fcm
Using the Fuzzy C-Means algorithm, calculate and return the soft partition of a set of unlabeled data points.
Also, if display_intermediate_results is true, display intermediate results after each iteration. Note that because the initial cluster prototypes are randomly selected locations in the ranges determined by the input data, the results of this function are nondeterministic.
The required arguments to fcm are:
The optional arguments to fcm are:
The default values are used if any of the optional arguments are missing or evaluate to NaN.
The return values are:
Three important matrices used in the calculation are X (the input points to be clustered), V (the cluster centers), and Mu (the membership of each data point in each cluster). Each row of X and V denotes a single point, and Mu(i, j) denotes the membership degree of input point X(j, :) in the cluster having center V(i, :).
X is identical to the required argument input_data; V is identical to the output cluster_centers; and Mu is identical to the output soft_partition.
If n denotes the number of input points and k denotes the number of clusters to be formed, then X, V, and Mu have the dimensions:
1 2 ... #features
1 [[ ]
X = input_data = 2 [ ]
... [ ]
n [ ]]
1 2 ... #features
1 [[ ]
V = cluster_centers = 2 [ ]
... [ ]
k [ ]]
1 2 ... n
1 [[ ]
Mu = soft_partition = 2 [ ]
... [ ]
k [ ]]
See also: gustafson_kessel, partition_coeff, partition_entropy, xie_beni_index
## This demo:
## - classifies a small set of unlabeled data points using
## the Fuzzy C-Means algorithm into two fuzzy clusters
## - plots the input points together with the cluster centers
## - evaluates the quality of the resulting clusters using
## three validity measures: the partition coefficient, the
## partition entropy, and the Xie-Beni validity index
##
## Note: The input_data is taken from Chapter 13, Example 17 in
## Fuzzy Logic: Intelligence, Control and Information, by
## J. Yen and R. Langari, Prentice Hall, 1999, page 381
## (International Edition).
## Use fcm to classify the input_data.
input_data = [2 12; 4 9; 7 13; 11 5; 12 7; 14 4];
number_of_clusters = 2;
[cluster_centers, soft_partition, obj_fcn_history] = ...
fcm (input_data, number_of_clusters)
## Plot the data points as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'FCM Demo 1');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 2');
grid
hold
## Calculate and print the three validity measures.
printf ("Partition Coefficient: %f\n", ...
partition_coeff (soft_partition));
printf ("Partition Entropy (with a = 2): %f\n", ...
partition_entropy (soft_partition, 2));
printf ("Xie-Beni Index: %f\n\n", ...
xie_beni_index (input_data, cluster_centers, ...
soft_partition));
Iteration count = 1, Objective fcn = 73.455477
Iteration count = 2, Objective fcn = 34.342526
Iteration count = 3, Objective fcn = 28.816818
Iteration count = 4, Objective fcn = 28.758098
Iteration count = 5, Objective fcn = 28.757474
Iteration count = 6, Objective fcn = 28.757461
Iteration count = 7, Objective fcn = 28.757460
Iteration count = 8, Objective fcn = 28.757460
Iteration count = 9, Objective fcn = 28.757460
cluster_centers =
12.2859 5.3691
4.2023 11.2805
soft_partition =
0.034600 0.060194 0.111226 0.979533 0.966514 0.968711
0.965400 0.939806 0.888774 0.020467 0.033486 0.031289
obj_fcn_history =
73.455 34.343 28.817 28.758 28.757 28.757 28.757 28.757 28.757
Partition Coefficient: 0.909483
Partition Entropy (with a = 2): 0.267539
Xie-Beni Index: 0.095582
|
## This demo:
## - classifies three-dimensional unlabeled data points using
## the Fuzzy C-Means algorithm into three fuzzy clusters
## - plots the input points together with the cluster centers
## - evaluates the quality of the resulting clusters using
## three validity measures: the partition coefficient, the
## partition entropy, and the Xie-Beni validity index
##
## Note: The input_data was selected to form three areas of
## different shapes.
## Use fcm to classify the input_data.
input_data = [1 11 5; 1 12 6; 1 13 5; 2 11 7; 2 12 6; 2 13 7;
3 11 6; 3 12 5; 3 13 7; 1 1 10; 1 3 9; 2 2 11;
3 1 9; 3 3 10; 3 5 11; 4 4 9; 4 6 8; 5 5 8; 5 7 9;
6 6 10; 9 10 12; 9 12 13; 9 13 14; 10 9 13; 10 13 12;
11 10 14; 11 12 13; 12 6 12; 12 7 15; 12 9 15;
14 6 14; 14 8 13];
number_of_clusters = 3;
[cluster_centers, soft_partition, obj_fcn_history] = ...
fcm (input_data, number_of_clusters, [NaN NaN NaN 0])
## Plot the data points in two dimensions (using features 1 & 2)
## as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'FCM Demo 2');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers in two dimensions
## (using features 1 & 2) as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 2');
grid
hold
## Plot the data points in two dimensions
## (using features 1 & 3) as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'FCM Demo 2');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 3), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers in two dimensions
## (using features 1 & 3) as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 3), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 3');
grid
hold
## Calculate and print the three validity measures.
printf ("Partition Coefficient: %f\n", ...
partition_coeff (soft_partition));
printf ("Partition Entropy (with a = 2): %f\n", ...
partition_entropy (soft_partition, 2));
printf ("Xie-Beni Index: %f\n\n", ...
xie_beni_index (input_data, cluster_centers, ...
soft_partition));
cluster_centers =
2.0937 11.9016 6.0942
11.0424 9.5332 13.3569
3.1989 3.6232 9.5521
soft_partition =
Columns 1 through 7:
9.4461e-01 9.7904e-01 9.5109e-01 9.6197e-01 9.9948e-01 9.6487e-01 9.6332e-01
1.7523e-02 7.3841e-03 1.8740e-02 1.2705e-02 1.9250e-04 1.4638e-02 1.3086e-02
3.7871e-02 1.3572e-02 3.0172e-02 2.5327e-02 3.2448e-04 2.0488e-02 2.3598e-02
Columns 8 through 14:
9.6457e-01 9.4834e-01 7.6424e-02 5.6743e-02 4.6202e-02 5.1152e-02 6.5170e-03
1.3915e-02 2.3066e-02 5.5911e-02 3.1032e-02 3.9162e-02 4.1879e-02 5.2361e-03
2.1516e-02 2.8591e-02 8.6766e-01 9.1223e-01 9.1464e-01 9.0697e-01 9.8825e-01
Columns 15 through 21:
5.0542e-02 1.4244e-02 1.5868e-01 1.0410e-01 2.2741e-01 1.4085e-01 6.2864e-02
4.0373e-02 1.0700e-02 7.3582e-02 7.2479e-02 1.5029e-01 1.8715e-01 8.6967e-01
9.0909e-01 9.7506e-01 7.6774e-01 8.2343e-01 6.2230e-01 6.7200e-01 6.7469e-02
Columns 22 through 28:
9.0815e-02 1.1768e-01 1.2265e-02 1.2048e-01 4.3134e-03 4.4784e-02 7.1964e-02
8.3432e-01 7.8958e-01 9.7102e-01 7.9477e-01 9.9052e-01 9.1541e-01 7.9248e-01
7.4870e-02 9.2741e-02 1.6712e-02 8.4745e-02 5.1715e-03 3.9804e-02 1.3556e-01
Columns 29 through 32:
4.3901e-02 1.9996e-02 7.2840e-02 4.8500e-02
8.8149e-01 9.5269e-01 8.0460e-01 8.8430e-01
7.4614e-02 2.7318e-02 1.2256e-01 6.7204e-02
obj_fcn_history =
Columns 1 through 10:
447.48 377.98 255.41 185.17 181.04 180.67 180.62 180.61 180.61 180.61
Columns 11 through 17:
180.61 180.61 180.61 180.61 180.61 180.61 180.61
Partition Coefficient: 0.813224
Partition Entropy (with a = 2): 0.541401
Xie-Beni Index: 0.207218
|