Systemtap tutorial

Frank Ch. Eiglerfcheredhat.com
February 28, 2025

Contents

1 Introduction

2 Tracing

2.1
2.2
2.3

Where to probe o o e
Whattoprint o it e

] o 1<

3 Analysis

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Al
A.2
A3
A4
A5

BasSiC COMSIIUCES v v vt e e e e e e e e e e e e et e e e e e e e e e e e e e e e
Targetvariables L e e e e e e

0 (o (o) -

Tapsets

Automatic selection Lt e e e e e e e e e e e e e e e i e e e e e
Probe pointaliases o i i it i e e e e e et e e e e
Embedded C e e e e e e
Naming conventions v v i v v v vt ittt e et e e e e e e e

] o 1<

Further information

Errors

Parse €rrors L . L e e e e e e e e e e e e e e e e e e i e e e e
TYPEEITOIS . ¢ v v v i vt i et e ettt et e e e e e e e e e e e e e e e e
Symbol €rTors e
Probing errors o i i i i e

RUNLIIME @ITOTS . . . o v i i i i e e e et e e e e e e e e e e e et et e e e e tme e e e e e

10
10

11
11
12
13
15
15

15

B Acknowledgments

ntroduction

Systemtap is a tool that allows developers and administrato rs to write and reuse simple scripts to deeply
eamine the activities of a live inu system. ata may be et racted filtered and summari ed uickly and
safely to enable diagnoses of comple performance or funct ional problems.

NTE This tutorial does not describe every feature available in s ystemtap. Please see the individual stap
manual pages for the most uptodate information. These may be available installed on your system or at
httpsourceware.orgsystemtapman

The essential idea behind a systemtap script is to name events and to give them handlers. henever a
specified event occurs the inu kernel runs the handler as i f it were a uick subroutine then resumes.
There are several kind of events such as entering or eiting a function a timer epiring or the entire
systemtap session starting or stopping. A handler is a serie s of script language statements that specify the
work to be done whenever the event occurs. This work normally includes etracting data from the event
contet storing them into internal variables or printing results.

Systemtap works by translating the script to C running the s ystem C compiler to create a kernel module
from that. hen the module is loaded it activates all the pro bed events by hooking into the kernel. Then
as events occur on any processor the compiled handlers run. Eventually the session stops the hooks are

disconnected and the module removed. This entire processi s driven from a single commandline program

stap .

cat helloworld.stp
probe begin

print hello worldn

elt

stap helloworld.stp
hello world

igure A systemtap smoke test.

This paper assumes that you have installed systemtap and its prereuisite kernel development tools and
debugging data so that you can run the scripts such as the sim ple one in igure . og on as root or even
better login as a user that is a member of stapdev group or as a user authoried to sudo before running
systemtap.

Tracing

The simplest kind of probe is simply to trace an event. This is the effect of inserting strategically loca ted
print statements into a program. This is often the first step of prob lem solving eplore by seeing a history
of what has happened.

This style of instrumentation is the simplest. t ust asks s ystemtap to print something at each event. To
epress this in the script language you need to say where to p robe and what to print there.

cat strace-open.stp
probe sscall.open

printf s open s n

probe tier.s after

eit

stap strace-open.stp

ware-guest open

hal open /e/hc

hal open /e/hc

hal open /e/hc

f open /etc/l.so.cache
f open /lib/tls/libc.so.
f open /etc/tab

hal open /e/hc

eecnae pi

secons

/etc/rehat-release

argstr

igure :

. here to probe

taste of sstetap: a sste-wie

strace ust for theopen sste call.

stetap supports a nuber of built-in eents. he librar of scripts that coes with sstetap each calle

a tapset ae neaitional onese ne inters of theb
for etails on these an an other probe point failies.

snta with ot-separate paraeterize ienti ers:

begin
en

ernel.function ssopen
sscall.close.return

oule et .stateent eabeef
tier.s
tier.profile
perf.hw.cacheisses
procfs status .rea
process a.out .stateent ain.c:

uilt-in failee the stapprobesan page
11 these eents are nae using a uni e

he startup of the sstetap session.
he en of the sstetap session.

he entr to the function nae ssopen
he return fro the close sste call.
he aresse instruction in the et
tier that reseer illisecons.
tier that res perioicall oneer.
particular nuber of cache isses hae occurre.
process tring to rea a snthetic le.

ine of the a.out progra.

in the ernel.

lesste rier.

et s sa that ou woul lie to trace all function entriesedits in a source le sa net/socet.c in the
ernel. he ernel.function probe point lets ou epress that easilsince sstetap eaines the ernel s
ebugging inforation to relate obect coe to source coe.t wors lie a ebugger: if ou can nae

or place it ou can probe it.
an ernel.function net/socet.c
function nae part an the subseuent
een a acolon

.return

seernel.function
for atching eits.

part. ou can also put wilcars into the le nae an

an a line nuber if ou want to restrict the search that prisel. ince sstetap will

.call for the function entries
ote the use of wilcars in the

net/socet.c

put a separate probe in eer place that atches a probe pointfew wilcars can epan to hunres or

thousans of probes so be careful what ou as for.

ithout the .call uali erinline function instances are also probe bitethae no corresponing

.return.

Once you identify the probe points, the skeleton of the systip script appears. Th@robe keyword intro-
duces a probe point, or a comma-separated list of them. Thédwing and braces enclose the handler
for all listed probe points.

probe kernel.functionnet/socket.c
probe kernel.functionnet/socket.c.return

ou can run this script as is, though with empty handlers thewill be no output. Put the two lines into a
new file. Runstap -v FIE . Terminate it any time witlC . The -v option tells systemtap to print more
verbose messages during its processing. Try tHe option to see more options.

2.2 What to print

Since you are interested in each function that was entereddaexited, a line should be printed for each,
containing the function name. In order to make that list easyread, systemtap should indent the lines so
that functions called by other traced functions are nesteekger. To tell each single process apart from any
others that may be running concurrently, systemtap shouldoaprint the process I in the line.

Systemtap provides a variety of such contextual data, rediy formatting. They usually appear as function
calls within the handler, like you already saw in Figure Bee the function:: = man pages for those
functions and more defined in the tapset library, but here’s a sampling:

tid The id of the current thread.
pid The process task group id of the current thread.
uid The id of the current user.
execname The name of the current process.
cpu The current cpu number.
gettimeofdays Number of seconds since epoch.
getcycles Snapshot of hardware cycle counter.
PP A string describing the probe point being currently handled
ppfunc If known, the the function name in which this probe was placed
vars If available, a pretty-printed listing of all local variabin scope.
printbacktrace If possible, print a kernel backtrace.
printubacktrace If possible, print a user-space backtrace.

The values returned may be strings or numbers. Tlpeint built-in function accepts either as its sole
argument. Or, you can use the C-stylprintf built-in, whose formatting argument may include for a
string,d for a number.printf and other functions take comma-separated arguments. onforget an

at the end. There exist more printing / formatting functidne.

A particularly handy function in the tapset librarythweadindent . Given an indentation delta parameter, it
stores internally an indentation counter for each threail , and returns a string with some generic trace

data plus an appropriate number of indentation spaces. Tlganeric data includes a timestamp number

of microseconds since the initial indentation for the thdea process name and the thread id itself. It

therefore gives an idea not only about what functions werdled, but who called them, and how long they
took. Figure 3 shows the finished script. It lacks a call to tdeit function, so you need to interrupt it
with C when you want the tracing to stop.

2.3 Exercises

1. sethe - option to systemtap to list all the kernel functions namedliwihe word nit in them.

cat socket-trace.stp
probe kernel.functionnet/socket.c.call
printf s - sn, threadindentl, ppfunc

probe kernel.functionnet/socket.c.return
printf s - sn, threadindent-1, ppfunc

stap socket-trace.stp
0 hald2632: - sockpoll
28 hald2632: - sockpoll

0 ftp7223: - syssocketcall
115 ftp7223: - syssocket

2173 ftp7223: - sockcreate
2286 ftp7223: - sockallocinode
2737 ftp7223: - sockallocinode
334 ftp7223: - sockalloc

338 ftp7223: - sockalloc

3417 ftp7223: - sockcreate
4117 ftp7223: - sockcreate
4160 ftp7223: - sockcreate
4301 ftp7223: - sockmapfd
4644 ftp7223: - sockmapfile
46 ftp7223: - sockmapfile
4715 ftp7223: - sockmapfd

4732 ftp7223: - syssocket
4775 ftp7223: - syssocketcall

Figure 3: Tracing and timing functions imet/sockets.c .

2. Trace some system calls usesyscal. NAME and .return probe points, with the samethreadindent
probe handler as in Figure 3. Print parameters usipgrms andreturn . Interpret the results.

3. Change figure 3 by removing thecall modifier from the first probe. Note how function entry and
function return now don’t match anymore. This is because nthe first probe will match both normal
function entry and inlined functions. Try putting theall modifier back and add another probe ust
for probe kernel.functionnet/socket.c.inline What printf statement can you come up
with in the probe handler to show the inlined function ensnidcely in between thecall and.return
thread indented output?

3 Analysis

Pages of generic tracing text may give you enough informatifor exploring a system. With systemtap, it is
possible to analyze that data, to filter, aggregate, transfy and summarize it. ifferent probes can work
together to share data. Probe handlers can use a rich set ofitwl constructs to describe algorithms, with
a syntax taken roughly fromwk With these tools, systemtap scripts can focus on a specifitestion and
provide a compact response: ngrep needed.

Basic constructs

Most systemtap scripts include conditionals to limit trac ing or other logic to those processes or users or
whatever of interest. The synta is simple

if EXPR STATEMENT else STATEMENT ifelse statement
while EXPR STATEMENT while loop
for A B C STATEMENT for loop

Scripts may use break continue as in C. Probe handlers can return early using net as in awk Blocks of

statements are enclosed in ~ and . n systemtap the semicolon is accepted as a null statement rather

than as a statement terminatorso is only rarely necessary. Shellstyle Cstyle and Cstyle
comments are all accepted.

Epressions look like C or awkand support the usual operators precedences and numeric literals. Strings
are treated as atomic values rather than arrays of character s. String concatenation is done with the dot
a.b . Some eamples

uid probably an ordinary user
eecname sed current process is sed
cpu gettimeofdays after eb. on CP
hello . . world a string in three easy pieces
ariables may be used as well. ust pick a name assign to it a nd use it in epressions. They are automatically

initiali ed and declared. The type of each identifier strin g vs. number is automatically inferred by
systemtap from the kinds of operators and literals used on it . Any inconsistencies will be reported as errors.
Conversion between string and number types is done through e plicit function calls.

foo gettimeofdays foo is a number
bar usrbin . eecname bar is a string
c c is a number
s sprint s becomes the string

By default variables are local to the probe they are used in. That is they are initiali ed used and disposed
of at each probe handler invocation. To share variables betw een probes declare them global anywhere in
the script. Because of possible concurrency multiple prob e handlers running on different CPs each global
variable used by a probe is automatically read or writeloc ked while the handler is running.

Target variables

A class of special target variables allow access to the pro be point contet. n a symbolic debugger when
youre stopped at a breakpoint you can print values from the = programs contet. n systemtap scripts for
those probe points that match with specific eecutable point rather than an asynchronous event like a
timer you can do the same.

n addition you can take their address the operator prettyprint structures the and suffi pretty
print multiple variables in scope the vars and related variables or cast pointers to their types the cast
operator or test their eistence resolvability the defined operator. Read about these in the manual
pages.

To know which variables are likely to be available you will n eed to be familiar with the kernel source you
are probing. n addition you will need to check that the comp iler has not optimi ed those values into
unreachable noneistence. ou can use stap PRBEPNT to enumerate the variables available there.

se them between consecutive epressions that place unary or mied prepost in an ambiguous manner.

cat timeriffies.stp

global countiffies countms
probe timer.iffies countiffies
probe timer.ms countms
probe timer.ms

h countiffies countms

printf iffiesms ratio dd CNdn
countiffies countms h

eit

stap timeriffies.stp
iffiesms ratio CN

igure Eperimentally measuring CN _

ets say that you are trying to trace filesystem readswrite s to a particular deviceinode. rom your knowl
edge of the kernel you know that two functions of interest co uld be vfsread and vfswrite . Each
takes a struct file argument inside there is either a struct dentry or struct path which has a
struct dentry . The struct dentry contains a struct inode and so on. Systemtap allows limited
dereferencing of such pointer chains. Two functions userstring and kernelstring can copy char
target variables into systemtap strings. igure demonstr ates one way to monitor a particular file identified
by device number and inode number. The script selects the ap propriate variants of devnr andinodenr
based on the kernel version. This eample also demonstrates passing numeric commandline arguments

etc. into scripts.

unctions

unctions are conveniently packaged reusable software it would be a shame to have to duplicate a comple
condition epression or logging directive in every placed i ts used. So systemtap lets you define functions
of your own. ike global variables systemtap functions may be defined anywhere in the script. They may
take any number of string or numeric arguments by value an d may return a single string or number.
The parameter types are inferred as for ordinary variables — and must be consistent throughout the program.
ocal and global script variables are available but target ~ variables are not. Thats because there is no specific
debugginglevel contet associated with a function.

A function is defined with the keyword function followed by a name. Then comes a commaseparated
formal argument list ust a list of variable names. The enclosed body consists of any list of statements
including epressions that call functions. Recursion is po ssible up to a nesting depth limit. igure displays
function synta.

Arrays

ften probes will want to share data that cannot be represen ted as a simple scalar value. Much data is
naturally tabular in nature indeed by some tuple of thread numbers processor ids names time and so
on. Systemtap offers associative arrays for this purpose. T hese arrays are implemented as hash tables with
a maimum si e that is fied at startup. Because they are too la rge to be created dynamically for individual
probes handler runs they must be declared as global.

cat inode-watch.stp
probe kernel.function (vfswrite),
kernel.function (vfsread)

if (defined(file-fpath-dentry))
devnr file-fpath-dentry-dinode-isb-sdev
inodenr file-fpath-dentry-dinode-iino
else
devnr file-fdentry-dinode-isb-sdev
inodenr file-fdentry-dinode-iino

if (devar (1 20 2) major/minor device
&& inodenr 3)
printf (s(d) s Oxx/un,
execname(), pid(), ppfunc(), devnr, inodenr)

stat -c D i /etc/crontab

fdo3 133099

stap inode-watch.stp Oxfd 3 133099
more(30789) vfsread 0xfd00003,/133099
more(30789) vfsread 0xfd00003/133099

Figure 5: Watching for reads/writes to a particular file.

Red Hat convention; see /etc/login.defs UIDMIN
function systemuidp (u) return u 500

kernel device number assembly macro
function makedev (major,minor) return major 20 minor

function tracecommon ()
printf(d s(d), gettimeofdays(), execname(), pid())
no return value necessary

function fibonacci (i)
if @G 1) return O

else if (i 2) return 1
else return fibonacci(i-1) + fibonacci(i-2)

Figure 6: Some functions of dubious utility.

global a declare global scalar or array variable
global b[400 declare array, reserving space for up to 400 tuples

The basic operations for arrays are setting and looking up elements. These are expressed in awksyntax: the

array name followed by an opening bracket a commaseparated list of inde epressions and a closing

bracket. Each inde epression may be string or numeric as l ong as it is consistently typed throughout the
script.
foo hello increment the named array slot
processusage uideecname update a statistic
times tid getcycles set a timestamp reference point
delta getcycles times tid compute a timestamp delta

Array elements that have not been set may be fetched and return a dummy null value ero or an empty
string as appropriate. owever assigning a null value doe s not delete the element an eplicit delete
statement is reuired. — Systemtap provides syntactic sugar for these operations in the form of eplicit
membership testing and deletion.

if hello in foo membership test
delete timestid deletion of a single element
delete times deletion of all elements

ne final and important operation is iteration over arrays. T his uses the keyword foreach . ike awk this
creates a loop that iterates over key tuples of an arraynot ust values. n addition the iteration may be sorted
by any single key or the value by adding an etra or code.

The break and continue statements work inside foreach loops too. Since arrays can be large but probe
handlers must not run for long it is a good idea to eit iterat ion early if possible. The limit option in the
foreach epression is one way. or simplicity systemtap forbids an y modification of an array while it is being
iterated using a foreach .

foreach ab in foo fusswith simple loop in arbitrary seuence
foreach ab in foo limit loop in increasing seuence of value stop
after
foreach ab in foo loop in decreasing seuence of first key
Aggregates
hen we said above that values can only be strings or numbers we lied a little. There is a third type
statistics aggregates or aggregates for short. nstances of this type are used to collect statistics on numerical
values where it is important to accumulate new data uickly without eclusive locks and in large volume

storing only aggregated stream statistics. This type onl y makes sense for global variables and may be
stored individually or as elements of an array.

To add a value to a statistics aggregate systemtap uses the s pecial operator . Think of it like Cs

output streamer the left hand side obect accumulates the d ata sample given on the right hand side.
This operation is efficient taking a shared lock because th e aggregate values are kept separately on each
processor and are only aggregated across processors on re uest.

a deltatimestamp
writeseecname count

To read the aggregate value special functions are availabl e to etract a selected statistical function. The
aggregate value cannot be read by simply naming it as if it were an ordinary variable. These operations take an
eclusive lock on the respective globals and should theref ore be relatively rare. The simple ones are ~ min
ma count avg and sum and evaluate to a single number. n addition histograms of the data stream
may be etracted using the histlog and histlinear . These evaluate to a special sort of array that may

at presentonl be printe.

ag a the aerage of all the alues accuulate intoa
print histlinear a print an ascii art linear histogra of the sae ata
strea bouns ::: bucet withis
count writes zsh the nuber of ties zsh ran the probe hanler
print histlog writes zsh print an ascii art logarithic histogra of the sae
ata strea

. afet

he full epressiit of the scripting language raises goastions of safet. ere is a set of

hat about in nite loops recursion probe hanler is boune in tie. he coe generate b
sstetap inclues eplicit checs that 1iit the total niber of stateents eecute to a sall nuber.
siilar liit is ipose on the nesting epth of function cadls. hen either 1liit is eceee that
probe hanler cleanl aborts an signals an error. he ssttap session is norall con gure to
abort as a whole at that tie.

hat about running out of eor onaic eor allocation whatsoeer taes place uring the
eecution of probe hanlers. rras function contets an buffers are allocate uring initialization.
hese resources a run out uring a session an generall r esult in errors.

hat about locing f ultiple probes see con icting locs on the sae globalariables one or ore
of the will tie out an be aborte. uch eents are tallie as sippe probes an a count is
isplae at session en. con gurable nuber of sippe pr obes can trigger an abort of the session.

hat about null pointers iision b zero he coe generate b sstetap translates potentiall
angerous operations to routines that chec their arguendt run tie. hese signal errors if the are
inali. an arithetic an string operations silentl oer ow if the results ecee representation
liits.

hat about bugs in the translator copiler hile bugs in the translatoror the runtie laer certainl
eist our test suite gies soe assurance. lus the entire gen&e coe a be inspecte tr the
-p option . opiler bugs are unliel to be of an greater conern for sstetap than for the ernel
as a whole. n other wors if it was reliable enough to buileternel it will buil the sstetap
oules properl too.

s that the whole truth n practice there are seeral wea points in sstetap an the unerling
probes sste at the tie of writing. utting probes inisciinatel into unusuall sensitie parts
of the ernel 1low leel contet switching interrupt isphing has reportel cause crashes in the
past. e are ing these bugs as the are foun an construct ing a probe point bloclist but it is
not coplete.

. ercises

lter the last probe imier-iffies.stp to reset the counters an continue reporting instea of
eiting.

e anticipate support for ineing an looping usingforeach shortl.
ee http://sourceware.org/bugzilla

. rite a script that every ten seconds displays the top fiv e most freuent users of open system call
during that interval.

. rite a script that eperimentally measures the speed of t he getcycles counter on each processor.

. se any suitable probe point to get an approimate profile o fprocess CP usage which processesusers
use how much of each CP.

Tapsets

After writing enough analysis scripts for yourself you may become known as an epert to your colleagues
who will want to use your scripts. Systemtap makes it possibl e to share in a controlled manner to build
libraries of scripts that build on each other. n fact all of the functions pid etc. used in the scripts above
come from tapset scripts like that. A tapset is ust a scrip t that designed for reuse by installation into a
special directory.

Automatic selection

Systemtap attempts to resolve references to global symbols probes functions variables that are not defined
within the script by a systematic search through the tapset | ibrary for scripts that define those symbols.

Tapset scripts are installed under the default directory na med usrsharesystemtaptapset . A user may
give additional directories with the R option. Systemtap searches these directories for script — .stp
files.

The search process includes subdirectories that are specia li ed for a particular kernel version andor archi
tecture and ones that name only larger kernel families. Nat urally the search is ordered from specific to
general as shown in igure .

stap p vv e probe begin devnull

Created temporary directory tmpstaplnEBh

Searched usrsharesystemtaptapset..i. stp match count
Searched usrsharesystemtaptapset...stp match count
Searched usrsharesystemtaptapset.i.stp match count
Searched usrsharesystemtaptapset..stp mat ch count

Searched usrsharesystemtaptapseti.stp ma tch count

Searched usrsharesystemtaptapset.stp match co unt

Pass parsed user script and library scripts in usr sysreal ms.
Running rm rf tmpstaplnEBh

igure isting the tapset search path.

hen a script file is found that defines one of the undefined symbols that entire file is added to the probing
session being analy ed. This search is repeated until no mor e references can become satisfied. Systemtap
signals an error if any are still unresolved.

This mechanism enables several programming idioms. irst it allows some global symbols to be defined
only for applicable kernel versionarchitecture pairs an d cause an error if their use is attempted on an
inapplicable host. Similarly the same symbol can be defined differently depending on kernels in much the
same way that different kernel includeasmARC files contain macros that provide a porting layer.

Another use is to separate the default parameters of a tapset routine from its implementation. or eample
consider a tapset that defines code for relating elapsed time intervals to process scheduling activities. The
data collection code can be generic with respect to which tim e unit iffies wallclock seconds cycle counts

it can use. t should have a default but should not reuire ad ditional runtime checks to let a user choose
another. igure shows a way.

cat tapsettimecommon.stp

global timevars
function timerbegin name timevarsname time value
function timerend name return timevalue time varsname

cat tapsettimedefault.stp
function timevalue return gettimeofdayus

cat tapsettimeuser.stp
probe begin

timerbegin bench

for iii
printf d cyclesn timerend bench
eit
function timevalue return getticks override f or greater precision

igure Providing an overrideable default.

A tapset that eports only data may be as useful as ones that eports functions or probe point aliases see
below. Such global data can be computed and kept uptodate using probes internal to the tapset. Any
outside reference to the global variable would incidentall y activate all the reuired probes.

Probe point aliases

Probe point aliases allow creation of new probe points from e isting ones. This is useful if the new probe
points are named to provide a higher level of abstraction. o r eample the systemcalls tapset defines probe
point aliases of the form syscall.open etc. in terms of lower level ones like kernel.functionsysopen

Even if some future kernel renames sysopen the aliased name can remain valid.

A probe point alias definition looks like a normal probe. Both start with the keyword probe and have a probe
handler statement block at the end. But where a normal probe ust lists its probe points an alias creates a
new name using the assignment operator. Another probe that names the new probe point will ~ create an
actual probe with the handler of the alias prepended.

This prepending behavior serves several purposes. t allow s the alias definition to preprocess the con

tet of the probe before passing control to the userspecifie d handler. This has several possible uses
if flag flag net skip probe unless given condition is met
name foo supply probedescribing values
var var etract target variable to plain local variable

igure demonstrates a probe point alias definition as well a s its use. t demonstrates how a single probe
point alias can epand to multiple probe points even to othe r aliases. t also includes probe point wildcard
ing. These functions are designed to compose sensibly.

cat probealias.stp
probe syscallgroup.io syscall.open syscall.close
syscall.read syscall. write
groupname io

probe syscallgroup.process syscall.fork syscall.eec ve
groupname process

probe syscallgroup.
groups eecname . . groupname

probe end

foreach eg in groups
printf s dn eg groupseg

global groups

stap probealias.stp
waitforsysio
udev.hotplugio
hal.hotplugio
Xio
apcsmartio

makeio
makeprocess
fcemcsmanageio
fdesktopio
mmsio

shio

shprocess

igure Classified system call activity.

Embedded C

Sometimes a tapset needs provide data values from the kerne | that cannot be etracted using ordinary
target variables var . This may be because the values are in complicated data stru ctures may reuire lock
awareness or are defined by layers of macros. Systemtap prov ides an escape hatch to go beyond what

the language can safely offer. n certain contets you may e mbed plain raw C in tapsets echanging power
for the safety guarantees listed in section .. Enduser sc ripts may not include embedded C code unless
systemtap is run with the g guru mode option. Tapset scripts get guru mode privileg es automatically.

Embedded C can be the body of a script function. nstead enclo sing the function body statements in ~ and
use and . Any enclosed C code is literally transcribed into the kerne [module it is up to you to make
it safe and correct. n order to take parameters and return av alue macros STAPAR and STAPRETAE

are made available. The familiar data-gathering functions pid() , execname(), and their neighbours are all
embedded C functions. Figure 10 contains another example.

Since systemtap cannot examine the C code to infer these types, an optional® annotation syntax is available
to assist the type inference process. Simply suffix parameter names and/or the function name with :string
or :long to designate the string or numeric type. In addition, the script may include a block at the
outermost level of the script, in order to transcribe declarative code like include linux/foo.h . These
enable the embedded C functions to refer to general kernel types.

There are a number of safety-related constraints that should be observed by developers of embedded C code.

1. Do not dereference pointers that are not known or testable valid.
2. Do not call any kernel routine that may cause a sleep or fault.

3. Consider possible undesirable recursion, where your embedded C function calls a routine that may be
the subject of a probe. If that probe handler calls your embedded C function, you may suffer infinite
regress. Similar problems may arise with respect to non-reentrant locks.

4. If locking of a data structure is necessary, use a trylock type call to attempt to take the lock. If that
fails, give up, do not block.

cat embedded-C.stp

include linux/sched.h
include linux/list.h

function taskexecnamebypid:string (pid:long)
struct taskstruct p;
struct listhead p, n;
listforeachsafe(p, n, ¤t-tasks)
p listentry(p, struct taskstruct, tasks);
if (p-pid (int)STAPARGpid)
snprintf(STAPRETVALUE, MASTRINGLEN, s, p-comm);

probe begin

printf(s(d)n, taskexecnamebypid(target()), ta rget())
exit()

pgrep emacs
16641

stap -g embedded-C.stp -x 16641
emacs(16641)

Figure 10: Embedded C function.

5This is only necessary if the types cannot be inferred from other sources, such as the call sites.

14

Naming conventions

sing the tapset search mechanism ust described potentia lly many script files can become selected for
inclusion in a single session. This raises the problem of nam e collisions where different tapsets accidentally
use the same names for functionsglobals. This can result in errors at translate or run time.

To control this problem systemtap tapset developers are ad vised to follow naming conventions. ere is
some of the guidance.

. Pick a uniue name for your tapset and substitute it for TAPSET below.

. Separate identifiers meant to be used by tapset users from t hose that are internal implementation

artifacts.
. ocument the first set in the appropriate manpages.
. Prefi the names of eternal identifiers with TAPSET_ if there is any likelihood of collision with other

tapsets or enduser scripts.

. Prefi any probe point aliases with an appropriate prefi.

. Prefi the names of internal identifiers with __TAPSET .

Eercises

. rite a tapset that implements deferred and cancelable logging. Eport a function that enueues a
tet string into some private array returning an id token . nclude a timerbased probe that period
ically ushes the array to the standard log output. Eport an other function that if the entry was not
already ushed allows a tet string to be cancelled from the ueue. ne might speculate that similar

functions and tapsets eist.

. Create a relative timestamp tapset with functions retu rn all the same values as the ones in the times
tamp tapset ecept that they are made relative to the startt ime of the script.

. Create a tapset that eports a global array that containsa mapping of recently seen process numbers
to process names. ntercept key system calls eecve to update the list incrementally.

. Send your tapset ideas to the mailing list

urther information

or further information about systemtap several sources a re available.
There are manpages

stap systemtap program usage language summary
stappaths your systemtap installation paths
stapprobes probes probe aliases provided by builtin tapsets

stape a few basic eample scripts
tapset summaries of the probes and functions in each tapset
probe detailed descriptions of each probe
function detailed descriptions of each function

There is much more documentation and sample scripts include d. ou may find them under usrsharedocsystemtap

Then there is the source code itself. Since systemtap is free software you should have available the entire
source code. The source files in the tapset directory are also packaged along with the systemtap binary
Since systemtap reads these files rather than their document ation they are the most reliable way to see
whats inside all the tapsets. se the v verbose command line option several times if you like to show
inner workings.

inally there is the proect web site httpsourceware.orgsystemtap with several articles an archived
public mailing list for users and developers systemtapsourceware.org RC channels and a live T
source repository. Come oin us

A Errors

e eplain some common systemtap error messages in this sect ion. Most error messages include linechar
acter numbers with which one can locate the precise location of error in the script code. There is sometimes
a subseuent or prior line that elaborates.

error at filename line column details

Many error messages contain a manpage key like this man foo . This indicates that more details are
available as a manpage foo so use the man foo command to view it.

A. Parse errors

parse error epected foo saw bar
The script contained a grammar error. A different type of con struct was epected in the given contet.

parse error embedded code in unprivileged script
The script contained unsafe constructs such as embedded Cs ection . but was run without the g
guru mode option. Confirm that the constructs are used safe lythen try again with g .

A. Type errors

semantic error type mismatch for identifier foo string vs. long
n this case the identifier =~ foo was previously inferred as a numeric type long but at th e given point
is being used as a string. Similar messages appear if an array inde or function parameter slot is used
with conicting types.

semantic error unresolved type for identifier foo
The identifier foo was used for eample in a print but without any operations that could assign it a
type. Similar messages may appear if a symbol is misspelled b y a typo.

semantic error Epecting symbol or array inde epression
Something other than an assignable lvalue was on the left han d sign of an assignment.

A. Symbol errors

while searching for arity N function semantic error unresolved function call
The script calls a function with N arguments that does not eist. The function may eist with di ~ fferent
arity.

semantic error array locals not supported
An array operation is present for which no matching global de claration was found. Similar messages
appear if an array is used with inconsistent arities.

semantic error variable foo modified during foreach
The array foo is being modified being assigned to or deleted from within a n active foreach loop.
This invalid operation is also detected within a function ca lled from within the loop.

A. Probing errors

semantic error probe point mismatch at position N while resolving probe point foo
A probe point was named that neither directly understood by s ystemtap nor defined as an alias by a
tapset script. The divergence from the tree of probe point namespace is at position N starting with
ero at left.

semantic error no match for probe point while resolving pr obe point foo
A probe point cannot be resolved for any of a variety of reason s. t may be a debuginfobased probe
point such as kernel functionfoobar where no foobar function was found. This can occur if
the script specifies a wildcard on function names or an inval id file name or source line number.

semantic error unresolved targetsymbol epression
A target variable was referred to in a probe handler that was n ot resolvable. ra target variable is not
valid at all in a contet such as a script function. This varia ble may have been elided by an optimi ing
compiler or may not have a suitable type or there might ust be an annoying bug somewhere. Try
again with a slightly different probe point use statement instead of function to search for a
more cooperative neighbour in the same area.

semantic error libdw failure
There was a problem processing the debugging information. t may simply be missing or may have
some consistency correctness problems. ater compilers t end to produce better debugging informa
tion so if you can upgrade and recompile your kernelapplic =~ ation it may help.

semantic error cannot find foo debuginfo
Similarly suitable debugging information was not found. C heck that your kernel buildinstallation
includes a matching version of debugging data.

A. Runtime errors

suallyruntime errors cause a script to terminate. Some o fthese may be caught with the try ... catch
construct.
ARNN Number of errors N skipped probes M

Errors andor skipped probes occurred during this run.
division by

The script code performed an invalid division.
aggregate element not found

An statistics etractor function other than count was invoked on an aggregate that has not had any
values accumulated yet. This is similar to a division by ero

aggregation overow
An array containing aggregate values contains too many dist inct key tuples at this time.

MAXNESTING exceeded
Too many levels of function call nesting were attempted.

MAXACTION exceeded
The probe handler attempted to execute too many statements.

kernel/user string copy fault at Oxaddr
The probe handler attempted to copy a string from kernel oemspace at an invalid address.

pointer dereference fault
There was a fault encountered during a pointer dereferengeepation such as a target variable evalu-
ation.

B Acknowledgments

The author thanks Martin unt, Will Cohen, and im eniston f or improvement advice for this paper.

18

