;++j) {Th=aTh[j]; U[3]1=0;}
//

First gmres algorithm: you can easily accelerate the fixe point algorithm by using a parallel GMRES
algorithm after the introduction the following affine A; operator sub domain €2;.

func real[int] DJO (real[int]& U) {
real[int] V(U.n) , b= onG .x U;
b = onG ? b : Bi ;

V = Ai"-1+b;
Update (V,U) ;



10.6. SCHWARZ EXAMPLE IN PARALLEL 283

v -—= U; return V; }

Where the parallel MPTGMRES or MPICG algorithm is just a simple way to solve in parallel the
following A;x; = b;,7 = 1,.., N, by just changing the dot product by reduce the local dot product
of all process with the following MPI code:

template<class R> R ReduceSuml (R s,MPI_Comm x comm)

{ R r=0;
MPI_Allreduce( &s, &r, 1 ,MPI_TYPE<R>::TYPE(), MPI_SUM, scomm ) ;
return r; }

This is done in MPIGC dynamics library tool.

Second gmres algorithm: Use scharwz algorithm as a preconditioner of basic GMRES method to
solving the parallel problem.

func real[int] DJ(real[int]& U) // the original problem
{
++kiter;
real[int] V(U.n);
V = AixU;
V = onGi ? 0.: V; // remove boundary term
return V;
}
func real[int] PDJ(reallint]& U) // the preconditioner

{
real[int] V(U.n);
real[int] b= onG ? 0. : TU;
V = Al -1+b;
Update (V,U) ;
return U;

Third gmres algorithm: Add a coarse solver to the previous algorithm
First build a coarse grid on processor 0, and the

matrix AC,Rci,Pci; //
if (mpiRank (comm)==0)

AC = vPbC (VhC,VhC, solver=sparsesolver) ; // the corase problem
Pci= interpolate (Whi, VhC) ; // the projection on coarse grid.
Rci = Pci’«*Pii; // the Restiction on Process i grid with the partition m;

func bool CoarseSolve(reallint]é& V,reallint]& U, mpiCommé& comm)
{
// solvibg the coarse probleme
real[int] Uc(Rci.n),Bc(Uc.n);
Uc= RcixU;
mpiReduce (Uc, Bc, processor (0, comm) , mpiSUM) ;
if (mpiRank (comm)==0)
Uc = AC"-1%Bc;
broadcast (processor (0, comm) , Uc) ;
V = PcixUc;
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The New precondtionner

funec real[int] PDJC (real[int]s& U) //
{ /7 Precon Cl= Precon //, C2 precon Coarse
// Idea : F. Nataf.

// 0 - (I ClA) (I-C2A) => I =~ - CIAC2A +ClA +C2A

// New Prec P= Cl+C2 - CIlAC2 = Cl1(I- A C2) +C2

// ( Cl1(1- A C2) +C2 ) Uo

// V = - C2+Uo

//

real[int] V(U.n);
CoarseSolve (V, U, comm) ;

vV = -V; // —Cc2+Uo
U  += AixV; // U= (I-A C2) Uo
real[int] b= onG ? 0. : TU;

U = A1 -1xb; // (Cl( I -A C2) Uo
vV = U -V; //
Update (V,U) ;

return U;

The code to the 4 algorithms:

real epss=le-6;
int rgmres=0;
if (gmres==1)
{
rgmres=MPIAffineGMRES (DJO,u[], veps=epss,nbiter=300, comm=commn,
dimKrylov=100, verbosity=ipart ? 0: 50);
real[int] b= onG .* ull];
b =onG ? b : Bi ;
vi] = Ai"-1+Db;
Update (v[],ull);
}
else if (gmres==2)
rgmres= MPILinearGMRES (DJ, precon=PDJ,u[],Bi, veps=epss,nbiter=300, comm=comm
,dimKrylov=100,verbosity=ipart ? 0: 50);
else if (gmres==3)
rgmres= MPILinearGMRES (DJ,precon=PDJC,u[],Bi, veps=epss,nbiter=300, comm=comm,
dimKrylov=100, verbosity=ipart 2 0: 50);
else // algo Shwarz for demo
for (int iter=0;iter <10; ++iter)

We have all ingredient to solve in parallel if we have et the partitions of the unity. To build this
partition we do: the initial step on process 1 tp build a coarse mesh, 7" of the full domain, and
build the partition 7 function constant equal to 7 on each sub domain O;,7 = 1, .., N, of the grid
with the Metis graph partitioner [?] and on each process i in 1.., N, do

1. Broadcast from process 1, the mesh 73" (call Thii in freefem++ script), and 7 function,

2. remark that the characteristic function Ip, of domain O;, is defined by (7 = )71 : 0,
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3. let us call 1% (resp. I13,) the L? on P} the space of the constant finite element function per
element on 75" (resp. V;* the space of the affine continuous finite element per element on
7r*). and build in parallel the 7; and €, such that O; C ; where O; = supp((II3112)™1p,),
and m is a the overlaps size on the coarse mesh (generally one),

(this is done in function AddLayers (Thii, suppii[],nlayer,phii[]); We choose a
function 7} = (H%H%)mloi so the partition of the unity is simply defined by

¥

M= (10.3)
2417

The set J; of neighborhood of the domain €2;, and the local version on V}; can be defined the
array jpart and njpart with:

Vhi pii=mf ; Vhilint] pij(npij); // local partition of 1 = pii + EL
pijli]

int [int] Jjpart (npart); int njpart=0;

Vhi sumphi = @} ;
for (int i1=0; i<npart; ++1i)
if(i !'= ipart ) {

if (int3d(Thi) ( ﬂ;)>0) {
pijlnjpart]=m;;
sumphi[] += pijlnjpart]l[];
jpart [njpart++]=1i;}}}
pii[l=piil[] ./ sumphil];
for (int j=0; j<njpart;++3j) pij[jl[] = pij[J]1[] ./ sumphi[];
jpart.resize (njpart);

4. We call ﬂl’;j the sub mesh part of 7; where 7; are none zero. and tank to the function
trunc to build this array,

for (int Jjp=0; jp<njpart; ++Jjp)
aThij[jp] = trunc(Thi,pij[jpl>1le-10,label=10);

5. At this step we have all on the coarse mesh , so we can build the fine final mesh by splitting
all meshes : Thi, Thij[3j],Thij[j] with freefem+-+ trunc mesh function which do
restriction and slipping.

6. The construction of the send/recv matrices sMj and rMj : can done with this code:

mesh3 Thij=Thi; // variable meshes

fespace Whij(Thij, Pk); // variable fespace

matrix Pii; Whi wpii=pii; Pii = wpiil]; // Diagonal matrix
corresponding XT;

matrix[int] sMj(njpart), rMj(njpart); // M send/rend case. .

for (int Jjp=0; jp<njpart;++jp)
{ int Jj=jpart[jpl;

Thij = aThij[jpl; //  change mesh to change Whij, Whij
matrix I = interpolate (Whij,Whi); // Whij <- Whi
sMj[jp]l = IxPii; // Whi —> s Whij

rMj[Jjp] = interpolate (Whij,Whi,t=1); }} // Whij -> Whi
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To buil a not to bad application, I have add code tout change variable from parametre value with
the following code

include "getARGV.idp"
verbosity=getARGV ("-vv",0);

int vdebug=getARGV ("-d",1);

int ksplit=getARGV("-k",10);
int nloc = getARGV("-n",25);
string sff=getARGV("-p,","");

int gmres=getARGV ("-gmres", 3);
bool dplot=getARGV ("-dp",0);
int nC = getARGV ("-N" ,max(nloc/10,4));

And small include to make graphic in parallel of distribute solution of vector v on mesh T} with
the following interface:

include "MPIplot.idp"
func bool plotMPIall (mesh &Th,real[int] & u,string cm)
{ PLOTMPIALL (mesh,Pk, Th, u,{ cmm=cm,nbiso=20,fill=1,dim=3,value=1}); return 1;}

remark the {cmm=cm, ... =1} in the macro argument is a way to quote macro argument so
the argument is cmm=cm, ... =1.
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Parallel sparse solvers

Parallel sparse solvers use several processors to solve linear systems of equation. Like sequential,
parallel linear solvers can be direct or iterative. In FreeFem++ both are available.

11.1 Using parallel sparse solvers in FreeFem++

We recall that the solver parameters are defined in the following commands: solve, problem,
set (setting parameter of a matrix) and in the construction of the matrix corresponding to a
bilinear form. In these commands, the parameter solver must be set to sparsesolver for
parallel sparse solver. We have added specify parameters to these command lines for parallel
sparse solvers. These are

e lparams: vector of integer parameters (1 is for the c++ type long)
e dparams: vector of real parameters

e sparams: string parameters

e datafilename: name of the file which contains solver parameters

The following four parameters are only for direct solvers and are vectors. These parameters allow the
user to preprocess the matrix (see the section on sparse direct solver above for more information).

e permr: row permutation (integer vector)

e permc: column permutation or inverse row permutation (integer vector)
e scaler: row scaling (real vector)

e scalec: column scaling (real vector)

There are two possibilities to control solver parameters. The first method defines parameters with
lparams, dparams and sparams in .edp file. The second one reads the solver parameters from a
data file. The name of this file is specified by datafilename. If 1params, dparams, sparams
or datafilename is not provided by the user, the solver’s default value is used.

To use parallel solver in FreeFem++ , we need to load the dynamic library corresponding to this
solver. For example to use MUMPS solver as parallel solver in FreeFem, write in the .edp file load
"MUMPS FreeFem”.

If the libraries are not loaded, the default sparse solver will be loaded (default sparse solver is
UMFPACK). The table gives this new value for the different libraries.

287
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default sparse solver

Libraries real complex
MUMPS FreeFem mumps mumps
real SuperLU_DIST FreeFem SuperLU_DIST | previous solver
complex_SuperLLU_DIST FreeFem | previous solver | SuperLU_DIST
real_pastix_FreeFem pastix previous solver
complex_pastix_FreeFem previous solver pastix
hips_FreeFem hips previous solver
hypre_FreeFem hypre previous solver
parms_FreeFem parms previous solver

Table 11.1: Default sparse solver for real and complex arithmetics when we load a parallel
sparse solver library

We also add functions (see Table with no parameter to change the default sparse solver in the
.edp file. To use these functions, we need to load the library corresponding to the solver. An example
of using different parallel sparse solvers for the same problem is given in testdirectsolvers.edp
(directory example+ + —mpi).

default sparse solver

function real complex
defaulttoMUMPS() mumps mumps
realdefaulttoSuperLUdist() SuperLU_DIST | previous solver
complexdefaulttoSuperLUdist() | previous solver | SuperLU_DIST
realdefaultopastix() pastix previous solver
complexdefaulttopastix() previous solver pastix
defaulttohips() hips previous solver
defaulttohypre() hypre previous solver
defaulttoparms() parms previous solver

Table 11.2: Functions that allow to change the default sparse solver for real and complex
arithmetics and the result of these functions

Example 11.1 (testdirectsolvers.edp)

load "../src/solver/MUMPS_FreeFem"
// default solver : real-> MUMPS, complex —> MUMPS
load "../src/solver/real_SuperLU_DIST_FreeFem"
// default solver : real-> SuperLUDIST, complex —> MUMPS
load "../src/solver/real_pastix_FreeFem"
// default solver : real-> pastix, complex —> MUMPS

// solving with pastix

matrix A =

(r i, 2, 2, 1, 11,
[ 2, 12, 0o, 10 , 101,
[ 2, 0, 1, 0, 21,
[ 1, 10, 0, 22, 0.],
[ 1, 10, 2, 0., 2211;
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real[int] xx = [ 1,32,45,7,2], x(5), b(5), di(5);
b=Axxx;

cout << "b=" << b << endl;

cout << "xx=" << xx << endl;

set (A, solver=sparsesolver,datafilename="ffpastix_iparm_dparm.txt");
cout << "solving solution" << endl;
X = A"-1+Db;

cout << "b=" << b << endl;

cout << "x=" << endl; cout << x << endl;

di = xx-x;

if (mpirank==0) {

cout << "x-xx="<< endl; cout << "Linf "<< di.linfty << " L2 " << di.l2 << endl;

}

// solving with SuperLU.DIST
realdefaulttoSuperLUdist () ;
// default solver : real-> SuperLUDIST, complex —> MUMPS
{
matrix A =
(1, 2z, 2, 1, 11,
[ 2, 12, 0o, 10 , 1071,
[ 2, 0, i, 0, 21,
[ 1, 10, 0, 22, 0.1,
[ 1, 10, 2, 0., 2211;
real[int] xx = [ 1,32,45,7,2]1, x(5), b(5), di(5);
b=AxxXx;
cout << "b=" << b << endl;
cout << "xx=" << xx << endl;

set (A, solver=sparsesolver,datafilename="ffsuperlu_dist_fileparam.txt");

cout << "solving solution" << endl;

X = A"=1+Db;

cout << "b=" << b << endl;

cout << "x=" << endl; cout << x << endl;

di = xx-x;

if (mpirank==0) {

cout << "x-xx="<< endl; cout << "Linf "<< di.linfty << " L2 " << di.l2 << endl;

}

// solving with MUMPS
defaulttoMUMPS () ;
// default solver : real-> MUMPS, complex —-> MUMPS

matrix A =

(r 1, 2, 2, 1, 11,
[ 2, 12, 0, 10 , 101,
[ 2, 0, i, 0, 21,
[ 1, 10, 0, 22, 0.],
[ 1, 10, 2, 0., 2211;

real[int] xx = [ 1,32,45,7,2], x(5), b(5), di(5);
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b=Axxx;
cout << "b=" << b << endl;
cout << "xx=" << xx << endl;

set (A, solver=sparsesolver,datafilename="ffmumps_fileparam.txt");

cout << "solving solution" << endl;

X = A"=1+Db;

cout << "b=" << b << endl;

cout << "x=" << endl; cout << x << endl;

di = xx-Xx;

if (mpirank==0) {

cout << "x-xx="<< endl; cout << "Linf "<< di.linfty << " L2 " << di.l2 << endl;

}

11.2 Sparse direct solver

In this section, we present the sparse direct solvers interfaced with FreeFem++ .

11.2.1 MUMPS solver

MUItifrontal Massively Parallel Solver (MUMPS) is a free library [?, ?, ?]. This package solves
linear system of the form A x = b where A is a square sparse matrix with a direct method. The
square matrix considered in MUMPS can be either unsymmetric, symmetric positive definite or
general symmetric. The method implemented in MUMPS is a direct method based on a multifrontal
approach [?]. It constructs a direct factorization A = LU, A = L' D L depending of the symmetry
of the matrix A. MUMPS uses the following libraries : BLAS[?, ?], BLACS and ScaLAPACK]?].

Remark 7 MUMPS does not solve linear system with a rectangular matriz.

Installation of MUMPS To used MUMPS in FreeFem++ , you have to install the MUMPS
package into your computer. MUMPS is written in Fortran 90. The parallel version is constructed
using MPT [?] for message passing and BLAS [?, ?], BLACS and ScaLAPACK][?]. Therefore, a
fortran compiler is needed, and MPI, BLAS, BLACS and ScaLAPACK . An installation procedure
to obtain this package is given in the file README_COMPILE in the directory src/solver of
FreeFem++ .

Creating Library of MUMPS interface for FreeFem++ : The MUMPS interface for FreeFem++
is given in file MUMPS _freefem.cpp (directory src/solver/ ). This interface works with the release
3.8.3 and 3.8.4 of MUMPS. To used MUMPS in FreeFem++ , we need the library corresponding
to this interface. A description to obtain this library is given in the file README_COMPILE in the
directory src/solver of FreeFem++ . We recall here the procedure. Go to the directory src/solver
in FreeFem++ package. Edit the file makefile-sparsesolver.inc to yours system: comment Section
1, comment line corresponding to libraries BLAS, BLACS, ScaLAPACK, Metis, scotch in Section
2 and comment in Section 3 the paragraph corresponding to MUMPS solver. And then type make
mumps in a terminal window.

Now we give a short description of MUMPS parameters before describing the method to call
MUMPS in FreeFem++ .
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MUMPS parameters:  There are four input parameters in MUMPS (see [?]). Two integers
SYM and PAR, a vector of integer of size 40 INCTL and a vector of real of size 15 CNTL. The first
parameter gives the type of the matrix: 0 for unsymmetric matrix, 1 for symmetric positive matrix
and 2 for general symmetric. The second parameter defined if the host processor work during the
factorization and solves steps : PAR=1 host processor working and PAR=0 host processor not
working. The parameter INCTL and CNTL is the control parameter of MUMPS. The vectors
ICNTL and CNTL in MUMPS becomes with index 1 like vector in fortran. A short description of
all parameters of ICNTL and CNTL is given in ffmumps_fileparam.txt. For more details see the
users’ guide [?].

We describe now some elements of the main parameters of ICNTL for MUMPS.

Input matrix parameter The input matrix is controlled by parameters ICNTL(5) and IC-
NTL(18). The matrix format (resp. matrix pattern and matrix entries) are controlled by INCTL(5)
(resp. INCTL(18)). The different values of ICNTL(5) are 0 for assembled format and 1 for element
format. In the current release of Freefem++, we consider that FE matrix or matrix is storage in
assembled format. Therefore, INCTL(5) is treated as 0 value. The main option for ICNTL(18):
INCLTL(18)=0 centrally on the host processor, ICNTL(18)=3 distributed the input matrix pattern
and the entries (recommended option for distributed matrix by developer of MUMPS). For other
values of ICNTL(18) see the user’s guide of MUMPS. These values can be used also in Freefem++-.
The default option implemented in FreeFem++ are ICNTL(5)=0 and ICNTL(18)=0.

Preprocessing parameter The preprocessed matrix A, that will be effectively factored is defined
by
A,=PD,AQ. D.P'

where P is the permutation matrix, Q). is the column permutation, D, and D, are diagonal matrix
for respectively row and column scaling. The ordering strategy to obtain P is controlled by param-
eter ICNTL(7). The permutation of zero free diagonal Q. is controlled by parameter ICNTL(6).
The row and column scaling is controlled by parameter ICNTL(18). These option are connected
and also strongly related with ICNTL(12) (see documentation of mumps for more details [?]). The
parameters permr, scaler, and scalec in FreeFem++ allow to give permutation matrix(P), row
scaling (D,) and column scaling (D.) of the user respectively.

Calling MUMPS in FreeFem++ To call MUMPS in FreeFem++ , we need to load the dy-
namic library MUMPS _freefem.dylib (MacOSX), MUMPS _freefem.so (Unix) or MUMPS _freefem.dll
(Windows). This is done in typing load "MUMPS _freefem” in the .edp file. We give now the two
methods to give the option of MUMPS solver in FreeFem++ .

Solver parameters is defined in .edp file: In this method, we need to give the parameters
lparams and dparams. These parameters are defined for MUMPS by

lparams[0] = SY
Iparams|[1] = PA R
Vi=1,...,40, Iparams[i+1] = ICNTL(q).

Vi=1,...,15, dparams[i — 1] = CNTL(i).

Reading solver parameters on a file: The structure of data file for MUMPS in FreeFem++ is:
first line parameter SYM and second line parameter PAR and in the following line the different value
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of vectors ICNTL and CNTL. An example of this parameter file is given in f fmumpsfileparam.txt.

0

/* SYM

0 for non symmetric matrix,

1 for symmetric definite positive

matrix and 2 general symmetric matrixx/

1

/* PAR

0 host not working during factorization and solves steps, 1

host working during factorization and solves stepsx/

-1 /+ ICNTL (1) output stream for error message */

-1 /+ ICNTL (2) output for diagnostic printing, statics and warning message
*/

-1 /* ICNTL (3) for global information =/

0 /+ ICNTL (4) Level of printing for error, warning and diagnostic message
*/

0 /* ICNTL (5) matrix format 0 assembled format, 1 elemental format.

*/

7 /* ICNTL (6) control option for permuting and/or scaling the matrix

in analysis phase */

3 /* ICNTL(7) pivot order strategy AMD, AMF, metis, pord scotchx/

77 /+ ICNTL (8) Row and Column scaling strategy =*/

1 /* ICNTL (9) 0 solve Ax = b, 1 solve the transposed system A"t x =
b : parameter is not considered in the current release of freefem++x/

0 /* ICNTL(10) number of steps of iterative refinement «/

0 /* ICNTL(11) statics related to linear system depending on ICNTL (9)
*/

1 /+ ICNTL(12) constrained ordering strategy for general symmetric matrix
*/

0 /* ICNTL(13) method to control splitting of the root frontal matrix
*/

20 /+ ICNTL(14) percentage increase in the estimated working space (default
20%) x/

0 /* ICNTL(15) not used in this release of MUMPS x/

0 /* ICNTL(16) not used in this release of MUMPS x/

0 /* ICNTL(17) not used in this release of MUMPS x/

3 /* ICNTL(18) method for given matrix pattern and matrix entries

: %/

0 /* ICNTL(19) method to return the Schur complement matrix =/

0 /* ICNTL (20) right hand side form ( 0 dense form, 1 sparse form)

parameter will be set to O

0

/ *

ICNTL (21)

for freefem++ =*/

0, 1 kept distributed solution parameter is not considered

in the current release of freefem++ */

0
0

/ *
/ *

ICNTL (22)
ICNTL (23)

controls the in-core/out-of-core (00C) facility =/
maximum size of the working memory in Megabyte than MUMPS

can allocate per working processor x/

0 /* ICNTL (24) control the detection of null pivot =/

0 /* ICNTL (25) control the computation of a null space basis */

0 /* ICNTL(26) This parameter is only significant with Schur option
(ICNTL(19) not =zero). parameter is not considered in the current release of freefemt+
*/

-8 /* ICNTL(27) (Experimental parameter subject to change in next release
of MUMPS) control the blocking factor for multiple righthand side during the
solution phase parameter is not considered in the current release of freefem++
*/

0 /* ICNTL (28) not used in this release of MUMPSx*/

0 /* ICNTL (29) not used in this release of MUMPS«*/

0 /* ICNTL (30) not used in this release of MUMPS«*/
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0 /* ICNTL (31) not used in this release of MUMPSx*/

0 /* ICNTL (32) not used in this release of MUMPSx*/

0 /* ICNTL (33) not used in this release of MUMPSx/

0 /+ ICNTL (34) not used in this release of MUMPSx/

0 /* ICNTL(35) :: not used in this release of MUMPSx*/

0 /* ICNTL(36) :: not used in this release of MUMPS=x/

0 /* ICNTL (37) not used in this release of MUMPS«*/

0 /* ICNTL (38) not used in this release of MUMPS«*/

1 /* ICNTL (39) not used in this release of MUMPSx*/

0 /* ICNTL(40) :: not used in this release of MUMPSx*/

0.01 /* CNTL (1) :: relative threshold for numerical pivoting =*/
le-8 /* CNTL (2) stopping criteria for iterative refinement x/
-1 /* CNTL (3) threshold for null pivot detection =/

-1 /* CNTL (4) determine the threshold for partial pivoting =/
0.0 /* CNTL (5) fixation for null pivots =/

0 /* CNTL (6) not used in this release of MUMPS «*/

0 /* CNTL (7) not used in this release of MUMPS x/

0 /+ CNTL (8) not used in this release of MUMPS x*/

0 /* CNTL (9) not used in this release of MUMPS */

0 /* CNTL (10) not used in this release of MUMPS */

0 /* CNTL(11l) :: not used in this release of MUMPS x*/

0 /+ CNTL(12) :: not used in this release of MUMPS «*/

0 /* CNTL (13) not used in this release of MUMPS x/

0 /* CNTL (14) not used in this release of MUMPS x/

0 /* CNTL (15) not used in this release of MUMPS x/

If no solver parameter is given, we used default option of MUMPS solver.

example A simple example of calling MUMPS in FreeFem++ with this two methods is given in
the file testsolver MUMPS.edp in the directory examples+-+-mpi.

11.2.2 SuperLU distributed solver

The package SuperLU_DIST [?, ?] solves linear systems using LU factorization. It is a free scientific
library under BSD license. The web site of this project is http://crd.lbl.gov/~xiaoye/SuperLU. This
library provides functions to handle square or rectangular matrix in real and complex arithmetics.
The method implemented in SuperLU_DIST is a supernodal method [?]. New release of this package
includes a parallel symbolic factorization [?]. This scientific library is written in C and MPI for
communications.

Installation of SuperLU_DIST: To use SuperLU_DIST in FreeFem++ , you have to install
SuperLU_DIST package. We need MPI and ParMetis library to do this compilation. An instal-
lation procedure to obtain this package is given in the file README_COMPILE in the directory
src/solver/ of the freefem++ package.

Creating Library of SuperLU DIST interface for FreeFem++ : The FreeFem++ interface
to SuperLU_DIST for real (resp. complex) arithmetics is given in file

real_SuperLU_DIST FreeFem.cpp (resp. complex_SuperLU_DIST FreeFem.cpp). These files are in
the directory src/solver/. These interfaces are compatible with the release 3.2.1 of SuperLU_DIST.
To use SuperLU_DIST in FreeFem++ , we need libraries corresponding to these interfaces. A
description to obtain these libraries is given in the file README_COMPILE in the directory
src/solver of FreeFem++ . We recall here the procedure. Go to the directory src/solver in
FreeFem++ package. Edit the file makefile-sparsesolver.inc in your system : comment Section
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1, comment line corresponding to libraries BLAS, Metis, ParMetis in Section 2 and comment in
Section 3 the paragraph corresponding to SuperLU_DIST solver. And just type make rsludist (resp.
make csludist) in the terminal to obtain the dynamic library of interface for real (resp. complex)
arithmetics.

Now we give a short description of SuperLU_DIST parameters before describing the method to call
SuperLU_DIST in FreeFem++ .

SuperLU_DIST parameters: = We describe now some parameters of SuperLU_DIST. The Su-
perLU_DIST library use a 2D-logical process group. This process grid is specifies by nprow (process
row) and npcol (process column) such that N, = nprownpcol where N, is the number of all process
allocated for SuperLU_DIST.

The input matrix parameters is controlled by ”matrix=
the third line of parameters file. The different value are

2

in sparams for internal parameter or in

matrix = assembled global matrix are available on all process
matrix = distributedglobal the global matrix is distributed among all the process
matrix = distributed the input matrix is distributed (not yet implemented)

The option arguments of SuperLU_DIST are described in the section Users-callable routine of [?].
The parameter Fact and TRANS are specified in FreeFem++ interfaces to SuperLU_DIST during
the different steps. For this reason, the value given by the user for this option is not considered.
The factorization LU is calculated in SuperLU_DIST on the matrix A,.

A, =P.P.D, AD, P!

where P, and P, is the row and column permutation matrix respectively, D, and D, are diagonal
matrix for respectively row and column scaling. The option argument RowPerm (resp. ColPerm)
control the row (resp. column) permutation matrix. D, and D, is controlled by the parameter
DiagScale. The parameter permr, permc, scaler, and scalec in FreeFem++ is provided to give
row permutation, column permutation, row scaling and column scaling of the user respectively.
The other parameters for LU factorization are ParSymFact and ReplaceTinyPivot. The parallel
symbolic factorization works only on a power of two processes and need the ParMetis ordering [?].
The default option argument of SuperLU_DIST are given in the file ffsuperlu_dist_fileparam.txt.

Calling SuperLU _DIST in FreeFem++ To call SuperLU DIST in FreeFem++ , we need to
load the library dynamic correspond to interface. This done by the following line load ”real _superlu
_DIST FreeFem” (resp. load ”complex_superlu DIST FreeFem”) for real (resp. complex) arith-
metics in the file .edp.

Solver parameters is defined in .edp file: To call SuperLU DIST with internal parameter, we
used the parameters sparams. The value of parameters of SuperLU_DIST in sparams is defined by
sparams ="nprow=1, npcol=1, matrix= distributedgloba, Fact= DOFACT, Equil=NO,
ParSymbFact=NO, ColPerm= MMD_AT_PLUS_A, RowPerm= LargeDiag,
DiagPivotThresh=1.0, IterRefine=DOUBLE, Trans=NOTRANS,
ReplaceTinyPivot=NO, Solvelnitialized=NO, PrintStat=NO, DiagScale=NOEQUIL ”
This value correspond to the parameter in the file fisuperlu_dist_fileparam.txt. If one parameter is
not specify by the user, we take the default value of SuperLU_DIST.

Reading solver parameters on a file: The structure of data file for SuperLU_DIST in FreeFem++
is given in the file ffsuperlu_dist_fileparam.txt (default value of the FreeFem++ interface).
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1 /* nprow : integer value */

1 /+ npcol : integer value */

distributedglobal /+ matrix input : assembled, distributedglobal, distributed
*/

DOFACT /* Fact : DOFACT, SamePattern, SamePattern_SameRowPerm,
FACTORED =/

NO /% Equil : NO, YES x/

NO /+ ParSymbFact : NO, YES «/

MMD_AT PLUS_A /+ ColPerm : NATURAL, MMD_ AT PLUS_A, MMD_ATA, METIS_AT PLUS_A, PARMETIS,
MY_PERMC x/

LargeDiag /+ RowPerm : NOROWPERM, LargeDiag, MY_PERMR x/
1.0 /+ DiagPivotThresh : real value =/

DOUBLE /+* IterRefine : NOREFINE, SINGLE, DOUBLE, EXTRA =*/
NOTRANS /+ Trans : NOTRANS, TRANS, CONJ=*/

NO /* ReplaceTinyPivot : NO, YESx/

NO /* SolvelInitialized : NO, YES«*/

NO /* RefinelInitialized : NO, YES«*/

NO /* PrintStat : NO, YES«*/

NOEQUIL /* DiagScale : NOEQUIL, ROW, COL, BOTH«/

If no solver parameter is given, we used default option of SuperLU_DIST solver.

Example 11.2 A simple example of calling SuperLU_DIST in FreeFem++ with this two methods
is given in the file testsolver_superLU_DIST.edp in the directory examples+-+-mpi.

11.2.3 Pastix solver

Pastix (Parallel Sparse matrix package) is a free scientific library under CECILL-C license. This
package solves sparse linear system with a direct and block ILU(k) iterative methods. This solver
can be applied to a real or complex matrix with a symmetric pattern [?].

Installation of Pastix: To used Pastix in FreeFem++ , you have to install pastix package in
first. To compile this package, we need a fortran 90 compiler, scotch [?] or Metis [?] ordering
library and MPI. An installation procedure to obtain this package is given in the file .src/solver/
README_COMPILE in the section pastix of the FreeFem++ package.

Creating Library of pastix interface for FreeFem++ : The FreeFem++ interface to pastix
is given in file real_pastix_FreeFem.cpp (resp. complex_pastix_FreeFem.cpp) for real (resp.complex)
arithmetics. This interface is compatible with the release 2200 of pastix and is designed for a
global matrix. We have also implemented interface for distributed matrices. To use pastix in
FreeFem++ , we need the library corresponding to this interface. A description to obtain this
library is given in the file README_COMPILE in the directory src/solver of FreeFem++ . We
recall here the procedure. Go to the directory src/solver in FreeFem++ package. Edit the file
makefile-sparsesolver.inc to yours system : comment Section 1, comment line corresponding to
libraries BLAS, METIS and SCOTCH in Section 2 and comment in Section 3 the paragraph
corresponding to pastix solver. And just type make rpastix (resp. make cpastix) in the terminal
to obtain the dynamic library of interface for real (resp. complex) arithmetics.

Now we give a short description of pastix parameters before describing the method to call pastix
in FreeFem++ .
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Pastix parameters: The input matrix parameter of FreeFem++ depend on pastix interface.
matrix=assembled for non distributed matrix. It is the same parameter for SuperLU_DIST. There
are four parameters in Pastix : iparm, dparm, perm and invp. These parameters are respectively
the integer parameters (vector of size 64), real parameters (vector of size 64), permutation matrix
and inverse permutation matrix respectively. iparm and dparm vectors are described in [?]. The
parameters permr and permc in FreeFem++ are provided to give permutation matrix and inverse
permutation matrix of the user respectively.

Solver parameters defined in .edp file: To call Pastix in FreeFem++ in this case, we need to
specify the parameters lparams and dparams. These parameters are defined by

Vi=0,...,63, Iparams[i] = iparm][].

Vi=0,...,63, dparams[i] = dparm][i].

Reading solver parameters on a file: The structure of data file for pastix parameters in
FreeFem++ is: first line structure parameters of the matrix and in the following line the value of
vectors iparm and dparm in this order.

assembled /* matrix input :: assembled, distributed global and distributed x/
iparm([0]
iparm([1]

iparm[63]
dparm[0]
dparm[1]

dparm[63]
An example of this file parameter is given in ffpastix_iparm_dparm.txt with a description of these

parameters. This file is obtained with the example file iparm.txt and dparm.txt including in the
pastix package.

If no solver parameter is given, we use the default option of pastix solver.

Example: A simple example of calling pastix in FreeFem++ with this two methods is given in
the file testsolver_pastix.edp in the directory examples+-+-mpi.

In Table we recall the different matrix considering in the different direct solvers.

11.3 Parallel sparse iterative solver

Concerning iterative solvers, we have chosen pARMS [?] , HIPS [?] and Hypre [?]. Each software
implements a different type of parallel preconditioner. So, pARMS implements algebraic domain
decomposition preconditioner type such as additive Schwartz [?] and interface method [?]; while
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square matrix rectangular matrix
direct solver Sym sym pattern unsym | sym sym pattern unsym
SuperLU_DIST | yes yes yes yes yes yes
MUMPS yes yes yes no no no
pastix yes yes no no no no
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Table 11.3: Type of matrix used by the different direct sparse solver

HIPS implement hierarchical incomplete factorization [?] and finally HYPRE implements multilevel
preconditioner are AMG(Algebraic MultiGrid) [?] and parallel approximated inverse [?].

To use one of these programs in FreeFem++, you have to install it independently of FreeFem++-.
It is also necessary to install the MPI communication library which is essential for communication
between the processors and, in some cases, software partitioning graphs like METIS [?] or Scotch
[7].

All this preconditioners are used with Krylov subspace methods accelerators. Krylov subspace
methods are iterative methods which consist in finding a solution x of linear system Ax = b inside
the affine space xg + K, by imposing that b — Ax | L,,, where K, is Krylov subspace of dimension
m defined by K,, = {ro, Arg, A%rg, ..., A" 1ry} and L,, is another subspace of dimension m which
depends on type of Krylov subspace. For example in GMRES, £,, = AK,,.

We realized an interface which is easy to use, so that the call of these different softwares in
FreeFem++ is done in the same way. You just have to load the solver and then specify the
parameters to apply to the specific solvers. In the rest of this chapter, when we talk about Krylov
subspace methods we mean one among GMRES, CG and BICGSTAB.

11.3.1 pARMS solver

PARMS ( parallel Algebraic Multilevel Solver) is a software developed by Youssef Saad and al
at University of Minnesota [?]. This software is specialized in the resolution of large sparse non
symmetric linear systems of equation. Solvers developed in pARMS is the Krylov subspace type. It
consists of variants of GMRES like FGMRES (Flexible GMRES) , DGMRES (Deflated GMRES) [?]
and BICGSTAB. pARMS also implements parallel preconditioner like RAS (Restricted Additive
Schwarz)[?] and Schur Complement type preconditioner [?].

All these parallel preconditioners are based on the principle of domain decomposition. Thus, the
matrix A is partitioned into sub matrices 4;(i = 1, ..., p) where p represents the number of partitions
one needs. The union of A; forms the original matrix. The solution of the overall system is obtained
by solving the local systems on A; (see [?]). Therefore, a distinction is made between iterations on A
and the local iterations on A;. To solve the local problem on A; there are several preconditioners as
ilut (Incomplete LU with threshold), iluk(Incomplete LU with level of fill in) and ARMS( Algebraic
Recursive Multilevel Solver). But to use pAMRS in FreeFem++ you have first to install pAMRS.

Installation of pARMS To install pARMS, you must first download the pARMS package at
[?]. Once the download is complete, you must unpack package pARMS and follow the installation
procedure described in file README to create the library libparms.a.

Using pARMS as interface to FreeFem++ Before calling pARMS solver inside FreeFem++,
you must compile file parms_FreeFem.cpp to create a dynamic library parms_FreeFem.so. To do
this, move to the directory src/solver of FreeFem++, edit the file make fileparms.inc to specify
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the following variables:

PARMS _DIR : Directory of pARMS

PARMS_ INCLUDE : Directory for header of pARMS

METIS : METIS directory

METIS LIB : METIS librairy

MPI : MPI directory

MPI INCLUDE : MPI headers

FREEFEM FreeFem++ directory

FREEFEM INCLUDE : FreeFem++ header for sparse linear solver
LIBBLAS : Blas library

After that, in the command line type make parms to create parms_EFreeFem.so.
As usual in FreeFem++, we will show by examples how to call pARMS in FreeFem++. There are
three ways of doing this:

Example 1: Default parameters This example comes from user guide of FreeFem—++ [?] at
page 12.

Example 11.3

1: load parms_freefem // Tell FreeFem that you will use pARMS
2: border C(t=0,2xpi) {x=cos(t); y=sin(t);label=1;}

3: mesh Th = buildmesh (C(50));

4: fespace Vh(Th,P2);

5: Vh u,v;

6: func f= xx*y;

7: problem Poisson (u,v,solver=sparsesolver) = // bilinear part will use
8: int2d (Th) (dx (u) *dx (v) + dy (u) *dy (v)) // a sparse solver, in this
case pPARMS

9: — int2d(Th) ( f£xv) // right hand side
10: + on(1l,u=0) ; // Dirichlet boundary condition
11:
12: real cpu=clock();
13: Poisson; // SOLVE THE PDE
14: plot (u);
15: cout << " CPU time = " << clock()-cpu << endl;

In line 1 of example[I1.3]we load in memory the pARMS dynamic library with interface FreeFem++.
After this, in line 7 we specify that the bilinear form will be solved by the last sparse linear solver
load in memory which, in this case, is pARMS.

The parameter used in pARMS in this case is the default one since the user does not have to
provide any parameter.

Here are some default parameters:

solver=FGMRES, Krylov dimension=30, Maximum of Krylov=1000, Tolerance for convergence=1e—
08.(see book of Saad [?] to understand all this parameters.)

preconditionner=Restricted Additif Schwarz [?], Inner Krylov dimension=5, Maximum of inner
Krylov dimension=5, Inner preconditionner=ILUK.

To specify the parameters to apply to the solver, the user can either give an integer vector for
integer parameters and real vectors for real parameters or provide a file which contains those
parameters.
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Example 2: User specifies parameters inside two vectors Lets us consider Navier Stokes
example . In this example we solve linear systems coming from discretization of Navier Stokes
equation with pARMS. Parameters of solver is specified by user.

Example 11.4 (Stokes.edp) include "manual.edp"
include "includes.edp";

include "mesh_with_cylinder.edp";

include "bc_poiseuille_in_square.edp";
include "fe_functions.edp";

0: load parms_FreeFem
1: int[int] iparm(16); reallint] dparm(6);
2: int ,ii;
3: for(ii=0;1i<16;1ii++) {iparm[ii]=-1;} for(ii=0;1ii<6;1ii++) dparm[ii]=-1.0;
4: fespace Vh(Th, [P2,P2,P1]);
5: iparm[0]=0;
6: varf Stokes ([u,v,p], [ush,vsh,psh], {solver=sparsesolver}) =
int2d (Th) ( nux ( dx(u) *dx (ush) + dy(u)*dy (ush) + dx(v)*dx(vsh) + dy(v)=xdy(vsh) )
- p*pshx (1.e-6) // p epsilon
- p* (dx (ush) +dy (vsh)) // + dx (p) *ush + dy (p) *vsh
- (dx (u)+dy (v) ) *xpsh // psh div(u)
)
+ on(cylinder,infwall, supwall,u=0.,v=0.)+on (inlet,u=uc,v=0); // Bdy

conditions

7: matrix AA=Stokes (VVh,VVh);

8: set (AA, solver=sparsesolver, lparams=iparm, dparams=dparm); // Set pARMS as
linear solver

9: real[int] bb= Stokes(0,VVh); real[int] sol (AA.n);

10: sol= AA"-1 * bb;

We need two vectors to specify the parameters of the linear solver. In line 1 of example we
have declared these vectors(int[int] iparm(16); reallint] dparm(6);) . In line 3 we have initialized
these vectors by negative values. We do this because all parameters values in pARMS are positive
and if you do not change the negative values of one entry of this vector, the default value will be
set. In tables (table and , we have the meaning of differents entries of these vectors.
We run example on cluster paradent of Grid5000 and report results in table

In this example, we fix the matrix size (in term of finite element, we fix the mesh) and increase the
number of processors used to solve the linear system. We saw that, when the number of processors
increases, the time for solving the linear equation decreases, even if the number of iteration increases.
This proves that, using pARMS as solver of linear systems coming from discretization of partial
differential equation in FreeFem++ can decrease drastically the total time of simulation.

11.3.2 Interfacing with HIPS

HIPS ( Hierarchical Iterative Parallel Solver) is a scientific library that provides an efficient parallel
iterative solver for very large sparse linear systems. HIPS is available as free software under the
CeCILL-C licence. The interface that we realized is compatible with release 1.2 beta.rc4 of HIPS.
HIPS implements two solver classes which are the iteratives class ( GMRES, PCG) and the Di-
rect class. Concerning preconditionners, HIPS implements a type of multilevel ILU. For further
informations on those preconditionners see [?, ?].
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Entries of iparm | Significations of each entries
iparm[0] Krylov subspace methods.
Differents values for this parameters are specify on table ITGI
. Preconditionner.
iparm{1] Differents preconditionners for this parameters are specify on table m
iparm|2] Krylov subspace dimension in outer iteration: default value 30
iparm|3] Maximum of iterations in outer iteration: default value 1000
iparm/[4] Number of level in arms when used.
iparm/[5] Krylov subspace dimension in inner iteration: default value 3
iparm|6] Maximum of iterations in inner iteration: default value 3
iparm[7] Symmetric(=1 for symmetric) or unsymmetric matrix:
default value 0(unsymmetric matrix)
iparm|§] Overlap size between different subdomain: default value 0(no overlap)
iparm|9] Scale the input matrix or not: Default value 1 (Matrix should be scale)
iparm[10] Block size in arms when used: default value 20
iparm[11] 110 (ilut, iluk, and arms) : default value 20
iparm[12] Ifil for Schur complement const : default value 20
iparm[13] Ifil for Schur complement const : default value 20
iparm|14] Multicoloring or not in ILU when used : default value 1
iparm[15] Inner iteration : default value 0
Print message when solving:default 0(no message print).
iparm[16] 0: no message is print,
1: Convergence informations like number of iteration and residual ,
2: Timing for a different step like preconditioner
3 : Print all informations.

Table 11.4: Meaning of lparams corresponding variables for example [11.4

Entries of dparm | Significations of each entries

dparm|0] precision for outer iteration : default value 1e-08

dparm|1] precision for inner iteration: default value le-2

dparm|2] tolerance used for diagonal domain: : default value 0.1

dparm|3] drop tolerance droptolO (ilut, iluk, and arms) : default value le-2
dparm/[4] droptol for Schur complement const: default value le-2

dparm|[5] droptol for Schur complement const: default value le-2

Table 11.5: Significations of dparams corresponding variables for example [11.4]

Values of iparm|[0] | Krylov subspace methods

0 FGMRES (Flexible GMRES)
1 DGMRES (Deflated GMRES)
2 BICGSTAB

Table 11.6: Krylov Solvers in pARMS
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Values of iparm[1]

Preconditionners

0

Preconditioners type is
additive Schwartz preconditioner with ilu0 as local preconditioner,

preconditioner type is

! additive Schwartz preconditioner with iluk as local preconditioner,
9 preconditioner type is

additive Schwartz preconditioner with ilut as local preconditioner,
3 preconditioner type is

additive Schwartz preconditioner with arms as local preconditioner,
4 preconditioner type is

Left Schur complement preconditioner with ilu0 as local preconditioner,
5 preconditioner type is

Left Schur complement preconditioner with ilut as local preconditioner,
6 preconditioner type is

Left Schur complement preconditioner with iluk as local preconditioner,
7 preconditioner type is

Left Schur complement preconditioner with arms as local preconditioner,
3 preconditioner type is

Right Schur complement preconditioner with ilu0 as local preconditioner,
9 preconditioner type is

Right Schur complement preconditioner with ilut as local preconditioner,
10 preconditioner type is

Right Schur complement preconditioner with iluk as local preconditioner,
1 preconditioner type is

Right Schur complement preconditioner with arms as local preconditioner,
19 preconditioner type is

sch_gilu0 , Schur complement preconditioner with global ilu0
13 preconditioner type is

SchurSymmetric GS preconditioner

Table 11.7: Preconditionners in pARMS

n= 471281 || nnz=13 x 10° || Te=571,29
np add(iluk) schur(iluk)

nit time nit time
4 230 | 637.57 | 21 557.8
3 240 | 364.12 | 22 302.25
16 | 247 | 212.07 | 24 167.5
32| 261 | 111.16 | 25 81.5

Table 11.8: Convergence and time for solving linear system from example [11.4
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n matrix size

nnz | number of non null entries inside matrix
nit | number of iteration for convergence

time | Time for convergence

Te Time for constructing finite element matrix
np number of processor

Table 11.9: Legend of table

Installation of HIPS To install HIPS, first download the HIPS package at [?], unpack it and
go to the HIPS source directory. The installation of HIPS is machine dependence. For example,
to install HIPS on a linux cluster copy the file Make file_Inc_Examples/make file.inc.gnu on the
root directory of HIPS with the name makefile.inc. After this, edit makefile.inc to set values of
different variables and type make all.

Using HIPS as the interface to FreeFem++ Before calling the HIPS solver inside FreeFem++,
you must compile file hips_FreeFem.cpp to create dynamic library hips_FreeFem.so. To do this,
move to the directory src/solver of FreeFem++ and edit the file makefile.inc to specify the fol-
lowing variables:

HIPS DIR : Directory of HIPS

HIPS INCLUDE: -I$(HIPS_DIR)/SRC/INCLUDE : Directory for HIPS headers
LIB DIR : -L$(HIPS_DIR)/LIB : Librairies directory
LIBHIPSSEQUENTIAL : $(HIPS_DIR)/LIB/libhipssequential.a: HIPS utilities library
LIBHIPS : $(HIPS_DIR)/LIB/libhips.a: HIPS library

FREEFEM : FreeFem++ directory

FREEFEM_INCLUDE : FreeFem headers for sparse linear solver

METIS : METIS directory

METIS_LIB : METIS library

MPI : MPI directory

MPIINCLUDE : MPI headers

After specifies all the variables, in the command line in the directory src/solver type make hips to
create hips_FreeFem.so.

Like with pARMS, the calling of HIPS in FreeFem++ can be done in three different manners. We
will present only one example where the user specifies the parameters through keywords 1params
and dparams.

Laplacian 3D solve with HIPS Let us consider the 3D Laplacian example inside FreeFem++
package where after discretization we want to solve the linear equation with Hips. Example is
Laplacian3D using Hips as linear solver. We first load Hips solver at line 2. From line 4 to 15 we
specify the parameters for the Hips solver and in line 46 of example we set these parameters
in the linear solver.

In Table results of running example on Cluster Paradent of Grid5000 are reported. We
can see in this running example the efficiency of parallelism.

Example 11.5 (Laplacian3D.edp) 1: load "msh3"
2: load "hips_FreeFem" // load library
3: int nn=10,1iii;
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4: int[int] iparm(14);

5: real[int] dparm(6);

6: for(iii=0;1ii<14;iii++)iparm[iii]=-1;

7: for(iii=0;iii<6;1iii++) dparm[iii]=-1;

8: iparm[0]=0; // use iterative solver
9: iparm[1]=1; // PCG as Krylov method
10:iparm[4]=0; // Matrix are symmetric
ll:iparm[5]=1; // Pattern are also symmetric
12: iparm[9]=1; // Scale matrix
13:dparm[0]=1e-13; // Tolerance to convergence
14: dparm[1l]=5e-4; // Threshold in ILUT
15: dparm[2]=5e-4; // Threshold for Schur preconditionner

16: mesh Th2=square (nn,nn);

17: fespace Vh2(Th2,P2);

18: Vh2 ux,uz,p2;

19: int[int] rup=[(0,2], rdown=[0,1], rmid=[1,1,2,1,3,1,4,11;

20:real zmin=0, zmax=1;

21: mesh3 Th=buildlayers (Th2,nn,
zbound=[zmin, zmax],
reffacemid=rmid,
reffaceup = rup,
reffacelow = rdown);

22: savemesh (Th, "copie.mesh");

23: mesh3 Th3 ("copie.mesh");

24: fespace Vh(Th,P2);

25: func ue = 24%x*%x + 3xyxy + 4dxzxz + Skxxy+6xxxz+l;
26: func uex= 4xx+ DLSxy+6xz;
27: func uey= 6%y + 5xx;
28: func uez= 8xz +6%*x;
29: func f= -18. ;
30: Vh uhe = ue; //
31: cout << " uhe min: " << uvhe[].min << " max:" << uhe[].max << endl;
32: Vh u,v;
33: macro Grad3(u) [dx(u),dy(u),dz(u)] // EOM
34: varf va(u,v)= int3d(Th) (Grad3 (v)’ =*Grad3(u)) // ) for emacs
+ int2d (Th, 2) (uxv)
— int3d(Th) (f*v)
- int2d(Th,2) ( uexv + (uexx*N.x +ueyxN.y +uezx*N.z)*Vv )
+ on(l,u=ue);
35: real cpu=clock();
36: matrix Aa;
37: Aa=va (Vh,Vh);
38: varf 1 (unused,v)=1int3d(Th) (f*v);
39: Vh F; F[]=va(0,Vh);
40: if (mpirank==0) {
cout << "Taille " << Aa.n << endl;
cout << "Non zeros " << Aa.nbcoef << endl;
}
41: if (mpirank==0)
42 cout << "CPU TIME FOR FORMING MATRIX = " << clock()-cpu << endl;
43: set (Aa, solver=sparsesolver,dparams=dparm, lparams=iparm); // Set hips
as linear solver
44 ull=RAa"-1+F[];

Legend of table [11.10] are give in table
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n=4x10°| nnz =118 x 10° | Te=221.34
np nit time
8 190 120.34
16 189 61.08
32 186 31.70
64 183 23.44

Table 11.10: Tterations and Timing of solving linear system from example

Entries of iparm

Significations of each entries

Strategy use for solving

iparm(0) ( Iterative=0 or Hybrid=1 or Direct=2 ). Defaults values are : Iterative
Krylov methods.

iparm(1] If iparm[0]=0, give type of Krylov methods: 0 for GMRES, 1 for PCG

iparm|2] Maximum of iterations in outer iteration: default value 1000

iparm|3] Krylov subspace dimension in outer iteration: default value 40
Symmetric(=0 for symmetric) and 1 for unsymmetric matrix:

iparm|4] default value 1(unsymmetric matrix)

iparm|5] Pattern of matrix are symmetric or not: default value 0

iparm|6] Partition type of input matrix: dafault value 0

iparm{7] Number of level that use the HIPS locally consistent fill-in:
Default value 2

iparm[s] Numbering in indices array will start at 0 or 1:
Default value 0

iparm[9] Scale matrix. Default value 1

iparm[10] Reordering use inside subdomains for reducing fill-in:
Only use for iterative. Default value 1

iparm[11] Number of unknowns per node in the matrix non-zero pattern graph:
Default value 1

. This value is used to set the number of time the

iparm(12] normalization is applied to the matrix: Default 2.

iparm(13] Level of informations printed during solving: Default 5.

iparm|14] HIPS_DOMSIZE Subdomain size

Table 11.11: Significations of lparams corresponding to HIPS interface
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dparm[0] | HIPS_PREC: Relative residual norm: Default=1e-9

dparm[1] | HIPS_DROPTOLO0: Numerical threshold in ILUT for interior domain
(important : set 0.0 in HYBRID: Default=0.005)

HIPS_DROPTOL! : Numerical threshold in ILUT for

Schur preconditioner: Default=0.005

dparm[3] | HIPS_.DROPTOLE : Numerical threshold for coupling between the
interior level and Schur: Default 0.005

dparm[4] | HIPS_AMALG : Numerical threshold for coupling between the
interior level and Schur: Default=0.005

dparm[5] | HIPS_.DROPSCHUR : Numerical threshold for coupling between the
interior level and Schur: Default=0.005

dparm|2]

Table 11.12: Significations of dparams corresponding to HIPS interface

11.3.3 Interfacing with HYPRE

HYPRE ( High Level Preconditioner) is a suite of parallel preconditioner developed at Lawrence
Livermore National Lab [?] .

There are two main classes of preconditioners developed in HYPRE: AMG (Algebraic MultiGrid)
and Parasails (Parallel Sparse Approximate Inverse).

Now, suppose we want to solve Ax = b. At the heart of AMG there is a series of progressively
coarser(smaller) representations of the matrix A. Given an approximation Z to the solution z,
consider solving the residual equation Ae = r to find the error e, where r = b — AZ. A fundamental
principle of AMG is that it is an algebraically smooth error. To reduce the algebraically smooth
errors further, they need to be represented by a smaller defect equation (coarse grid residual
equation) A.e. = 1., which is cheaper to solve. After solving this coarse equation, the solution is
then interpolated in fine grid represented here by matrix A. The quality of AMG depends on the
choice of coarsening and interpolating operators.

The sparse approximate inverse approximates the inverse of a matrix A by a sparse matrix M.
A technical idea to construct matrix M is to minimize the Frobenuis norm of the residual matrix
I — M A. For more details on this preconditioner technics see [?].

HYPRE implement three Krylov subspace solvers: GMRES, PCG and BiCGStab.

Installation of HYPRE To install HYPRE, first download the HYPRE package at [?], unpack
it and go to the HYPRE/src source directory and do ./configure to configure Hypre. After this
just type make all to create ibHYPRE.a.

Using HYPRE as interface to FreeFem++ Before calling HYPRE solver inside FreeFem++
, you must compile the file hypre_FreeFem.cpp to create dynamic library hypre_FreeFem.so. To
do this, move to the directory src/solver of FreeFem++ , edit the file makefile.inc to specify
the following variables:
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HYPRE _DIR : Directory of HYPRE
HYPRE INCLUDE = -I3(HY PRE_DIR)src/hypre/include/ :
Directory for header of HYPRE
HYPRE_LIB = -L$(HIPS_DIR)/src/lib/ -IHYPRE : Hypre Library
FREEFEM : FreeFem++ directory
FREEFEM_INCLUDE : FreeFem header for sparse linear solver
METIS : METIS directory
METIS LIB : METIS library
MPI : MPT directory
MPI INCLUDE : MPI headers

Like with pARMS, the calling of HIPS in FreeFem++ can be done in three manners. We will
present only one example where the user specifies its parameters through keywords 1params and
dparams.

Laplacian 3D solve with HYPRE Let us consider again the 3D Laplacian example inside
FreeFem++ package where after discretization we want to solve the linear equation with Hypre.
Example is the Laplacian3D using Hypre as linear solver. Example is the same as
so we just show here the lines where we set some Hypre parameters.

We first load the Hypre solver at line 2. From line 4 to 15 we specifies the parameters to set to
Hypre solver and in line 43 we set parameters to Hypre solver.

It should be noted that the meaning of the entries of these vectors is different from those of Hips .
In the case of HYPRE, the meaning of differents entries of vectors iparm and dparm are given in

tables 11.13] to

In Table ?? the results of running example on Cluster Paradent of Grid5000 are reported. We
can see in this running example the efficiency of parallelism, in particular when AMG are use as
preconditioner.

Example 11.6 (Laplacian3D.edp) 1: load "msh3"

2: load "hipre_FreeFem" // load librairie
3: int nn=10,iii;

4: int[int] iparm(20);

5: real[int] dparm(6);

6: for(iii=0;11i1<20;iii++)iparm[iii]=-1;

7: for(iii=0;iii<6;1iii++) dparm[iii]=-1;

8: iparm[0]=2; // PCG as krylov method
9: iparm[1]1=0; // AMG as preconditionner 2: 1f ParaSails
10:iparm[7]=7; // Interpolation
1l:iparm[9]=6; // AMG Coarsen type
12: iparm[10]=1; // Measure type
13: iparm[16]=2; // Additive schwarz as smoother
13:dparm[0]=1e-13; // Tolerance to convergence
14: dparm[1l]=5e-4; // Threshold
15: dparm[2]=5e-4; // truncation factor

43: set (Aa, solver=sparsesolver,dparams=dparm, lparams=iparm);



11.3. PARALLEL SPARSE ITERATIVE SOLVER

307

Solver identification:

iparms(O0] | ) g GStab, 1: GMRES, 2: PCG. By default=1
iparms1] Preconditioner identification: '
0: BOOMER AMG, 1: PILUT, 2: Parasails, 3: Schwartz Default=0
iparms[2] | Maximum of iteration: Default=1000
iparms[3] | Krylov subspace dim: Default= 40
iparms[4] | Solver print info level: Default=2
iparms[5] | Solver log : Default=1
iparms[6] | Solver stopping criteria only for BiCGStab : Default=1
dparms|0] | Tolerance for convergence : Default = 1.0e — 11
Table 11.13: Definitions of common entries of iparms and dparms vectors for every precon-

ditioner in HYPRE

iparms[7] | AMG interpolation type: Default=6
Specifies the use of GSMG - geometrically
iparms|8] ) ) :
smooth coarsening and interpolation: Default=1
iparms[9] | AMG coarsen type: Default=6
iparms[10] Defines whether local or global measures
are used: Default=1
iparms[11] | AMG cycle type: Default=1
iparms[12] | AMG Smoother type: Default=1
iparms[13] | AMG number of levels for smoothers: Default=3
iparms[14] | AMG number of sweeps for smoothers: Default=2
iparms[15] | Maximum number of multigrid levels: Default=25
Defines which variant of the Schwartz method is used:
0: hybrid multiplicative Schwartz method (no overlap across processor boundaries)
iparms[16] 1: hybrid additive Schwartz method (no overlap across processor boundaries)
2: additive Schwartz method
3: hybrid multiplicative Schwartz method (with overlap across processor boundaries)
Default=1
iparms[17] | Size of the system of PDEs: Default=1
iparms[18] | Overlap for the Schwarz method: Default=1
Type of domain used for the Schwarz method
iparms[19] 0: each point is a domain
1: each node is a domain (only of interest in “systems” AMG)
2: each domain is generated by agglomeration (default)
dparms[1] | AMG strength threshold: Default=0.25
dparms|2] | Truncation factor for the interpolation: Default=1e-2
dparms(3] Sets a parameter to modify the definition
of strength for diagonal dominant portions of the matrix: Default=0.9
Defines a smoothing parameter for the additive Schwartz method
dparms|3] Default—1
efault=1.
Table 11.14: Definitions of other entries of iparms and dparms if preconditioner is BOOMER

AMG
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iparms[7] | Row size in Parallel ILUT: Default=1000
iparms[8] | Set maximum number of iterations: Default=30
dparms[1] | Drop tolerance in Parallel ILUT: Default=1e-5

Table 11.15: Definitions of other entries of iparms and dparms if preconditioner is PILUT

iparms|[7]

Number of levels in Parallel Sparse Approximate inverse: Default=1

iparms|8]

Symmetric parameter for the ParaSails preconditioner:

0: nonsymmetric and/or indefinite problem, and nonsymmetric preconditioner
1: SPD problem, and SPD (factored) preconditioner

2: nonsymmetric, definite problem, and SPD (factored) preconditioner
Default=0

dparms|1]

Filters parameters:The filter parameter is used to
drop small nonzeros in the preconditioner, to reduce
the cost of applying the preconditioner: Default=0.1

dparms|2]

Threshold parameter: Default=0.1

Table 11.16: Definitions of other entries of iparms and dparms if preconditioner is ParaSails

iparms|7]

Defines which variant of the Schwartz method is used:

0: hybrid multiplicative Schwartz method (no overlap across processor boundaries)
1: hybrid additive Schwartz method (no overlap across processor boundaries)

2: additive Schwartz method

3: hybrid multiplicative Schwartz method (with overlap across processor boundaries)
Default=1

iparms|8]

Overlap for the Schwartz method: Default=1

iparms[9]

Type of domain used for the Schwartz method

0: each point is a domain

1: each node is a domain (only of interest in “systems” AMG)
2: each domain is generated by agglomeration (default)

Table 11.17: Definitions of other entries of iparms and dparms if preconditionner is Schwartz

n=4 x 10° | nnz=13 x 10° || Te=571,29
np AMG
nit time
8 6 1491.83
16 5 708.49
32 4 296.22
64 4 145.64

Table 11.18: Convergence and time for solving linear system from example
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11.3.4 Conclusion

With the different runs presented here, we wanted to illustrate the gain in time when we increase
the number of processors used for the simulations. We saw that in every case the time for the
construction of the finite element matrix is constant. This is normal because until now this phase
is sequential in FreeFem++ . In contrast, phases for solving the linear system are parallel. We
saw on several examples presented here that when we increase the number of processors, in general
we decrease the time used for solving the linear systems. But this not true in every case. In several
case, when we increase the number of processors the time to convergence also increases. There are
two main reasons for this. First, the increase of processors can lead to the increase of volume of
exchanged data across processors consequently increasing the time for solving the linear systems.
Furthermore, in decomposition domain type preconditioners, the number of processors generally
corresponds to the number of sub domains. In subdomain methods, generally when we increase the
number of subdomains we decrease convergence quality of the preconditioner. This can increase
the time used for solving linear equations.

To end this, we should note that good use of the preconditioners interfaced in FreeFem++ is
empiric, because it is difficult to know what is a good preconditioner for some type of problems.
Although, the efficiency of preconditioners sometimes depends on how its parameters are set. For
this reason we advise the user to pay attention to the meaning of the parameters in the user guide
of the iterative solvers interfaced in FreeFem++ .

11.4 Domain decomposition

In the previous section, we saw that the phases to construct a matrix are sequential. One strategy
to construct the matrix in parallel is to divide geometrically the domain into subdomains. In every
subdomain we construct a local submatrix and after that we assemble every submatrix to form the
global matrix.

We can use this technique to solve pde directly in domain 2. In this case, in every subdomains
you have to define artificial boundary conditions to form consistent equations in every subdomains.
After this, you solve equation in every subdomains and define a strategy to obtain the global
solution.

In terms of parallel programming for FreeFem++ , with MPI, this means that the user must be
able to divide processors avaible for computation into subgroups of processors and also must be
able to realize different type of communications in FreeFem++ script. Here is a wrapper of some
MPI functions.

11.4.1 Communicators and groups

Groups
mpiGroup grpe(mpiGroup gp,KN_ < long >): Create M PI_Group from existing group gp by
given vector

Communicators

Communicators is an abstract MPI object which allows MPI user to communicate across group of
processors. Communicators can be Intracommunicators(involves a single group) or Intercommunicators
(involves two groups). When we not specify type of communicator it will be Intracommunicators

mpiComm cc(mpiComm comm, mpiGroup gp): Creates a new communicator. comm communica-
tor(handle), gp group which is a subset of the group of comm (handle). Return new communicator
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mpiComm cc(mpiGroup gp): Same as previous constructor but default comm here is MPI.COMM_WORLD.
mpiComm cc(mpiComm comm, int color, int key): Creates new communicators based on colors

and key. This constructor is based on MPI_Comm_split routine of MPI.

mpiComm cc(MPIrank p,int key): Same constructor than the last one. Here colors and comm is

defined in MPIrank. This constructor is based on MPI_Comm_split routine of MPI.

Example 11.7 (commsplit.edp) 1: int color=mpiRank (comm)%2;
2: mpiComm ccc (processor (color,comm),0);

3: mpiComm gpp (comm, ) ;

4: mpiComm cp (cc,color,0);

mpiComm cc(mpiComm comm, int high): Creates an intracommunicator from an intercommunica-
tor. comm intercommunicator, high Used to order the groups within comm (logical) when creating
the new communicator. This constructor is based on MPI_Intercomm_merge routine of MPI.
mpiComm cc(MPIrank pl, MPIrank p2, int tag): This constructor creates an intercommuncator
from two intracommunicators. pI defined local (intra)communicator and rank in local_comm of
leader (often 0) while p2 defined remote communicator and rank in peer_comm of remote leader
(often 0). tag Message tag to use in constructing intercommunicator. This constructor is based on
MPI_Intercomm._create.

Example 11.8 (merge.edp) 1: mpiComm comm, cc;

2: int color=mpiRank (comm) %$2;

3: int rk=mpiRank (comm) ;

4: int size=mpiSize (comm) ;

4: cout << "Color wvalues " << color << endl;

5: mpiComm ccc (processor ((rk<size/2),comm), rk);
6: mpiComm cp (cc,color,0);

7: int rleader;

8: if (rk == 0) { rleader = size/2; }

9: else if (rk == size/2) { rleader = 0;}

10: else { rleader = 3; }

11: mpiComm ggp (processor (0,ccc),processor (rleader,comm), 12345);
12:int aaa=mpiSize(ccc);

13:cout << "number of processor" << aaa << endl;

11.4.2 Process

In FreeFem++ we wrap MPI process by function call processor which create internal FreeFem++
object call MPIrank. This mean that do not use MPIrank in FreeFem++ script.

processor(int rk): Keep process rank inside object MPIrank. Rank is inside MPI.COMM_WORLD.
processor (int rk, mpiComm cc) and processor(mpiComm cc,int rk) process rank inside communi-
cator cc.

processor (int rk, mpiComm cc) and processor(mpiComm cc,int rk) process rank inside communi-
cator cc.

processorblock(int rk) : This function is exactlly the same than processor(int rk) but is use in case
of blocking communication.

processorblock(int rk, mpiComm cc) : This function is exactlly the same than processor(int
rk,mpiComm cc) but use a synchronization point.
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11.4.3 Points to Points communicators

In FreeFem++ you can call MPI points to points communications functions.

Send(processor(int rk,mpiComm cc),Data D) : Blocking send of Data D to processor of rank rk
inside communicator cc. Note that Data D can be: int, real,complex , int[int], realfint],complex[int],
Mesh, Mesh3, Matriz.

Recv(processor(int rk,mpiComm cc),Data D): Receive Data D from process of rank rk in com-
municator cc. Note that Data D can be: int, real,complex , intfint], realfint],complexfint], Mesh,
Mesh3, Matriz and should be the same type than corresponding send.

Isend(processor(int rk,mpiComm cc),Data D) : Non blocking send of Data D to processor of rank rk
inside communicator cc. Note that Data D can be: int, real,complex , int[int], realfint],complex[int],
Mesh, Mesh3, Matriz.

Recv(processor(int rk,mpiComm cc),Data D): Receive corresponding to send.

11.4.4 Global operations

In FreeFem++ you can call MPI global communication functions.

broadcast(processor(int rk,mpiComm cc),Data D): Process rk Broadcast Data D to all process in-
side communicator cc. Note that Data D can be: int, real,complex , intfint], realfint],complex[int],
Mesh, Mesh3, Matrix.

broadcast(processor(int rk),Data D): Process rk Broadcast Data D to all process inside
MPI_.COMM _WORLD. Note that Data D can be: int, real,complez , intfint], realfint],complezfint],
Mesh, Mesh3, Matriz.

mpiAlltoall(Data a,Data b): Sends data a from all to all processes. Receive buffer is Data b. This
is done inside communicator MPI_COMM_WORLD.

mpiAlltoall(Data a,Data b, mpiComm cc): Sends data a from all to all processes. Receive buffer
is Data b. This is done inside communicator cc.

mpiGather(Data a,Data b,processor(mpiComm,int rk) : Gathers together values Data a from
a group of processes. Process of rank rk get data on communicator rk. This function is like
MPI_Gather

mpiAllgather(Data a,Data b) : Gathers Data a from all processes and distribute it to all in Data
b. This is done inside communicator MPI_COMM_WORLD. This function is like MPI_Allgather

mpiAllgather(Data a,Data b, mpiComm cc) : Gathers Data a from all processes and distribute it
to all in Data b. This is done inside communicator cc. This function is like MPI_Allgather

mpiScatter(Data a,Data b,processor (int rk, mpiComm cc)) : Sends Data a from one process whith
rank rk to all other processes in group represented by communicator mpiComm cc.

mpiReduce(Data a,Data b,processor(int rk, mpiComm cc),MPI_Op op), Reduces values Data a
on all processes to a single value Data b on process of rank rk and communicator cc. Operation
use in reduce is: MPI_Op op which can be: mpiMAX, mpiMIN, mpiSUM, mpiPROD, mpiLAND,
mpiLOR, mpiLXOR, mpiBAND, mpiBXOR, mpiMAXLOC, mpiMINLOC.

Note that, for all global operations, only int[int] and real[int] are data type take in account in
FreeFem++ .
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The following example present in details of Schwartz domain decomposition algorithm for solving
Laplacian2d problem. In this example we use two level of parallelism to solve simple Laplacian2d

in

square domain. We have few number of subdomain and in every subdomain we use parallel

sparse solver to solve local problem.

Example 11.9 (schwarz.edp) 1:1oad "hypre FreeFem"; //  Load Hypre solver

2
{

func bool AddLayers (mesh & Th,reall[int] &ssd,int n,real[int] &unssd)

// build a continuous function uussd (P1)
// ssd in the caracteristics function on the input sub domain.
// such that
// unssd = 1 when ssd =1;
// add n layer of element (size of the overlap)
// and unssd = 0 ouside of this layer
/) e

fespace Vh(Th,P1);
fespace Ph(Th,PO);
Ph s;
assert (ssd.n==Ph.ndof);
assert (unssd.n==Vh.ndof) ;
unssd=0;
s[]1= ssd;
// plot(s,wait=1,fill=1);
Vh u;
varf vM(u,v)=1int2d (Th,gforder=1) (u*v/area) ;
matrix M=vM (Ph,Vh);

for (int i=0;i<n;++1i)
{
ull= Mxs[];
// plot (u,wait=1);

// plot (u,wait=1);
unssd+= ul];
s[1= M xu[]; /S
s = s >0.1;
}
unssd /= (n);
ul]=unssd;
ssd=s[];
return true;

3: mpiComm myComm; // Create communicator with value MPI_COMM_-WORLD
4: int membershipKey, rank, size; // Variables for manage communicators
5: rank=mpiRank (myComm); size=mpiSize (myComm) ; // Rank of process and size
of communicator

6: bool withmetis=1, RAS=0; // Use or not metis for partitioning Mesh
7: int sizeoverlaps=5; // size off overlap
8: int withplot=1;

9: mesh Th=square(100,100);

10: int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1 1;

11: Th=change (Th, refe=chlab);

12: int nn=2,mm=2, npart= nnx*mm;
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13: membershipKey = mpiRank (myComm) $npart; // Coloring for partitioning
process group
14: mpiComm cc (processor (membershipKey, myComm) , rank) ; // Create MPIT

communicator according previous coloring
15: fespace Ph(Th,P0), fespace Vh(Th,P1l);
16: Ph part;

17: Vh sun=0,unssd=0;

18: real[int] wvsum=sun[],reducesum=sun]|]; // Data use for control
partitioning.

19: Ph xx=x,yy=y,nupp;

20: part = int (xx*nn)+mm + int (yy*mm) ;

21: if(withmetis)
{
load "metis";
int [int] nupart (Th.nt);
metisdual (nupart, Th, npart) ;
for (int i=0;i<nupart.n;++i)
part[] [i]=nupart([i];
}
22: if(withplot>1)
21: plot (part,fill=1,cmm="dual",wait=1);
22: mesh[int] aTh(npart);
23: mesh Thi=Th;
24: fespace Vhi (Thi,P1l);
25: Vhi[int] au(npart),pun (npart);
26: matrix[int] Rih(npart), Dih(npart), aA(npart);
27: Vhi[int] auntgv (npart), rhsi (npart);
28: i=membershipKey;
Ph suppi= abs(part-i)<0.1;
AddLayers (Th, suppil], sizeoverlaps,unssd[]);
Thi=aTh[i]=trunc (Th, suppi>0, label=10,split=1);
Rih[i]=interpolate (Vhi,Vh, inside=1); // Vh -> Vhi
if (RAS)
{
suppi= abs (part-i)<0.1;
varf vSuppi (u,v)=int2d (Th,gforder=1) (suppixv/area);
unssd[]= vSuppi (0,Vh);
unssd = unssd>0.;
if (withplot>19)
plot (unssd,wait=1);
}
pun[i] []=Rih[i]*unssd[]; // this is global operation
sun[] += Rih[i]’*pun[i][]; // also global operation like broadcast’;
vsum=sunl|];
if (withplot>9)
plot (part,aTh[i], fill=1,wait=1);
// Add mpireduce for sum all sun and pun local contribution.
29: mpiReduce (vsum, reducesum,processor (0, myComm),mpiSUM) ; // MPTI global
operation MPi_Reduce on global communicator
30: broadcast (processor (0, myComm) , reducesum) ; // Broadcast sum on process 0
to all process
31: sun[]=reducesum;
32: plot (sun,wait=1);
33: i=membershipKey
34: Thi=aTh[i];
35: pun[i]l= pun[i]/sun;
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36: if(withplot>8) plot(pun[i],wait=1);
37: macro Grad(u) [dx(u),dy(u)] // EOM
38: sun=0;
39: i=membershipKey
Thi=aTh[i];
varf va (u,v)
int2d (Thi) (Grad (u)’ *Grad (v)) // 7)
+on(l,u=1) + int2d(Th) (v)
+on (10,u=0) ;
40: aAl[i]l=va(Vhi,Vhi);

41: set (aA[i],solver=sparsesolver,mpicomm=cc); // Set parameters for Solver
Hypre. mpicomm=cc means you not solve on global process but in group on of process
define by cc

42: rhsi[i][]= va(0,Vhi);

43: Dih[i]=pun[i][];
44: reallint] un (Vhi.ndof) ;

45: un=1l.;

46: reall[int] ui=Dih[i] *un;

47: sun[] += Rih[i]’ *ui; // "
48: varf vaun(u,v) = on(10,u=1l);

49: auntgv[i] []=vaun(0,Vhi); // store arry of tgv on Gamma intern.

56: reducesum=0; vsum=sun;
57: mpiReduce (vsum, reducesum,processor (0, myComm),mpiSUM) ; // MPI global
operation MPi_Reduce on global communicator
58: broadcast (processor (0, myComm) , reducesum) ; // Broadcast sum on process 0
to all other process
59: sun|[]=reducesum;
60: if (withplot>5)
61l: plot(sun,fill=1,wait=1);
62: cout << sun[].max << " " << sun[].min<< endl;
63: assert( 1.-1le-9 <= sun[].min && 1.+1e-9 >= sun|[].max);
64: int nitermax=1000;
{
Vh un=0;
for (int iter=0;iter<nitermax;++iter)
{
real err=0,rerr=0;
Vh unl=0;
i=membershipKey;
Thi=aTh[i];

real[int] wui=Rih[i]#*un[]; // -
real[int] bi = ui .x auntgv[il[];
bi = auntgv[i][] ? bi : rhsi[i]l[];
ui=auli] [];
ui= aA[i] "-1 x bi; // Solve local linear system on group of
process represented by color membershipKey
bi = ui-aulil[];
err += bi’ xbi; // ’;
auli] [1= ui;
bi = Dih[i]*ui; // Prolongation of current solution to obtain
right hand
unl[] += Rih[i]’ *bi; // ’;

}

65: reducesum=0; vsum=unl([];

66: mpiReduce (vsum, reducesum,processor (0, myComm), mpiSUM) ; // MPTI global
operation MPi_Reduce on global communicator
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67: broadcast (processor (0, myComm) , reducesum) ; // Broadcast sum on process 0
to all other process

68: unl[]=reducesum;

69: real residrela=0;

70: mpiReduce (err, residrela ,processor (0, myComm),mpiSUM) ;

71: broadcast (processor (0, myComm) , residrela);

72: err=residrela; err= sqrt(err);

73: if (rank==0) cout << iter << " Err = " << err << endl;
74 if (err<le-5) break;

75: un[]=unl[];

76: if (withplot>2)

77 : plot (au,dim=3,wait=0, cmm=" iter "+iter,fill=1 );
78: }

79: plot(un,wait=1,dim=3);
80: }
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Chapter 12

Mesh Files

12.1 File mesh data structure

The mesh data structure, output of a mesh generation algorithm, refers to the geometric data
structure and in some case to another mesh data structure.
In this case, the fields are

e MeshVersionFormatted O

e Dimension (I) dim

e Vertices (I) NbOfVertices
( (=) «/y j=1.dim), (1) Ref¢?y i=1,NbOfVertices )

e Edges (I) NbOfEdges
(@@Vertex},@@\/ertex?, (I) Refos o izl,NbOfEdges)

e Triangles (I) NbOfTriangles
((@@Vertexj, j:1,3), (I) Refol o izl,NbOfTriangles)

2

e Quadrilaterals (I) NbOfQuadrilaterals
((eevertexiy j=14), (1) Refgt 5 i=1,NbOfQuadrilaterals )

® Geometry
(Cx) FileNameOfGeometricSupport

— VertexOnGeometricVertex
(I) NbOfVertexOnGeometricVertex
( @@Vertex;, @@Vertex!”, i=1NbOfVertexOnGeometricVertex )

— EdgeOnGeometricEdge
(I) NbOfEdgeOnGeometricEdge

( @@Edge;, @@Edge’” 4 i=1,NbOfEdgeOnGeometricEdge )

e CrackedEdges (I) NbOfCrackedEdges
( @@Edge} , @ @Edge? o i=1, NbOfCrackedEdges)

317
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When the current mesh refers to a previous mesh, we have in addition

o MeshSupportOfVertices
(C*) FileNameOfMeshSupport

— VertexOnSupportVertex

(I) NbOfVertexOnSupportVertex

(@@Vertexi,@@\/ertexf“pp, i:1,NbOfVertexOnSupportVerteX)
— VertexOnSupportEdge

(I) NbOfVertexOnSupportEdge

(@@Vertexi,@@EdgefuPp, (R) u;"™" i:1,NbOfVertexOnSupportEdge)
— VertexOnSupportTriangle

(I) NbOfVertexOnSupportTriangle

(@@Vertexi,@@Triafwm, (R)1ﬁuml (R)qfum),

i=1, NbOfVertexOnSupportTriangle )
— VertexOnSupportQuadrilaterals
(I) NbOfVertexOnSupportQuadrilaterals
(@@Vertexi,@@QuadfuPp, (R) ufuPp, (R) vfupp ’

i=1, NbOfVertexOnSupportQuadrilaterals )

12.2 bb File type for Store Solutions

The file is formatted such that:

2 nbsol nbv 2

((U;;, Vied{l,..,nbsol}), Vje{l,..,nbv})
where

e nbsol is a integer equal to the number of solutions.
e nbv is a integer equal to the number of vertex .

e U;; is a real equal the value of the ¢ solution at vertex j on the associated mesh
background if read file, generated if write file.

12.3 BB File Type for Store Solutions

The file is formatted such that:
2 n typesol' .. typesol®™ mnbv 2

(((Uk, Vie{l,.. typesol*}), Vke{l,.n}) Vje{l,..nbv})

’L] Y
where

e n is a integer equal to the number of solutions

e typesol®, type of the solution number k, is
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— typesol® = 1 the solution k is scalar (1 value per vertex)

typesol® = 2 the solution k is vectorial (2 values per unknown)

typesol® = 3 the solution k is a 2x2 symmetric matrix (3 values per vertex)
— typesol® = 4 the solution k is a 2x2 matrix (4 values per vertex)
e nbv is a integer equal to the number of vertices

° Ufj is a real equal to the value of the component i of the solution k£ at vertex j on the
associated mesh background if read file, generated if write file.

12.4 Metric File

A metric file can be of two types, isotropic or anisotropic.
the isotropic file is such that

nbv 1

h; Vie{l,..,nbv}

where

e nbv is a integer equal to the number of vertices.

e h; is the wanted mesh size near the vertex ¢ on background mesh, the metric is M; =
h;2Id, where Id is the identity matrix.

The metric anisotrope

nbv 3

all;, a2l;,a22; Vi€ {l,.. nbv}
where

e nbv is a integer equal to the number of vertices,

e all;, al2;, a22; is metric M; = (%13 %35 ) which define the wanted mesh size in a
vicinity of the vertex i such that h in direction u € R? is equal to |u|/vu- M;u ,
where - is the dot product in R? and |- | is the classical norm.

12.5 List of AM_FMT, AMDBA Meshes

The mesh is only composed of triangles and can be defined with the help of the following
two integers and four arrays:

nbt is the number of triangles.
nbv is the number of vertices.

nu(l:3,1:nbt) is an integer array giving the three vertex numbers

counterclockwise for each triangle.
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c(1l:2,nbv) is a real array giving the two coordinates of each vertex
refs (nbv) is an integer array giving the reference numbers of the vertices.
reft (nbv) is an integer array giving the reference numbers of the triangles

AM _FMT Files In fortran the am_fmt files are read as follows:

open(l, file='xxx.am_fmt’, form=' formatted’, status="0ld’)

read (1, *) nbv,nbt
read (1, *) ((nu(i, j),1i=1,3), J=1, nbt)
read (1,*) ((c(i,3),1=1,2),3=1,nbv)
read (1, *) ( reft(i),i=1, nbt)
read (1, *) ( refs(i),i=1, nbv)

close (1)

AM Files In fortran the am files are read as follows:

open(l, file=’'xxx.am’, form="unformatted’, status="0l1ld’)
read (1, *) nbv,nbt
read (1) ((nu(i, j),i=1,3),J=1,nbt),

& ((c(i,3),1=1,2),3=1,nbv),

& ( reft(i),i=1,nbt),

& ( refs(i),i=1,nbv)

close (1)

AMDBA Files In fortran the amdba files are read as follows:

open(l, file=’'xxx.amdba’, form=' formatted’, status='o0ld’)
read (1, *) nbv,nbt

read (1,*) (k, (c(i,k),i=1,2),refs(k), j=1,nbv)
read (1 x) (k, (nu(i,k),i=1,3),reft (k), j=1,nbt)
close (1)

msh Files First, we add the notions of boundary edges
nbbe is the number of boundary edge.
nube (1:2, 1:nbbe) is an integer array giving the two vertex numbers

refbe (1:nbbe) is an integer array giving the two vertex numbers

In fortran the msh files are read as follows:

open(l, file=’xxx.msh’, form=' formatted’, status=’'o0ld’)
read (1, *) nbv,nbt, nbbe

)
read (1,%*) ((c(i,k),i=1,2),refs(k), j=1,nbv)
read (1, *) ((nu(l k),i=1,3),reft (k), jJ=1,nbt)
read (1,*) ((ne(i,k),1i=1,2), refbe(k), j=1,nbbe)

close (1)



12.5. LIST OF AM_FMT, AMDBA MESHES 321

ftq Files In fortran the ftg files are read as follows:

open(l, file=’"xxx.ftqg’, form=’' formatted’, status=’'old’)

nbv, nbe, nbt, nbg
(k(J), (nu(i, J),i=1,k(3J)),reft (Jj), j=1,nbe)

((c(i,k),1i=1,2),refs (k), J=1,nbv)

read (1, *)
read (1, *)
read (1, x)
close (1)

= 4 the the element j is a

where if k (7) = 3 then the element j is a triangle and if k

quadrilateral.
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Chapter 13

Addition of a new finite element

13.1 Some notations

For a function f taking value in RV, N =1,2,---, we define the finite element approximation IIj, f
of f. Let us denote the number of the degrees of freedom of the finite element by NbDoF'. Then
the i-th base wiK (¢ =0,---,NbDoF — 1) of the finite element space has the j-th component wg
for j=0,---,N —1.

The operator Il is called the interpolator of the finite element. We have the identity wiK = thiK .
Formally, the interpolator IIj, is constructed by the following formula:

kPi—1

Ihf = > anfj (B )wi (13.1)
k=0

where P, is a set of npPi points,
In the formula (13.1), the list pg, jk, ix depend just on the type of finite element (not on the
element), but the coefficient «j, can be depending on the element.

Example 1: with the classical scalar Lagrange finite element, we have kPi = npPi = NbOfNode and
e P, is the point of the nodal points
e the ap = 1, because we take the value of the function at the point P
e pr. =k, ji. = k because we have one node per function.
e j. =0 because N =1
Example 2: The Raviart-Thomas finite element:
RT0, = {v € H(dw)/VK € T, vix(z,y) = |5 +x|5} (13.2)

The degrees of freedom are the flux through an edge e of the mesh, where the flux of the function
f:R? — R?is fe f.ne, ne is the unit normal of edge e (this implies a orientation of all the edges
of the mesh, for example we can use the global numbering of the edge vertices and we just go to
small to large number).

To compute this flux, we use a quadrature formula with one point, the middle point of the edge.
Consider a triangle 7" with three vertices (a, b, c). Let denote the vertices numbers by i4, i, ic, and
define the three edge vectors e, e!, e? by sgn(iy —i.)(b—c), sgn(ic —iq)(c—a), sgn(i, —ip)(a—b),
The three basis functions are:

x sgn(ip —ic) x Sgn(ic —iq) x  Sgn(iq —ip)
Wy 2|T| ( CL), Wi 2‘T| ( )7 W 2|T| ( C)a ( 3 3)
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where |T'| is the area of the triangle T'.
So we have N = 2, kPi = 6;npPi = 3; and:

» By {bfs, 5, byn)

o ap=—eY a1 =ef, as = —el, a3 = e}, ay = —e3, a5 = 2 (effectively, the vector (—eJ*, e")
is orthogonal to the edge €™ = (e]*, e5’) with a length equal to the side of the edge or equal
to [ 1).

L4 Zk = {0707 17 17272}7

e pr=10,0,1,1,2,2} , jix = {0,1,0,1,0,1,0,1}.

13.2 Which class to add?

Add file FE_ADD. cpp in directory src/femlib for example first to initialize :

#include "error.hpp"
#include "rgraph.hpp"
using namespace std;
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "AddNewFE.h"

namespace Fem2D {

Then add a class which derive for public TypeOfFE like:

class TypeOfFE_RTortho : public TypeOfFE { public:

static int Datall; // some numbers
TypeOfFE_RTortho () :
TypeOfFE ( 0+3+0, // nb degree of freedom on element
2, // dimension N of vectorial FE (1 if scalar FE)
Data, // the array data
1, // nb of subdivision for plotting
1, // nb of sub finite element (generaly 1)
6, // number kPi of coef to build the interpolator (13.1)
3, // number npPi of integration point to build interpolator
0 // an array to store the coef o to build interpolator
// here this array is no constant so we have
// to rebuilt for each element.
)
{
const R2 Pt[] = { R2(0.5,0.5), R2(0.0,0.5), R2(0.5,0.0) };

// the set of Point in K
for (int p=0,kk=0;p<3;p+t+) {
P_Pi h[pl=Ptlpl;
for (int 3j=0; 3<2; j++)
pij_alphalkk++]1= IPJ(p,p,3); }} // definition of ik,pk,jr in (I3-1)

void FB(const bool * watdd, const Mesh & Th,const Triangle & K,
const R2 &PHat, RNMK_ & wval) const;



13.2.

void Pi_h_alpha (const baseFElement & K,KN_<double> & v)

b}

where the array data is form with the concatenation of five array of size NbDoF and one array of

size N.

This array is:

WHICH CLASS TO ADD?

int TypeOfFE_RTortho::Datal[]={

const

// for each df 0,1,3
3,4,5,// the support of the node of the df
0,0,0,// the number of the df on the node
0,1,2,// the node of the df
0,0,0,// the df come from which FE (generally 0)
0,1,2,// which are de df on sub FE
0,0 }y; // for each component j=0,N—1 it give the sub FE associated

where the support is a number 0,1, 2 for vertex support, 3,4,5 for edge support, and finaly 6 for
element support.

The function to defined the function wl-K , this function return the value of all the basics function
or this derivatives in array val, computed at point PHat on the reference triangle corresponding
to point R2 P=K (Phat); on the current triangle K.

The index 1, j, k of the array val(i, j, k) corresponding to:

i is basic function number on finite element i € [0, NoF|
Jj is the value of component j € [0, N[

k is the type of computed value f(P),dz(f)(P),dy(f)(P),... i € [0,1last_operatortype|. Remark
for optimization, this value is computed only if whatd[k] is true, and the numbering is defined
with

enum operatortype { op_id=0,
op_dx=1,op_dy=2,
op_dxx=3, op_dyy=4,
op_dyx=5, op_dxy=5,
op_dz=6,
op_dzz=T7,
op_dzx=8, op_dxz=8,
op_dzy=9, op_dyz=9
bi

const int last_operatortype=10;

The shape function :

void TypeOfFE_RTortho::FB(const bool xwhatd,const Mesh & Th,const Triangle & K,
const R2 & PHat,RNMK_ & val) const
{ /S
R2 P (K (PHat));
R2 A(K[0]), B(K[1]),C(K[2]);
R 10=1-P.x-P.y,11=P.x,12=P.y;
assert (val.N() >=3);
assert (val.M()==2 );
val=0;
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a=1./(2%K.area);

al= K.EdgeOrientation(0) * a
al= K.EdgeOrientation(l) * a ;
az= K.EdgeOrientation(2) * a

/) e
f (whatd[op_id]) // value of the function
{
assert(val K()>op_id);
RN_ fO(val(’'.’,0,0)); // value first component
RN_ fl (v (’ ,1 0)); // value second component
= x—-A.x)*a0;
[O] = —(P.y-A.y) *a0;
f1[1] = (P.x-B.x) *al;
fO[l] = —(P.y-B.y)~*al;

f1[2] = (P.x-C.x)=*a2;
f0[2] = —(P.y-C.y)~*az2;

et

if (whatd[op_dx]) // value of the dx of function
{

assert (val.K()>op_dx);
val(0,1,op_dx) = a0;
val(l,1l,op_dx) = al;
val(2,1,op_dx) = a2;
}
if (whatd[op_dy])

{

assert (val.K(
val (0,0, op_dy
val(l,0,op_dy
val (2,0, op_dy
}

>op_dy) ;
-al;
-al;
-az;

—_— — — —

or (int i= op_dy; i< last_operatortype ; i++)
if (whatd[op_dx])
assert (op_dy) ;

function to defined the coefficient ay:

d TypeOfFE_RT::Pi_h_alpha (const baseFElement & K,KN_<double> & v) const
onst Triangle & T(K.T);

for (int i=0,k=0;1i<3;1i++)
{
R2 E(T.Edge(i));
R signe = T.EdgeOrientation (i) ;
v[k++]= signexE.y;
v k++]=-signe*E.x;
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Now , we just need to add a new key work in FreeFem++, Two way, with static or dynamic link
so at the end of the file, we add :

With dynamic link is very simple (see section [C| of appendix), just add before the end of FEM2d
namespace add:

static TypeOfFE_RTortho The_TypeOfFE_RTortho; //
static AddNewFE ("RTOOrtho", The_TypeOfFE_RTortho);
} // FEM2d namespace

Try with ”./load.link” command in examples++-load/ and see BernardiRaugel.cpp or
Morley.cpp new finite element examples.

Otherwise with static link (for expert only), add

// let the 2 globals variables

static TypeOfFE_RTortho The_TypeOfFE_RTortho; //

/) e the name in freefem ———-—
static ListOfTFE typefemRTOrtho ("RT0Ortho", & The_TypeOfFE_RTortho); //
// link with FreeFem++ do not work with static library .a
// FH so add a extern name to call in init_static_FE
// (see end of FESpace.cpp)
void init_FE_ADD () { };
// -—— end —-—
} // FEM2d namespace

To inforce in loading of this new finite element, we have to add the two new lines close to the end
of files src/femlib/FESpace. cpp like:

// correct Problem of static library link with new make file
void init_static_FE()
{ // list of other FE file.o
extern void init_FE_P2h() ;
init_FE_P2h () ;
extern void init_FE_ADD() ; // new line 1
init_FE_ADD() ; // new line 2

and now you have to change the makefile.
First, create a file FE_ADD . cpp contening all this code, like in file src/femlib/Element P2h. cpp,
after modifier the Makefile.am by adding the name of your file to the variable EXTRA_DIST like:

# Makefile using Automake + Autoconf

# This is not compiled as a separate library because its
# interconnections with other libraries have not been solved.

EXTRA_DIST=BamgFreeFem.cpp BamgFreeFem.hpp CGNL.hpp CheckPtr.cpp \
ConjuguedGradrientNL.cpp DOperator.hpp Drawing.cpp Element_P2h.cpp \
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Element_P3.cpp Element_RT.cpp fem3.hpp fem.cpp fem.hpp FESpace.cpp
FESpace.hpp FESpace-v0.cpp FQuadTree.cpp FQuadTree.hpp gibbs.cpp
glutdraw.cpp gmres.hpp MatriceCreuse.hpp MatriceCreuse_tpl.hpp
MeshPoint.hpp mortar.cpp mshptg.cpp QuadratureFormular.cpp
QuadratureFormular.hpp RefCounter.hpp RNM.hpp RNM_opc.hpp RNM_op.hpp
RNM_tpl.hpp FE_ADD.cpp

and do in the freefem++ root directory

autorecont
./reconfigure
make

For codewarrior compilation add the file in the project an remove the flag in panal PPC linker
FreeFEm++ Setting Dead-strip Static Initializition Code Flag.

~ =



Appendix A

Table of Notations

Here mathematical expressions and corresponding FreeFem++ commands are explained.

A.1 Generalities

d;; Kronecker delta (0 if ¢ # j, 1 if ¢ = j for integers i, j)

vV for all

3 there exist

i.e. that is

PDE partial differential equation (with boundary conditions)

() the empty set

N the set of integers (e € N< int a); “int” means long integer inside FreeFem++
R the set of real numbers (a € R < real a) ;double inside FreeFem++

C the set of complex numbers (a € C < complex a); complexjdoubleg

R? d-dimensional Euclidean space

A.2 Sets, Mappings, Matrices, Vectors

Let E, F, G be three sets and A subset of E.

{z € E| P} the subset of E consisting of the elements possessing the property P
E U F the set of elements belonging to £ or F

E N F the set of elements belonging to £ and F

E\ A theset {r € E|x ¢ A}

E+F EUF with ENF =1

329
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E x F the cartesian product of £ and F

E™ the n-th power of E (E> = Ex E, E" = E x E"!)

f: E — F the mapping form E into F,ie., F >z — f(z) € F

Ip or I the identity mapping in Fjie., I(z) =2 Vr e FE

fogforf: F>Gandg: E—-F, E>xw— (fog)(r)= f(g9(x)) € G (see Section ??)
fla the restriction of f: E — F to the subset A of F

{ax} column vector with components ay

(ax) row vector with components ay

(ax)T denotes the transpose of a matrix (az), and is {az}

{a;;} matrix with components a;;, and (a;;)" = (a;;)

A.3 Numbers

For two real numbers a, b
[a,b] is the interval {x € R| a < z < b}
la, b] is the interval {x € R| a < z < b}
[a, b] is the interval {x € R| a <z < b}

la, b[ is the interval {x € R| a < 2 < b}

A.4 Differential Calculus

Of /0z the partial derivative of f : R? — R with respect to x ((dx (f))
Vf the gradient of f: Q — Riie., Vf = (0f )0z, Of /dy)

divf or V.f the divergence of f: Q — R?, ie., divf = 8f,/0x + 8f2/0y

Af the Laplacian of f: Q — R, i.e., Af = 9*f/02* + 5> f /Oy?
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A.5 Meshes

) usually denotes a domain on which PDE is defined
[’ denotes the boundary of Qi.e., I' = 002 (keyword border, see Section [5.1.2))

Tr the triangulation of €, i.e., the set of triangles Ty, where h stands for mesh size (keyword
mesh, buildmesh, see Section

ny the number of triangles in 7, (get by Th.nt, see “mesh.edp”)

(), denotes the approximated domain €2, = U;" T}, of . If € is polygonal domain, then it
will be Q =,

I';, the boundary of €2,
n, the number of vertices in 7, (get by Th.nv)
[¢'¢" ] the segment connecting ¢* and ¢’

g1, q*, ¢* the vertices of a triangle T} with anti-clock direction (get the coordinate of ¢*
by (Th [k=1][3-11.%x, Thlk-1][j-1] y))

I the set {i € N| ¢' € T'1,}

A.6 Finite Element Spaces

I2() the set {w(x,y) ’ /Q\w(x,y)y?dxdy < oo}

1/2
norm: ||wljoo = (/ |w(:p,y)|2dxdy>
Q

scalar product: (v,w) = / vw
Q

HY(Q) the set {w € L*(Q) ‘ /Q (|ow/0z|* + |ow/y|?*) dzdy < oo}

1/2
norm: ||wljy o = (HwHSQ + ”V”Hgﬂ)

H™(Q) the set {w € 12(9) ' /Qaalaw

W € LQ(Q) Vo = (al,Oég) € NQ, |O./| = —|—042}

scalar product: (v,w); o = Z /DO‘UDO‘w
0

la|<m

H}(Q) the set {we H'(Q)Ju=0 onT}
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L?(2)? denotes L*(Q2) x L*(Q2), and also H'(Q)* = H'(Q) x H'(Q)

Vi, denotes the finite element space created by “ fespace Vh(Th,*)” in FreeFem++ (see
Section [6] for “*”)

[T, f the projection of the function f into Vj, (“ fune f=x"2xy"3; Vh v = £;” means
vV = Hh f)

{v} for FE-function v in V}, means the column vector (vy,- -+ ,vy)T if v = vid1+- - - +vprdar,
which is shown by “ fespace Vh (Th,P2); Vh v; cout << v[] << endl;”
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Grammar

B.1 The bison grammar

start: input ENDOFFILE;
input: instructions ;
instructions: instruction

| instructions instruction

list_of_id_args:

| id
id =’ no_comma_expr
FESPACE id

type_of_dcl id
type_of_dcl &’ id

"[7 list_of_id_args "]’

list_of_id_args ’,’ " [’

4

list_of_id_args

list_of_id_args ’,’ id ’'=’
list_of_id_args ’,’ FESPACE id

list_of_id_args ’,’ type_of_dcl id
list_of_id_args ’,’ type_of_dcl ’&’

|
|
|
|
|
| list_of_id_args ’,’ id
|
|
|
|
|

list_of_idl: id
| list_of_idl ’,’ id ;

id: ID | FESPACE ;

list_of_dcls: ID

| ID '=' no_comma_expr
| ID ' ('’ parameters_list
| list_of_dcls ',’ list_of_dcls ;

parameters_list:
no_set_expr
| FESPACE ID
| ID ’'=’ no_set_expr

333

no_comma_expr

I)’

id

14

/]/
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4 4

| parameters_list 7, no_set_expr
| parameters_list ’,’ id ’'=’ no_set_expr ;

type_of_dcl: TYPE
| TYPE ' [’ TYPE ']’ ;

ID_space:

ID

ID ' [’ no_set_expr "]’

ID ’'=' no_set_expr

"7 list_of_idl "]’

"[7 list_of_idl "1’ 7 [’ no_set_expr "]’
"[" list_of_idl ']’ ’'=’ no_set_expr ;

ID_array_space:
ID ’' ('’ no_set_expr ")’
| "7 list_of_idl "1’ ' (! no_set_expr ")’ ;

fespace: FESPACE ;

spacelIDa ID_array_space
spacelIDa ’,’ ID_array_space ;

spacelIDb : ID_space
| spaceIDb ’,’ ID_space ;

spacelDs : fespace spacelDb
\ fespace ' [’ TYPE ']’ spacelDa ;

fespace_def: ID ’ (' parameters_list ')’ ;

fespace_def_list: fespace_def
| fespace_def_list ’,’ fespace_def ;

declaration: type_of_dcl list_of_dcls ;'

| ’fespace’ fespace_def_ list ;7

| spacelDs ' ;'

| FUNCTION ID ’'=' Expr ’';’

| FUNCTION type_of_dcl ID ' (' list_of_id_args ')’ ' {’ instructions’}’
|

FUNCTION ID ' (' list_of_id_args ')’ r=r no_comma_expr ;' ;
begin: " {’ ;
end: ryr ;
for_loop: "for’ ;
while_loop: 'while’ ;
instruction: !

| "include’ STRING

| "load’ STRING

| Expr ;'

| declaration

| for_loop ' (' Expr ’';’ Expr ’';’ Expr ')’ instruction
| while_loop ' (' Expr ')’ instruction

| "if’ ' (' Expr ")’ instruction
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lifl 4 (I Expr I)I
begin instructions end
"border’ ID border_expr

instruction ELSE

"border’ ID rrr array "1" ;'
"break’ i
"continue’ !
"return’ Expr ’;’ ;
bornes: ' (’ ID '=’ Expr ’,’ Expr ")’ ;

border_expr:

bornes instruction ;

Expr: no_comma_expr

| Expr ’,’ Expr ;
unop: r=r

|

|

| T+

|

no_comma_expr:

no_set_expr

| no_set_expr =’ no_comma_expr

| no_set_expr ’'+=' no_comma_expr

| no_set_expr ’'—-=' no_comma_expr

| no_set_expr ’'*=' no_comma_expr

| no_set_expr ' /=’ no_comma_expr

| no_set_expr ’.x=' no_comma_expr

| no_set_expr ’./=' no_comma_expr ;

no_set_expr:
no_ternary_expr
| no_ternary_expr ’'?’ no_set_expr ’':’ no_set_expr

no_ternary_expr:
unary_expr
no_ternary_expr ’'x’ no_ternary_expr

~

no_ternary_expr ’.x’ no_ternary_expr

~

./’ no_ternary_expr
/' no_ternary_expr

no_ternary_expr
no_ternary_expr

~

no_ternary_expr %’ no_ternary_expr
no_ternary_expr '+’ no_ternary_expr
no_ternary_expr ’'—-’ no_ternary_expr

|
|
|
|
|
|
|
| no_ternary_expr
|
|
|
|
|
|
|

~

<<’ no_ternary_expr
>>' no_ternary_expr
&’ no_ternary_expr
&&’ no_ternary_expr
|” no_ternary_expr
| |" no_ternary_expr

~

no_ternary_expr
no_ternary_expr
no_ternary_expr

~

~

~

no_ternary_expr
no_ternary_expr

~

~

no_ternary_expr ’'<’ no_ternary_expr

no_ternary_expr ’'<=’ no_ternary_expr

instruction

335
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| no_ternary_expr ’'>'" no_ternary_expr

| no_ternary_expr ’'>=’ no_ternary_expr

| no_ternary_expr ’'==' no_ternary_expr

| no_ternary_expr ’'!=’ no_ternary_expr ;

sub_script_expr:
no_set_expr
‘ r .7

\ no_set_expr ’:’ no_set_expr

| no_set_expr ’':’ no_set_expr ’':’ no_set_expr ;

parameters:
no_set_expr
FESPACE

id =" no_set_expr

parameters ’,’ FESPACE

|

|

|

| sub_script_expr
|

| parameters ’,’ no_set_expr
|

parameters ’,’ id ’'=’ no_set_expr ;
array: no_comma_expr
| array ’,’ no_comma_expr ;

unary_expr:
pow_expr

| unop ©pow_expr %prec UNARY ;

pow_expr: primary

r-o

| primary unary_expr

| primary '_'’ unary_expr

| primary ' ; // transpose
primary:

iDp

| LNUM

| DNUM

| CNUM

| STRING

| primary ' (! parameters ')’

| primary ' [’ Expr ']’

| primary " [" "1’

| primary 7.’ ID

| primary " ++’

| primary '-—-'

| TYPE 7 (' Expr ")’ ;

| " (" Expr ")’

|

"1’ array "1’ ;
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B.2 The Types of the languages, and cast

B.3 All the operators

- CG, type :<TypeSolveMat>
— Cholesky, type :<TypeSolveMat>
- Crout, type :<TypeSolveMat>
- GMRES, type :<TypeSolveMat>
- LU, type :<TypeSolveMat>
- LinearCG, type :<Polymorphic> operator ()
( <long> : <Polymorphic>, <KN<double> x>, <KN<double> %> )

- N, type :<Fem2D::R3>

— NoUseOfWait, type :<bool x>

- P, type :<Fem2D::R3>

- PO, type :<Fem2D::TypeOfFE>

- P1, type :<Fem2D::TypeOfFE>

- Plnc, type :<Fem2D::TypeOfFE>

- P2, type :<Fem2D::TypeOfFE>

- RTO0, type :<Fem2D::TypeOfFE>

- RTmodif, type :<Fem2D::TypeOfFE>

- abs, type :<Polymorphic> operator()

( <double> : <double> )

- acos, type :<Polymorphic> operator ()
( <double> : <double> )

— acosh, type :<Polymorphic> operator ()
( <double> : <double> )

- adaptmesh, type :<Polymorphic> operator ()
( <Fem2D: :Mesh> : <Fem2D: :Mesh>... )

- append, type :<std::ios_base::openmode>
- asin, type :<Polymorphic> operator ()

( <double> : <double> )

- asinh, type :<Polymorphic> operator ()

( <double> : <double> )

- atan, type :<Polymorphic> operator ()
( <double> : <double> )
( <double> : <double>, <double> )

- atan2, type :<Polymorphic> operator ()
( <double> : <double>, <double> )

- atanh, type :<Polymorphic> operator ()
( <double> : <double> )
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— buildmesh, type :<Polymorphic> operator ()
( <Fem2D: :Mesh> : <E_BorderN> )

— buildmeshborder, type :<Polymorphic> operator ()
( <Fem2D: :Mesh> : <E_BorderN> )

- cin, type :<istream>
- clock, type :<Polymorphic>
( <double> : )

- conj, type :<Polymorphic> operator ()

( <complex> : <complex> )
- convect, type :<Polymorphic> operator ()
( <double> : <E_Array>, <double>, <double> )

- cos, type :<Polymorphic> operator/()

( <double> : <double> )
( <complex> : <complex> )
- cosh, type :<Polymorphic> operator ()
( <double> : <double> )
( <complex> : <complex> )

- cout, type :<ostream>
- dumptable, type :<Polymorphic> operator ()

( <ostream> : <ostream> )
- dx, type :<Polymorphic> operator ()
( <LinearComb<MDroit, C_FO0>> : <LinearComb<MDroit, C_F0>> )
( <double> : <std::pair<FEbase<double> *, int>> )
( <LinearComb<MGauche, C_FO0>> : <LinearComb<MGauche, C_F0>> )

- dy, type :<Polymorphic> operator ()

( <LinearComb<MDroit, C_FO0>> : <LinearComb<MDroit, C_F0>> )
( <double> : <std::pair<FEbase<double> x, int>> )
( <LinearComb<MGauche, C_FO0>> : <LinearComb<MGauche, C_FO0>> )

- endl, type :<char>
- exec, type :<Polymorphic> operator ()
( <long> : <string> )

- exit, type :<Polymorphic> operator ()
( <long> : <long> )

- exp, type :<Polymorphic> operator ()
( <double> : <double> )
( <complex> : <complex> )
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- false, type :<bool>
- imag, type :<Polymorphic> operator ()
( <double> : <complex> )

- intld, type :<Polymorphic> operator ()

( <CDhomainOfIntegration> : <Fem2D::Mesh>. ..

- int2d, type :<Polymorphic> operator ()

( <CDhomainOfIntegration> : <Fem2D: :Mesh>...

— intalledges, type :<Polymorphic>
operator (

( <CDomainOfIntegration> : <Fem2D: :Mesh>...

- Jjump, type :<Polymorphic>

operator (

( <LinearComb<MDroit, C_FO0>> : <LinearComb<MDroit,

( <double> : <double> )

( <complex > : <complex > )

( <LinearComb<MGauche, C_FO0>> : <LinearComb<MGauche,

- label, type :<long =*>

- log, type :<Polymorphic> operator ()
( <double> : <double> )
( <complex> : <complex> )

- logl0, type :<Polymorphic> operator ()

( <double> : <double> )

- max, type :<Polymorphic> operator ()
( <double> : <double>, <double> )
( <long> : <long>, <long> )

- mean, type :<Polymorphic>

operator (
( <double> : <double> )
( <complex> : <complex> )

- min, type :<Polymorphic> operator()
( <double> : <double>, <double> )
( <long> : <long>, <long> )

- movemesh, type :<Polymorphic> operator ()

( <Fem2D: :Mesh> : <Fem2D: :Mesh>, <E_Array>...

- norm, type :<Polymorphic>
operator (
( <double> : <std::complex<double>> )

- nuTriangle, type :<long>
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- nuEdge, type :<long>
- on, type :<Polymorphic> operator ()
( <BC_set<double>> : <long>... )

— otherside, type :<Polymorphic>

operator (
( <LinearComb<MDroit, C_FO0>> : <LinearComb<MDroit, C_F0>> )
( <LinearComb<MGauche, C_FO0>> : <LinearComb<MGauche, C_F0>> )

- pi, type :<double>
- plot, type :<Polymorphic> operator ()
( <long> : e )

- pow, type :<Polymorphic> operator ()
( <double> : <double>, <double> )
( <complex> : <complex>, <complex> )

- gflpE, type :<Fem2D::QuadratureFormularld>

- gflpT, type :<Fem2D::QuadratureFormular>

- gflpTlump, type :<Fem2D::QuadratureFormular>
- gf2pE, type :<Fem2D::QuadratureFormularld>

- gf2pT, type :<Fem2D::QuadratureFormular>

- gf2pT4P1l, type :<Fem2D::QuadratureFormular>
- gf3pE, type :<Fem2D::QuadratureFormularld>

- gf5pT, type :<Fem2D::QuadratureFormular>

- readmesh, type :<Polymorphic> operator ()
( <Fem2D: :Mesh> : <string> )

- real, type :<Polymorphic> operator ()
( <double> : <complex> )

- region, type :<long x>
— savemesh, type :<Polymorphic> operator ()

( <Fem2D: :Mesh> : <Fem2D: :Mesh>, <string>... )
- sin, type :<Polymorphic> operator ()

( <double> : <double> )

( <complex> : <complex> )

- sinh, type :<Polymorphic> operator ()
( <double> : <double> )
( <complex> : <complex> )

- sgrt, type :<Polymorphic> operator ()

( <double> : <double> )
( <complex> : <complex> )
- square, type :<Polymorphic> operator ()

( <Fem2D: :Mesh> : <long>, <long> )
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( <Fem2D: :Mesh> : <long>, <long>, <E_Array> )
- tan, type :<Polymorphic> operator ()
( <double> : <double> )

- true, type :<bool>
- trunc, type :<Polymorphic> operator ()
( <Fem2D: :Mesh> : <Fem2D: :Mesh>, <bool> )

- verbosity, type :<long *>
- wait, type :<bool x>
- x, type :<double x>
- vy, type :<double *>
-z, type :<double *>
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Appendix C

Dynamical link

Now, it’s possible to add built-in functionnalites in FreeFem++ under the three environnents
Linux, Windows and MacOS X 10.3 or newer. It is agood idea to, first try the example
load.edp in directory example++-1load.

You will need to install a c++ compiler (generally g++/gcc compiler) to compile your
function.

Windows Install the cygwin environnent or the mingw
MacOs Install the developer tools xcode on the apple DVD

Linux/Unix Install the correct compiler (gec for instance)

Now, assume that you are in a shell window (a cygwin window under Windows) in the
directory example++-load. Remark that in the sub directory include they are all the
FreeFem++ include file to make the link with FreeFem++.

Note C.1 If you try to load dynamically a file with command load "xxx"

e Under uniz (Linux or MacOs), the file xxx . so twill be loaded so it must be either in the
search directory of routine d1open (see the environment variable $SLD_LIBRARY_PATH
or in the current directory, and the suffiz ".so" or the prefix ". /" is automatically

added.

o Under Windows, The file xxx.d11 will be loaded so it must be in the 1oadLibary
search directory which includes the directory of the application,

The compilation of your module: the script ff-c++ compiles and makes the link with
FreeFem++, but be careful, the script has no way to known if you try to compile for a
pure Windows environment or for a cygwin environment so to build the load module under
cygwin you must add the —cygwin parameter.

C.1 A first example myfunction.cpp

The following defines a new function call myfunction with no parameter, but using the
x,y current value.

343
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#include <iostream>
#include <cfloat>

using namespace std;
#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "MeshPoint.hpp"

using namespace Fem2D;
double myfunction (Stack stack)
{

// to get FreeFem++ data

MeshPoint &mp= xMeshPointStack (stack); // the struct to get x,y, normal ,
value

double x= mp.P.x; // get the current x value

double y= mp.P.y; // get the current y value

// cout << "x = " << x << " y=" << y << endl;

return sin (x) *cos(y);

}

Now the Problem is to build the link with FreeFem++, to do that we need two classes, one
to call the function myfunction

All FreeFem++ evaluable expression must be a struct/class C++ which derive from E_FO.
By default this expression does not depend of the mesh position, but if they derive from
E_FOmps the expression depends of the mesh position, and for more details see [12].

// A class build the link with FreeFem++

// generaly this class are already in AFunction.hpp

// but unfortunatly, I have no simple function with no parameter
// in FreeFem++ depending of the mesh,

template<class R>
class OneOperatorOs : public OneOperator ({

// the class to defined a evaluated a new function
// It must devive from E_FO if it is mesh independent
// or from E_FOmps 1f it is mesh dependent
class E_FO_F :public E_FOmps { public:
typedef R (xfunc) (Stack stack) ;

func f; // the pointeur to the fnction myfunction
E_FO_F (func ff) : f(ff) {}

// the operator evaluation in FreeFem++
AnyType operator () (Stack stack) const {return SetAny<R>( f (stack)) ;}

i

typedef R (xfunc) (Stack ) ;
func f£;
public:
// the function which build the FreeFem++ byte code
E_FO0 * code(const basicAC_FO0 & ) const { return new E_FO_F(£f);}
// the constructor to say ff is a function without parameter
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// and returning a R
OneOperator0s (func ff): OneOperator (map_typeltypeid(R) .name()]), £ (£ff) {}
bi

To finish we must add this new function in FreeFem++ table , to do that include :

void init () {
Global.Add ("myfunction", " (", new OneOperatorOs<double> (myfunction));

}
LOADFUNC (init) ;

It will be called automatically at load module time.

To compile and link, use the £ff—c++ script :

% ff-c++ myfunction.cpp
gt+ —-c¢ —g —-Iinclude myfunction.cpp
g++ -bundle -undefined dynamic_lookup —-g myfunction.o -o ./myfunction.dylib

To, try the simple example under Linux or MacOS, do

% FreeFemt++-nw load.edp
—— FreeFemt+ v 1.4800028 (date Tue Oct 4 11:56:46 CEST 2005)
file : load.edp

Load: lg_fem lg_mesh eigenvalue UMFPACK

1 : // Example of dynamic function load
2 /) mmmm e
3 : // Id: freefem + +doc.tex,v1.1102010/06/0411 : 27 : 24hecht Exp
4

5 load "myfunction"

load: myfunction
load: dlopen(./myfunction) = 0xb0lccO

6 mesh Th=square (5,5);

7 fespace Vh (Th,P1l);

8 : Vh uh=myfunction () ; // warning do not forget ()
9 cout << uh[].min << " " << yh[].max << endl;

0 sizestack + 1024 =1240 (216 )

—-— square mesh : nb vertices =36 , nb triangles = 50 , nb boundary edges 20
Nb of edges on Mortars = 0

Nb of edges on Boundary = 20, neb = 20

Nb Of Nodes = 36

Nb of DF = 36

0 0.841471

times: compile 0.05s, execution -3.46945e-18s

CodeAlloc : nb ptr 1394, size :71524

Bien: On a fini Normalement

Under Windows, launch FreeFem++ with the mouse (or ctrl O) on the example.
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C.2 Example: Discrete Fast Fourier Transform

This will add FFT to FreeFem++, taken from http://www.fftw.org/. To download
and install under download/include just go in download/fftw and trymake.

The 1D dfft (fast discret fourier transform) for a simple array f of size n is defined by the

following formula
n—1

Afte(f,e)e = ) e
j=0

The 2D DFFT for an array of size N =n x m is

m—1n—1

Afft(f,m, &) pn = Z Z Fipm 2Ttk e )

§'=0 j=0

Remark: the value n is given by §z’ze( f)/m, and the numbering is row-major order. R
So the classical discrete DFFT is f = dfft(f, —1)/y/n and the reverse dFFT f = dfft(f,1)/v/n

Remark: the 2D Laplace operator is

m—1n—1

f@y) = VNI N fiynemiertul)

/=0 j=0

and we have
Sivm = f(k/n,1/m)
So - . R
Afu = =(2m)*((k)* + (1)*)) fu
Wherel%zkifkgn/Qelse/;:k—nandi:liflgm/Zelse[:l—m.
And to have a real function we need all modes to be symmetric around zero, so n and m
must be odd.

Compile to build a new library

% ff-c++ dfft.cpp ../download/install/lib/libfftw3.a -I../download/install/include

export MACOSX_DEPLOYMENT_TARGET=10.3

g++ —-c -Iinclude -I../download/install/include dfft.cpp

g++ -bundle -undefined dynamic_lookup dfft.o -o ./dfft.dylib ../download/install/lib/libfftw3.a

To test ,

—— FreeFem++ v 1.4800028 (date Mon Oct 10 16:53:28 EEST 2005)
file : dfft.edp
Load: lg_fem cadna lg _mesh eigenvalue UMFPACK

1 : // Example of dynamic function load
2 S/ e
3 // Id: freefem + +doc.tex,v1.1102010/06/0411 : 27 : 24hecht Exp
4 // Discret Fast Fourier Transform
5 /) e
6 load "dfft" lood: init dfft

load: dlopen(dfft.dylib) = 0x2b0c700


http://www.fftw.org/
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8 : int nx=32,ny=16,N=nxx*ny;

9 //

periodic conditions

347

warning the Fourier space 1s not exactly the unite square due to

10 : mesh Th=square (nx-1,ny-1, [ (nx-1)*x/nx, (ny-1)*y/ny])
11 // warring the numbering is of the vertices (x,y) 1is
12 // given by i=x/nx+nx*xy/ny
13
14 fespace Vh (Th,P1l);
15
16 func fl = cos (2xx*x2xpil) xcos (3*xy*2*xpi);
17 Vh<complex> u=fl,v;
18 Vh w=fl;
19
20
21 Vh ur,ui;
22 // in dfft the matrix n,m 1s in row-major order ann array n,m 1s
23 : // store j + m+ 1 ( the transpose of the square numbering )
24 : wv[]=dfft(ul],ny,-1);
25 ¢ ull]l=dfft(vI[],ny,+1);
26 : u[] /= complex(N);
27 :+ v = fl-u;
28 cout << " diff = "<< v[].max << " " << v[].min << endl;
29 assert ( norm(v[] .max) < 1le-10 && norm(v[].min) < le-10) ;
30 /S e a more hard example ————
31 // Lapacien en FFT
32 // —Au=f with biperiodic condition
33 func f = cos (3*2+pi*x)+*cos (2x2+pi*y); //
34 func ue = +(1./(square(2+pi)*13.))*C0s (3*2+pPi*xX)*COS (2+x2+xpi*y); //
35 Vh<complex> ff = f;
36 Vh<complex> fhat;
37 fhat[] = dfft(ff[],ny,-1);
38
39 Vh<complex> wij;
40 // warning in fact we take mode between -nx/2, nx/2 and -ny/2,ny/2
41 // thank to the operator ?:
42 wij = square(2.x*pi)* (square(( x<0.5?x*nx: (x-1)*nx))
+ square ((y<0.5?y*ny: (y=-1)*ny)));
43 wij[][0] = le-5; // to remove div / 0
44 : fhat[] = fhat[]./ wijl]; //
45 : u[]=dfft (fhat[],ny,1);
46 : ul] /= complex (N);
47 : ur = real(u); // the solution
48 : w = real((ue); // the exact solution
49 plot (w,ur,value=1 ,cmm=" ue ", wait=1);
50 wl[] -= url]; // array sub
51 real err= abs(w[].max)+abs(w[].min) ;
52 cout << " err = " << err << endl;
53 assert ( err < le-06);
54 sizestack + 1024 =3544 ( 2520 )
—————————— CheckPtr:———-—-init execution —-—-—--—- NbUndelPtr 2815 Alloc: 111320 NbPtr
6368
—-— square mesh nb vertices =512 , nb triangles = 930 , nb boundary edges 92
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Nb of edges on Mortars = 0

Nb of edges on Boundary = 92, neb = 92
Nb Of Nodes = 512
Nb of DF = 512
0x2d383d8 -1 16 512 n: 16 m:32

dfft 0x402bc08 = 0x4028208 n = 16 32 sign = -1

————————— 0x2d3ae08 1 16 512 n: 16 m:32

dfft 0x4028208 = 0x402bc08 n = 16 32 sign =1

————————— diff = (8.88178e-16,3.5651e-16) (-6.66134e-16,-3.38216e-16)
0x2d3cfb8 -1 16 512 n: 16 m:32

dfft 0x402de08 = 0x402bc08 n = 16 32 sign = -1

————————— 0x2d37ff8 1 16 512 n: 16 m:32
dfft 0x4028208 = 0x402de08 n = 16 32 sign
————————— err = 3.6104e-12
times: compile 0.13s, execution 2.05s
—————————— CheckPtr:—-———--end execution -- —-—-——-—-- NbUndelPtr 2815 Alloc: 111320
NbPtr 26950
CodeAlloc : nb ptr 1693, size :76084
Bien: On a fini Normalement
CheckPtr:Nb of undelete pointer is 2748 last 114
CheckPtr:Max Memory used 228.531 kbytes Memory undelete 105020

Il
i

C.3 Load Module for Dervieux’ P0-P1 Finite Volume Method

the associed edp file is examples++—-load/convect_dervieux.edp

/7 Implementation of P1-P0O FVM-FEM

// Id: freefem + +doc.tex,v1.1102010/06/0411 : 27 : 24hecht Exp
// compile and link with ff-c++ mat_dervieux.cpp (i.e. the file name
without .cpp)
#include <iostream>
#include <cfloat>
#include <cmath>
using namespace std;
#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
#include "RNM.hpp"
// remove problem of include
#undef HAVE_LIBUMFPACK
#undef HAVE_CADNA
#include "MatriceCreuse_tpl.hpp"
#include "MeshPoint.hpp"
#include "lgfem.hpp"
#include "lgsolver.hpp"
#include "problem.hpp"

class MatrixUpWind0O : public E_FOmps { public:
typedef Matrice_Creuse<R> * Result;
Expression emat, expTh, expc,expul, expu?2;
MatrixUpWindO (const basicAC_FO0 & args)
{
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args.SetNameParam() ;

emat =args([0]; // the matrix expression

expTh= to<pmesh> (args[1l]); // a the expression to get the mesh

expc = CastTo<double> (argsl[2]); // the expression to get c (must be a
double)

// a array expression [ a, b]

const E_Array * a= dynamic_cast<const E_Array+*>((Expression) args[3]);

if (a->size() != 2) CompileError ("syntax: MatrixUpWindO (Th,rhi, [ul,u2])");

int err =0;

expul= CastTo<double> ((xa) [0]); // fist exp of the array (must be a
double)

expu2= CastTo<double> ((xa) [1]); // second exp of the array (must be a
double)

}

"MatrixUpWindO () {
}

static ArrayOfaType typeargs/()
{ return ArrayOfaType (atype<Matrice_Creuse<R>x*> (),
atype<pmesh> () , atype<double> (), atype<E_Array>());}
static E_FO % f(const basicAC_FO0 & args){ return new MatrixUpWindO (args);}

AnyType operator () (Stack s) const ;

}i

int fvmP1PO (double g[3][2], double u[2],double c[3], double a[3][3], double where[3]
)

{ // computes matrix a on a triangle for the

Dervieux FVM
for (int 1=0;1i<3;1i++) for(int j=0; 3<3;j++) alil[]j]1=0;

)
int ip = (i+1)%3, ipp =(ip+l) %3;
double unlL =-((q[ip] [1]1+q[i][1]-2+qglipp][1])+ul0]
—(alipl [01+9[i]1[0]1-2xq[ipp] [0])*ull])/6;

if (unlL>0) { alil[i] += unl; alip]l[i]-=unl;}

else{ al[i][ip] += unl; alip][ip]-=unkL;}
if (where[i]&&where[ip]) { // this is a boundary edge

unlL=((qlip] [1]1-g[i][1])*ul0] - (glipl [0]1-g[i]1[0])*ulll)/2;

if (unL>0) { al[il[i]+=unL; alip] [ip]+=unLl;}

return 1;

// the evaluation routine
AnyType MatrixUpWindO::operator () (Stack stack) const
{

Matrice_Creuse<R> * sparse_mat =GetAny<Matrice_Creuse<R>x > ((xemat) (stack));
MatriceMorse<R> * amorse =0;

MeshPoint »*mp (MeshPointStack (stack)) , mps=x*mp;

Mesh x pTh = GetAny<pmesh> ( (xexpTh) (stack));

ffassert (pTh) ;

Mesh & Th (xpTh);
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map< pair<int,int>, R> Aij;

KN<double> cc(Th.nv);

double infini=DBI_MAX;

cc=infini;

for (int it=0;it<Th.nt;it++)
for (int iv=0;1iv<3;iv++)

int i=Th(it,iv);

if ( ccli]l==infini) { //
mp->setP (&Th, it,iv);
cc[i]=GetAny<double> ( (xexpc) (stack));

for (int k=0;k<Th.nt;k++)
{
const Triangle & K(Th([k]);
const Vertex & A(K[0]), &B(K[1l]),&C(K[2]);
R2 Pt(1./3.,1./3.);
R ul2];
MeshPointStack (stack)->set (Th,K(Pt),Pt,K,K.lab);

ul[0] = GetAny< R>( (xexpul) (stack) ) ;
ul[l] = GetAny< R>( (xexpu2) (stack) ) ;
int 1i[3] { Th(A), Th(B),Th(C)};

double g[3][2]= { { A.x,A.y}
of 3 vertices (input)
double c[3]={cc[ii[0]],cc[ii[1l]],cc[ii[2]]};
double a[3][3], where[3]={A.lab,B.lab,C.lab};
if (fvmP1lPO (gq,u,c,a,where) )
{
for (int 1i=0;1i<3;i++)
for (int 3=0; j<3; j++)
if (fabs(alil[j]l) >= 1e-30)
{ Aij[make_pair (ii[il,1i[3]1)1+=ali][§];
}

,{B.x,B.y},{C.x,C.y} } ;

}

}
amorse= new MatriceMorse<R>(Th.nv,Th.nv,Aij, false);
}
sparse_mat->pUh=0;
sparse_mat->pVh=0;
sparse_mat->A.master (amorse) ;

sparse_mat->typemat=(amorse->n == amorse->m)
TypeSolveMat (TypeSolveMat : : NONESQUARE) ; //
*MP=mMPS ;

if (verbosity>3) { cout << "

return sparse_mat;

}

void init ()
{

cout << " lood: init Mat Chacon " << endl;

if nuset the set

// coordinates

? TypeSolveMat (TypeSolveMat: :GMRES)
none square matrice (morse)

End Build MatrixUpWind : " << endl;}
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Global.Add ("MatUpWindO", " (", new OneOperatorCode<MatrixUpWind0 >( ));

LOADFUNC (init) ;

C.4 More on Adding a new finite element

First read the section [13] of the appendix, we add two new finite elements examples in the
directory examples++-1load.

The Bernardi-Raugel Element The Bernardi-Raugel finite element is meant to solve the
Navier Stokes equations in u, p formulation; the velocity space P¥ is minimal to prove the
inf-sup condition with piecewise constant pressure by triangle.

The finite element space V), is

Vi, ={ue H'(Q)? VK €T,ux€ Py}
where

br K K\K K
PK = Spcm{)\i ek}i:1,2,3,k:1,2 U {/\i )‘i+1ni+2}i:1,2,3

with notation 4 = 1,5 = 2 and where A\ are the barycentric coordinates of the triangle K,

(éx)r=12 the canonical basis of R? and nkK the outer normal of triangle K opposite to vertex
k.

// The P2BR finite element : the Bernadi Raugel Finite Element
// F. Hecht, decembre 2005
/) e
// See Bernardi, C., Raugel, G.: Analysis of some finite elements for the
Stokes problem. Math. Comp. 44, 71-79 (1985).
// It is a 2d coupled FE
// the Polynomial space is P1? + 3 normals bubbles edges function (P)
// the degree of freedom is 6 values at of the 2 componants at the 3
vertices
// and the 3 flux on the 3 edges
// So 9 degrees of freedom and N= 2.
/) e related files:
// to check and validate : testFE.edp
// to get a real example : NSP2BRP0.edp
e
/) e

#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
using namespace std;
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "AddNewFE.h"
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namespace Fem2D {

class TypeOfFE_P2BRLagrange : public TypeOfFE { public:
static int Datall;

TypeOfFE_P2BRLagrange () : TypeOfFE (6+3+0,

2/

Data,

4/

1/

6+3x% (2+2), // nb coef to build interpolation
9, // np point to build interpolation
0)

. // to long see the source
}
void FB(const bool % whatd, const Mesh & Th,const Triangle & K,const R2 &P,
RNMK_ & val) const;
void TypeOfFE_P2BRLagrange::Pi_h_alpha (const baseFElement & K,KN_<double> &
v) const;

b

// on what nu df on node node of df

int TypeOfFE_P2BRLagrange: :Data[]={
0,0, 1,1, 2,2, 3,4,5,
0,1, 0,1, 0,1, 0,0,0,
0,0, 1,1, 2,2, 3,4,5,
0,0, 0,0, 0,0, 0,0,0,
0,1, 2,3, 4,5, +6,7,8,
0,0

~

i

void TypeOfFE_P2BRLagrange::Pi_h_ alpha (const baseFElement & K,KN_<double> & v) const

{
const Triangle & T(K.T);

int k=0;
// coef pour les 3 sommets folis le 2 composantes
for (int 1i=0;i<6;1i++)
v[k++]=1;
// integration sur les aretes

for (int i=0;i<3;i++)

R2 N(T.Edge (i) .perp());
N x= T.EdgeOrientation(i)=*0.5 ;

vI[k++]= X5
vik++]= N.y;
v[k++]= N.x;
vik++]= N.y;

void TypeOfFE_P2BRLagrange: :FB(const bool * whatd,const Mesh & ,const Triangle
& K,const R2 & P,RNMK_ & val) const
{

// to long see the source
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// -——— cooking to add the finite elemet to freefem table ———————-
// a static variable to def the finite element
static TypeOfFE_P2BRLagrange P2LagrangeP2BR;
// now adding FE in FreeFEm++ table
static AddNewFE P2BR("P2BR", &P2LagrangeP2BR) ;
// -—— end cooking
} // end FEM2d namespace
A way to check the finite element
load "BernadiRaugel"

// a macro the compute numerical derivative
macro DD (f,hx,hy) ( (f(xl+hx,yl+hy)-f(xl-hx,yl-hy))/ (2% (hx+hy))) //
mesh Th=square(l,1, [10* (x+y/3),10x (y-x/3)1);
real x1=0.7,y1=0.9, h=le-7;
int itl1=Th(x1l,yl) .nuTriangle;
fespace Vh (Th,P2BR);

Vh [al,aZ2], [bl,b2], [cl,c2];
for (int 1i=0;i<Vh.ndofK; ++1)
cout << 1 << " " << Vh(0,1) << endl;
for (int i=0;i<Vh.ndofK; ++1)
{
al[]=0;
int j=Vh(itl,1i);
all]l[31=1; // a bascis functions
plot([al,a2], wait=1);
[bl,b2]1=[al,a2]; // do the interpolation
cl[] = all]l - bl[];
cout << " ————————— "< 1 <" << cl[].max << " " << ¢cl[].min << endl;
cout << " a = " << al[] <<endl;
cout << " b = " << bl[] <<endl;
assert (cl[].max < le-9 && cl[].min > -1le-9); // check if the
interpolation is correct
// check the derivative and numerical derivative
cout << " dx(al) (x1,yl) = " << dx(al) (x1,yl) << " == " << DD(al,h,0) << endl;
assert ( abs(dx(al) (x1,yl)-DD(al,h,0) ) < le-5);
assert ( abs(dx(a2) (x1,yl)-DD(a2,h,0) ) < le-5);
assert ( abs(dy(al) (x1,yl)-DD(al,0,h) ) < le-5);
assert ( abs(dy(a2) (x1,yl)-DD(a2,0,h) ) < le-5);
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A real example using this finite element, just a small modification of the NSP2P1.edp
examples, just the begenning is change to

load "BernadiRaugel"

real sO=clock();

mesh Th=square (10,10);
fespace Vh2 (Th,P2BR);
fespace Vh (Th,PO);

vh2 f[ul,u2], [upl,up2];
vh2 [vl,v2];

And the plot instruction is also changed because the pressure is constant, and we cannot
plot isovalues of peacewise constant functions.

The Morley Element See the example bilapMorley.edp.

C.5 Add a new sparse solver

Warning the sparse solver interface as been completely rewritten in version 3.2 | so the
section is obsolete, the example in are correct/

Only a fast sketch of the code is given here; for details see the .cpp code from SuperLU. cpp
or NewSolve. cpp.

First the include files:

#include <iostream>
using namespace std;

#include "rgraph.hpp"
#include "error.hpp"
#include "AFunction.hpp"

// #include "lex.hpp"
#include "MatriceCreuse_tpl.hpp"
#include "slu_ddefs.h"
#include "slu_zdefs.h"

A small template driver to unified the double and Complex version.

template <class R> struct SuperLUDriver

{

}i

template <> struct SuperLUDriver<double>

{

double version

i

template <> struct SuperLUDriver<Complex>

{

Complex version
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}i

To get Matrix value, we have just to remark that the Morse Matrice the storage, is the
SLU_NR format is the compressed row storage, this is the transpose of the compressed column
storage.

So if AA is a MatriceMorse you have with SuperLU notation.

n=AA.n;

m=AA.m;

nnz=AA.nbcoef;

a=AA.a;

asub=AA.cl;

xa=AA.lg;
options.Trans = TRANS;

Dtype_t R_SLU SuperLUDriver<R>::R_SLU_T () ;
Create_CompCol_Matrix (&A, m, n, nnz, a, asub, xa, SLU_NC, R_SLU, SLU_GE);

To get vector infomation, to solver the linear solver z = A~

void Solver (const MatriceMorse<R> &AA,KN_<R> &x,const KN_<R> &b) const

Create_Dense_Matrix (&B, m, 1, b, m, SLU_DN, R_SLU, SLU_GE);
Create_Dense_Matrix (&X, m, 1, x, m, SLU_DN, R_SLU, SLU_GE);

}

The two BuildSolverSuperLU function, to change the default sparse solver variable
DefSparseSolver<double>: :solver

MatriceMorse<double>::VirtualSolver =
BuildSolverSuperLU (DCL_ARG_SPARSE_SOLVER (double, 7))
{
if (verbosity>9)
cout << " BuildSolverSuperLU<double>" << endl;
return new SolveSuperLU<double> (%xA,ds.strategy,ds.tgv,ds.epsilon,ds.tol_pivot,ds.to]

MatriceMorse<Complex>::VirtualSolver =
BuildSolverSuperLU (DCL_ARG_SPARSE_SOLVER (Complex,A))
{
if (verbosity>9)
cout << " BuildSolverSuperLU<Complex>" << endl;
return new SolveSuperLU<Complex> (xA,ds.strategy,ds.tgv,ds.epsilon,ds.tol_pivot,ds.tol_

The link to FreeFem++

class Init { public:
Init ();
}i
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To set the 2 default sparse solver double and complex:

DefSparseSolver<double>: :SparseMatSolver SparseMatSolver R ; ;
DefSparseSolver<Complex>::SparseMatSolver SparseMatSolver_C;

To save the default solver type

TypeSolveMat::TSolveMat TypeSolveMatdefaultvalue=TypeSolveMat::defaultvalue;

To reset to the default solver, call this function:

bool SetDefault ()
{
if (verbosity>1)
cout << " SetDefault sparse to default" << endl;
DefSparseSolver<double>::solver =SparseMatSolver_R;
DefSparseSolver<Complex>::solver =SparseMatSolver_C;
TypeSolveMat::defaultvalue =TypeSolveMat::SparseSolver;
}

To set the default solver to superLU, call this function:

bool SetSuperLU ()

{
if (verbosity>1)

cout << " SetDefault sparse solver to SuperLU" << endl;

DefSparseSolver<double>::solver =BuildSolverSuperLU;
DefSparseSolver<Complex>::solver =BuildSolverSuperLU;
TypeSolveMat: :defaultvalue =TypeSolveMatdefaultvalue;

}

To add new function/name defaultsolver,defaulttoSuperLUin freefem++, and
set the default solver to the new solver., just do:

void init ()

{

SparseMatSolver R= DefSparseSolver<double>::solver;
SparseMatSolver_C= DefSparseSolver<Complex>::solver;

if (verbosity>1)

cout << "\n Add: SuperLU, defaultsolver defaultsolverSuperLU" << endl;
TypeSolveMat: :defaultvalue=TypeSolveMat: :SparseSolver;
DefSparseSolver<double>::solver =BuildSolverSuperLU;
DefSparseSolver<Complex>::solver =BuildSolverSuperLU;

// test 1if the name "defaultsolver" exist in freefem++

if (! Global.Find("defaultsolver") .NotNull () )

Global.Add ("defaultsolver"," (", new OneOperator0<bool> (SetDefault));
Global.Add ("defaulttoSuperLU", " (", new OneOperatorO<bool> (SetSuperllU)) ;

LOADFUNC (init) ;
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To compile superlu.cpp, just do:

1. download the SuperLu 3.0 package and do

curl http://crd.lbl.gov/ xiaoye/SuperLU/superlu_3.0.tar.gz -0 supe
tar xviz superlu_3.0.tar.gz

go SuperLU_3.0 directory

SEDITOR make.inc

make

2. In directoy include do to have a correct version of SuperLu header due to mistake in
case of inclusion of double and Complex version in the same file.

tar xvfz ../SuperLU_3.0-include-ff.tar.gz

I will give a correct one to compile with freefm++.

To compile the freefem++ load file of SuperLu with freefem do: some find like :
ff-c++ SuperLU.cpp -LSHOME/work/LinearSolver/SuperLU_3.0/ —lsuperlu_

And to test the simple example:

A example:

load "SuperLU"
verbosity=2;

for (int 1i=0;1<3;++1)
{

// if i == 0 then SuperLu solver
// i == 1 then GMRES solver
// i1 == 2 then Default solver
{
matrix A =
[r 0, 1, o, 101,
[ o, 0, 2, 01,
( 0, 0, 0, 31,
[ 4,0, 0, 011,
real[int] xx = [ 4,1,2,3], x(4), b(4);
b = Axxx;
cout << b << " " << xx << endl;
set (A, solver=sparsesolver);
X = A"-1xb;

cout << x << endl;

matrix<complex> A =
([ 0, 1i, 0, 101,
(o, o0, 21i, 01,
[ 0, 0, O, 311,
[ 41,0 , O, 011;
complex[int] xx = [ 4i,11i,21i,31i], x(4), b(4);
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b = Axxx;
cout << b << " " << xx << endl;
set (A, solver=sparsesolver) ;
X = A"-1xb;
cout << x << endl;
}
if (i==0)defaulttoGMRES () ;
i l)defaultsolver();

To Test do for exemple:

FreeFem++ SuperLu.edp



FreeFem++ LGPL License

This is The FreeFem++ software. Programs in it were maintained by
e Frédéric hecht <Frederic.Hecht@upmc.fr>
e Jacgues Morice <morice(@ann. jussieu.fr>

All its programs except files the comming from COOOL sofware (files in directory src/Algo)
and the file mt19937ar.cpp which may be redistributed under the terms of the GNU
LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPY-
ING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called "this License”). Each
licensee is addressed as ”you”.

A "library” means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data) to
form executables.

The ”Library”, below, refers to any such software library or work which has been distributed
under these terms. A ”work based on the Library” means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another lan-
guage. (Hereinafter, translation is included without limitation in the term "modification”.)
"Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

359
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2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)
These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License, version
2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.
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If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a ”work that uses the
Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a ”work that uses the Library” with the Library creates an executable that
is a derivative of the Library (because it contains portions of the Library), rather than a
"work that uses the library”. The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

When a ”"work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 6. Any executables containing that work also fall under
Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses
the Library” with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library,
with the complete machine-readable ”work that uses the Library”, as object code and/or
source code, so that the user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood that the user who changes
the contents of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will
operate properly with a modified version of the library, if the user installs one, as long as
the modified version is interface-compatible with the version that the work was made with.
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¢) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already
sent this user a copy.

For an executable, the required form of the ”work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.
7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do

Y
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not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.
13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and ”any later version”, you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a license version number, you
may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY ”AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
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REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Keywords

Main Keywords

adaptmesh
Cmatrix
R3

bool
border
break
buildmesh
catch
cin
complex
continue
cout
element
else

end
fespace
for

func

if
ifstream
include
int
intalledge
load
macro
matrix
mesh
movemesh
ofstream
plot
problem
real
return
savemesh
solve
string
try
throw
vertex
varf

while

Second category of Keywords

intld
int2d
on
square

Third category of Keywords

dx

dy
convect
jump
mean

Fourth category of Keywords

wait

Ps

solver

CG

LU
UMFPACK
factorize
init

endl

Other Reserved Words

X, Y, z, Pi, 1,
sin, cos, tan, atan, asin,

acos,

cotan, sinh, cosh, tanh, cotanh,

exp, log, logl0O, sgrt
abs, max, min,
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Book Description

Fruit of a long maturing process freefem, in its last avatar, FreeFem++, iS A high
level integrated development environment (IDE) for partial differential equations
(PDE). It is the ideal tool for teaching the finite element method but it is also perfect
for research to quickly test new ideas or multi-physics and complex applications.

FreeFem++ has an advanced automatic mesh generator, capable of a posteri-
ori mesh adaptation; it has a general purpose elliptic solver interfaced with fast
algorithms such as the multi-frontal method UMFPACK. Hyperbolic and parabolic
problems are solved by iterative algorithms prescribed by the user with the high
level language of FreeFem++. It has several triangular finite elements, including
discontinuous elements. Finally everything is there in FreeFem++ tO prepare re-
search quality reports: color display online with zooming and other features and
postscript printouts.

This book is ideal for students at Master level, for researchers at any level and for
engineers also in financial mathematics.
Editorial Reviews

“...Impossible to put the book down, suspense right up fto the last page...”
A. TanH, Siam Chronicle.

“...The chapter on discontinuous fems is so hilarious ... ."
B. GALERKINE, Poccuiickoil akageMuu HayK .
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